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Introduction
This paper describes the design and implementation of a fully autonomous and
programmable autopilot system for small scale autonomous unmanned aerial vehicle
(UAV) aircraft.  This system was implemented in Reflection and has flown on the
Exploration Aerial Vehicle (EAV) platform at NASA Ames Research Center, currently
only as a safety backup for an experimental autopilot.  The EAV and ground station are
built on a component-based architecture called the Reflection Architecture.  The
Reflection Architecture is a prototype for a real-time embedded plug-and-play avionics
system architecture which provides a transport layer for real-time communications
between hardware and software components, allowing each component to focus solely on
its implementation.  The autopilot module described here, although developed in
Reflection, contains no design elements dependent on this architecture.

https://ntrs.nasa.gov/search.jsp?R=20120011965 2019-08-30T21:02:34+00:00Z
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Figure 1.  Components of the UAV Flight System

The UAV system is composed of two main components: a ground station component
which provides telemetry feedback for the operator and allows for control of the aircraft,
and a flight system component onboard the vehicle.  The component details are shown in
Table 1.

Table 1.  System Hardware

Ground Station Flight System

Platform/Airframe Dell Mobile Workstation
Hanger 9 Quarter Scale

Cessna 172

CPU

DELL Precision M70
Workstation, Pentium M 770,

2.13GHz, 2GB RAM

Digital Logic MSMP3SEV,
Pentium-III, 700MHz, 256MB

RAM
Operating System Windows XP Professional Windows XP Embedded
Real-Time Infrastructure Reflection Architecture Reflection Architecture

Communications
Microhard Spectra 910, 1W

902-928MHz RF Modem
Microhard MHX-910, 1W 902-

928MHz RF Modem

Avionics
Athena Guidestar GS111m

INS/GPS
  Pontech SV203 Servo Controller
  Custom Servo Switching Board

Ground Station Monitoring and Control
With the Reflection plug-and-play architecture, simulation and hardware can be mixed on
the fly for in-situ simulation testing of hardware components at any level of granularity.
When implementing the final ground station controller, several simulation components
were reused to provide telemetry data back to the ground station.  A screenshot of the
ground station is shown in Figure 2 below.



Figure 2.  Screenshot of Ground Station with 3D Visualization

The bottom left window provides a graphical interface for configuring and manipulating
waypoint commands.  Waypoints can be manipulated on a 2D representation of the
terrain; waypoints are overlaid on GPS-localized 2D bitmap images.  Once a mission is
programmed, the user can ‘upload’ the commands to the aircraft.  The ground station
generates remote method invocations on the remote autopilot module, and passes these
invocation requests to the Reflection distributed transport layer (RDTL).  The RDTL
converts the invocation requests into Reflection Virtual Machine byte-code commands
and sends the commands over to the autopilot component via the 900 MHz
communications link.  On the flight computer, the RDTL receives and assembles the
invocation requests, then executes the commands on the autopilot module.

Autopilot System Overview
The autopilot system is implemented as a stand alone plug-in component in the
Reflection Architecture.  Data flow through the system conceptually follows the diagram
shown in Figure 3.  Command objects generate FMS lateral and longitudinal mode
instructions for the FMS.  The FMS in turn generates controller mode instructions, which
are used by the controller to command the actuators of the vehicle.  The state information
and the actuator commands are generated by external plug-and-play Reflection modules.



Figure 3.  Conceptual Data Flow and Components

The top-most object in the control system is an instance of the AutopilotSystem class, as
shown in Figure 4.  The AutopilotSystem class is responsible for communicating with the
rest of the Reflection system and maintaining the two main objects in the system: the
FMS (flight management system) and the Controller.  The FMS is responsible for
maintaining the list of commands which specify FMS mode instructions.  The mode
instructions are used by the FMS to provide targets to the controller.  The controller is
responsible for implementing the control loops which control the aircraft through the
vehicle’s actuators.

Figure 4.  Top-Level Classes in the Autopilot System

Commands in the Flight Management System
The flight management system class is a state machine that controls the continuous
feedback control system in the controller object.  The FMS is responsible for maintaining
a database of mission program, keeping track of the mission program execution, and
setting the modes of the controller object’s feedback loops.

The mission program is implemented Command objects, which are stored in a
programmable list in the FMS.  The command list is an ordered list of commands that can
be programmed on the ground, or reprogrammed while the aircraft is in the air.  In
implementation, the Command class is a virtual interface class, from which specific types



of command classes inherit.  All commands implement the interfaces defined by the base
class, which includes methods to initialize their internal state, update their internal state at
each OnComponentUpdate() callback, and to notify the FMS when the command
objectives have been met.

Controller commands can be programmed through the ReflectionScript language, which
interprets text-based commands into binary code which is passed to the Reflection Virtual
Machine.  The following scripts are examples of programmed routes for the Reflection
component.

// Program the Autpoilot System.
objAutopilot.ClearCommandList();
objAutopilot.AddCommand_Takeoff (  4500, -2000, 500.0, 80.0, 1000.0,  -0.34907, 50.0 );
objAutopilot.AddCommand_FlyToTrack ( 8070.9,  -6009.7, 500.0,  80.0,  1000.0 );
// Following heading until specified altitude is reached.
objAutopilot.AddCommnd_SetFMSMode ( HEADINGHOLD, 0.0, ALTCMD, 400.0, SPDCMD, 80,

ALTITUDE, GT, 300 );
cmd=objAutopilot.AddCommand_FlyToTrack ( 10107.0, -1390.7, 500.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( 8904.5,  -902.8,  500.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( 6919.8,  -5568.9, 500.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( 3357.4,  1364.9,  500.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( -3319.9, 4457.2,  500.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( -5436.1, 3980.7,  500.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( -4371.0, 1696.2,  200.0,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( -741.1,  182.6,  50.0 ,  80.0,  1000.0 );
objAutopilot.AddCommand_FlyToTrack ( 2522.8,  -1267.5, -10.0,  80.0,  1000.0 );
objAutopilot.AddCommand_Jump ( cmd );

Figure 5.  Sample Control Program.

At the start of the mission, the controller activates the first command, which might be a
Takeoff command for an autonomous takeoff.  The update sequence, shown in Figure 6,
is very simple sequence of steps; the FMS object is only responsible for maintaining the
current state, transitioning between states at the appropriate time.  At each component
update callback, the FMS calls the Update() method of the active command, which
updates its internal state.  The FMS then checks the IsComplete() method of the
command; when TRUE is returned, the FMS transitions to the next command, and signals
a Reflection event in case any other Reflection component is monitoring autopilot state
transitions.

Move to Next Command

[active command
is complete]

Initialize Command

Update Command

[active command
not complete]

Update Lateral Mode

Update Longitudinal Mode



Figure 6.  FMS Updates

The FMS internally maintains three different FMS control modes, an FMS lateral mode,
FMS longitudinal mode, and FMS speed mode.  The active command object internally
maintains a state machine which outputs FMS mode commands and targets appropriately
to meet the objectives of each command.

Command Types

Command: Direct To Waypoint
The DirectToWaypoint class controls the vehicle mostly through heading commands
towards a specified 3D waypoint.  When initiated, the DirectToWaypoint stores the initial
position of the aircraft and the position of the next waypoint (if there is one).  Depending
on the transition mode, the command uses this information to determine the size of the
waypoint radius based on current aircraft speed to allow a turn to the next waypoint
without overshoot, and to determine if the aircraft has passed the waypoint based on a 2D
axis perpendicular to the line from the initial position to the waypoint position, and
passing through the waypoint.

Figure 7.  DirectToWaypoint Diagram

In implementation, the DirectToWaypoint class inherits from the Command base class,
ass shown in Figure 8.

Figure 8.  DirectToWaypoint Class

The DirectToWaypoint command sets the lateral FMS mode to ‘FlyToWaypoint’, and
outputs a heading command.  The longitudinal mode and speed mode are selected based
on the waypoint command; the longitudinal controls or the speed controls can be used to



control either airspeed, altitude, or follow the vertical track between waypoints.  Having
throttle control altitude is the default, for safety if the engine fails.

Figure 9.  DirectToWaypoint Command FMS Modes

Command: TrackToWaypoint

The TrackToWaypoint command is similar to the DirectToWaypoint command, except
that the aircraft is controlled to fly the track from the previous waypoint to the next
waypoint, rather than heading straight to the waypoint.  Similar to the DirectToWaypoint
command, the transition to the next waypoint can be triggered by penetration of the
perpendicular axis or the transition radius, which can be calculated based on the current
aircraft state and the performance characteristics of the aircraft (turning radius).

Figure 10.  TrackToWaypoint Diagram

The TrackToWaypoint commands the TrackToWaypoint lateral FMS mode.  The
longitudinal mode is set to AltitudeCommand.



Figure 11.  TrackToWaypoint FMS Mode State Diagram

The manner in which the altitude is captured can be set by the waypoint.  Immediate
altitude capture is the default, where the aircraft is controlled within the safety limits of
the controller to attain the altitude as soon as possible.  The glideslope mode will have the
aircraft follow the slope between waypoints, and is used for instance in the final approach
leg during a landing.

Command: Jump
The Jump command instigates an immediate transition to another command in the list.
This control is used for instance to repeat a sequence of commands.  There are no FMS
modes associated with the Jump command.

Command: Circle
The Circle command controls the aircraft to fly a circle pattern of a given radius about a
waypoint.  The lateral PID mode is set to ‘Circle’, the longitudinal mode set to
AltitudeCommand.

Figure 12.  Circle Waypoint FMS Mode State Diagram

Command: TakeOff
The TakeOff command provides commands for an autonomous takeoff sequence.  The
FMS modes are set to a dedicated ‘TakeOff’ mode, which provide full throttle to the
aircraft while maintaining heading on the runway based on steering and rudder inputs, as
rudder and steering inputs are ganged together on the same servo command line.  Once
the rotation takeoff speed is reached, the aircraft performs a climb longitudinal maneuver
while maintain lateral wings level, until a safe turning altitude is reached.



Figure 13.  Takeoff FMS Mode State Diagram

Command: Landing
The Landing command is used for automated landings.  The aircraft is commanded to
maintain a track between waypoints and command a constant descent rate until the
ground sonars pick up a reading from the ground, and the aircraft attains the specified
distance to the ground.  Note that position information based on pressure and GPS may
not be accurate enough to determine the flare maneuver, so the flare command will
institute this command based on an ultrasonic altimeter located on the bottom of the
aircraft.  When the flare mode is excuted, the elevators are used to command a nose up
attitude of the aircraft while power is reduced, until the altitude notifies that the rear
wheels are on the ground.  The power is cut while the elevator is used to drop the front
wheel.

Figure 14.  Land Command FMS Mode State Diagram

Command: SetFMSMode
The FMSModeTimed will command the specified FMS mode until a transition condition
is realized.  This command’s class structure is shown in Figure 15.



Figure 15.  SetFMSMode Command Class Diagram

Flight Management System Modes
The FMS receives command modes and targets from the active command, and outputs
command instructions to the autopilot.  The list of FMS modes currently implemented is
shown in Table 2.

Table 2.  List of FMS Modes

Lateral Mode Longitudinal Mode Speed Mode
DirectToWaypoint CmdSpeed CmdSpeed
TrackToWaypoint CmdAltitude CmdAltitude
Circle CmdVertTrack CmdVertTrack
TaxiTrack AltitudeAttain AltitudeAttain
CmdRoll AltitudeHold AltitudeHold
CmdAileron CmdElevator CmdThrottle
Disabled (PilotCmd) CmdPitch Disabled (PilotCmd)
 Disabled (PilotCmd)

Each mode is associated with one or more commands to the controller, and modes can be
implemented as state machines.  For instance, the CmdAltitude mode for both the lateral
and longitudinal modes contains an internal state machine shown in Figure 16.



CmdAltitude

Altitude
Different?

AltitudeAttain

Entry/ Set PID modes
LONmode = airspeed cmd
SPDMode = altitude cmd

Update/ Set PID inputs
loninput = airspeed from

current waypoint
spdinput = altitude from

current waypoint

[yes]

AltitudeHold

Entry/ Set PID modes
LONmode = altitude cmd
SPDMode = airspeed cmd

Update/ Set PID inputs
loninput = altitude from current

waypoint
spdinput = airspeed from

current waypoint

[no]

Altitude has been reached

Figure 16. CmdAltitude Mode State Diagram

The two state machines implementing an FMS mode and a command object could be
integrated into a single machine; for instance, the DirectToWaypoint command uses the
CmdAltitude FMS state, but could implement the AltitudeAttain/AltitudeHold FMS
states explicitly using the same state machine model.  The reason to have two state
machines is to help avoid redundant code.  Since many different commands require the
aircraft to attain then hold an altitude, this state machine was implemented as a common
FMS control mode rather than duplicating the logic in several individual command
machines.

Autopilot Controller
The controller object is responsible for implementing the feedback control loops that
command the aircraft.  The FMS object commands the controller by first setting high
level modes, the providing actual target data.  Similar to the FMS, there are three modes
associated with the controller: lateral modes, longitudinal modes, and speed modes.
Lateral modes control the ailerons and rudder, longitudinal modes control the elevator
and also affect the rudder, and speed modes control the throttle. The controller modes are
listed in Table 3.

Table 3.  Controller Modes

Lateral Longitudinal Speed
Disengaged Disengaged Disengaged
Roll Cmd Pitch Cmd Fixed Throttle
Heading Cmd Altitude Cmd Airspeed Cmd



CrossTrack Airspeed Cmd Altitude Cmd
Circle Vert Speed Cmd Glide Slope
Takeoff

The controller uses a cascaded control structure mainly composed of proportional-
derivative-integral (PID) controller transforms.  Several different paths can lead from
sensor inputs to actuator command outputs, as shown in Figure 17.  Specific paths are
associated with enumerated controller modes.  Lateral modes control the ailerons and
rudder, longitudinal modes control the elevator and also affect the rudder, and speed
modes control the throttle.
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Rudder from HDG is engaged only
during TAKEOFF

Roll From
Circle RadiusFixed

Calculated distance to circle center

Fixed
Typically, full throttle (1.0)

Rudder from
HDG

Fixed
Takeoff Heading

commands_fixedThrottle_m1p1

Throttle from
GlideSlopeDev

Fixed: Glide Slope
(error from FPA)

Figure 17.  Cascading PID Control Structure in the Controller Class
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Presentation Outline 

• Swift UAS Program Summary 

 

• Preliminary Design Summary 

 

• Subsystems Overview 

 

• Autopilot System Overview 

 

• Analysis, Modeling and Simulation 
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Goal of the Swift UAS 

• Develop a fully autonomous, fully electric, zero-
emissions human flight capable research vehicle 
platform using today’s technologies and 
applicable for next generation aircraft research 

 

• Build on existing Bright Star Gliders SWIFT 
airframe, a high performance glider 

 

• Utilizes GOTS/COTS control hardware, 
algorithms, and infrastructure available at NASA 
Ames Research Center. 
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Swift UAS Specifications 

Geometry 

 Wing Span:  12.8m (42ft) 
 Length:  3.4m (~11ft) 
 Wing area:  12.5 m² (136 ft²) 
 Aspect ratio:  12.9 
Speeds 

 Speed, Cruise: 45 knots (23 m/s) 
 Speed, Stall: 20 knots (10 m/s) 
 Speed, VNE: 68 knots (35 m/s) 
Weight and Payload 

 Weight, Empty:  48 kg (106 lb) 
 Weight, Max Take Off : 145 kg (320 lbs) 
 Payload Capacity:  100kg (220lbs) 
Performance 

 Maximum glide ratio:  27:1 
 Rate of sink:  36 m/min (118 ft/min) 
 Powered Rate of Climb:  2.5 m/s 
 Est Max Endurance:  ~7 hours 

 Est Max Range:  ~500 km 

 Takeoff Field Length:  50m 
 Service Ceiling: >7.6km (>25,000 ft) 
Control and Propulsion 

 Engine:  Electric Motor, 
Pusher Prop Config. 

 Propulsion: Electraflyer 18hp/13.5kw 
DC Motor, 5.6KW-hr Li-Po 

 Propeller: 1.5m (60”) carbon-fiber 
Materials 

 All Composite Wing Structure (Aramid/Carbon) 
 Steel/Aluminum Fuselage Frame 

12.8m (42ft) 

3.4m (11ft) 
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Flight Vehicle System : Modifications 

Control Surfaces 

• L/R Elevons 

• L/R Flaps 

• Engine Speed Control 

• Steerable front wheel  

 

Sensor Installation 

•  GPS and DGPS Antenna Installation 

•  Five-Hole Pitot Probe 

•  Radio Antenna Pass Thru/Mounts 

Control Surface Modifications 

1. Split control surfaces for redundancy 

2. Design/Install actuators on all control surfaces and 

controllable systems. 

Installation of Wheel 

Tiplets (kit) 

Propulsion System 

1. Install engine system 

2. Install batteries 

Avionics Installation 

1. Design/Install Isolated Mounting Structures 

Payloads 

2. Design avionics 

3. Install Flight Critical Control Systems 

4. Install C&DH/Avionics System 

Structural Modifications 

• Tricycle landing gear structure 

 



6 NASA Ames Research Center  |  UAS Mission Directed Autonomy Research 
NASA Code TI Aeronautics - UVA Technical Seminar, April 2012 

Swift’s Unique Characteristics 

• Low cost reconfigurable platform with 
characteristics of larger aircraft 

• Large flexible wing (13m/42ft span)  

• Wing structure is light-weight, 
flexible, simple, all-composite 

• Redundant actuation 

• Large payload capacity (~200lbs limited 
by COA) 

• All-electric, zero emissions platform 

• Slow cruise speeds ideal for long 
duration test segments 

• Capable high altitude flight 

• Quiet airframe structure (noise, 
emissions, EMI, etc.) 

• Custom autopilot/navigation system 

• Fully redundant and fully instrumented 
for local or remote autonomy 

• Immediate pilot preemption over 
redundant links for safe/immediate 
termination of experiments 

 

12.8m (42ft) 

3.4m (11ft) 
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Control Experiment Mission Concept 

1. Takeoff

2. Climb

3. Flight Test Pattern
(Racetrack, Circle, Figure-8, etc.)

4. Experiment Segment

5. Final

Approach

6. Descent

Ground Control 

Station and Crew

Experiment Airfield (e.g., Moffett, Crow’s Landing)

FAA COA 
Operational 
Boundary

7. Land

Always Within Direct 

Pilot Control Range

PilotRange 

Safety
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Remote Survey Mission Concept 

1. Takeoff

2. Climb

3. Cruise

4. Survey

5. Return Cruise

6. Descent

Mobile Ground 

Station

RoadwayTakeoff / 

Landing Site

FAA COA 
Operational 
Boundary

Range up to 100 km RFLOS*

7. Land

Return / 

Landing Site

Altitude up to 

7.6 km MSL**

Safety

Obsrv.

Safety

Obsrv.

Safety

Obsrv.

...

Remote 
Scientists/Observers
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Swift UAS Systems Breakdown 

PA.1.1  Flight Vehicle System 

PA1.2 Ground Station 

PA.1.0 Complete Sw ift UAS System
PA.1.1     Flight Vehicle System (FVS)
PA.1.1.1         Avionics System (AVS)
PA.1.1.1.1             Flight Critical Control System (FCS)
PA.1.1.1.2             Control and Data Handling System (CDHS)
PA.1.1.1.2.1                 CDHU (Control and Data Handling Unit) Hardw are
PA.1.1.1.2.2                 FMS (Flight Management System)
PA.1.1.1.2.3                 ESS (Embedded Softw are Systems)
PA.1.1.1.2.4                 AP (Autopilot System)
PA.1.1.1.3             Communication Systems (COM)
PA.1.1.1.4             Flight Sensors (SENS)
PA.1.1.1.4.1                 INS (ADHRS, IMU)
PA.1.1.1.4.2                 GPS
PA.1.1.1.4.3                 Air Data System (AIRDAT)
PA.1.1.1.4.4                 DGPS
PA.1.1.2         Payload and Mission Data Systems (PYLD)
PA.1.1.2.1             Common Payload Data System (CPDS)
PA.1.1.3         Actuation System (ACT)
PA.1.1.3.1             Control Surface Actuation (CS)
PA.1.1.3.2             Steering and Brake Actuation
PA.1.1.4         Propulsion System (PRLP)
PA.1.1.4.1             Electric Motor Propulsion System
PA.1.1.5         Structures
PA.1.1.5.1             Fuselage Structure
PA.1.1.5.2             Fuselage Outer Mold Line
PA.1.1.5.3             Propulsion Support
PA.1.1.5.4             Avionics Mounting Structure
PA.1.1.5.5             Wing Structure
PA.1.1.5.6             Control Surfaces
PA.1.1.6         Electrical and Pow er System (EPS)
PA.1.1.6.1             Propulsion Pow er
PA.1.1.6.2             Avionics Pow er
PA.1.1.6.3             Actuation Pow er
PA.1.1.6.4             PV Regeneration System
PA.1.1.7         Contingency Management System (CMS)
PA.1.2     Ground Control System (GCS)
PA.1.2.1         Primary Ground Control Station
PA.1.2.2         Secondary Ground Control Station
PA.1.2.3         CPDS Payload Ground Station (PGS)
PA.1.3     Flight Operation and Procedures (OPS)
PA.1.3.1         Runw ay
PA.1.3.2         Airspace
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Conceptual Avionics Layout 
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Swift UAS Actuation System 
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Swift UAS Landing Gear System 
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Actuation: Control Surface Specification 
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Swift UAS Propulsion System 
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Swift UAS Propulsion Power 

Battery Enclosure 

Battery Packs Installation 

Battery System 
• 144 cells (10 A-hr, 3.7 V)  
• 18S, 8P Pack = 66.6V, 80 A-hr 
• Unit cell = 3S, 4P (11.1V, 40 A-hr) 
• 80 lbs weight 



16 NASA Ames Research Center  |  UAS Mission Directed Autonomy Research 
NASA Code TI Aeronautics - UVA Technical Seminar, April 2012 

Swift UAS Avionics 

Fuselage Assembly 

FCS 

CDHS/CDHU 

Payload / CPDS 

Propulsion 
Power Mng 
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FCS (Flight Critical Systems) 
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Instrumentation: CDHU 
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Instrumentation: Antennas and Probes 

Air Data Probe

United Sensors, 
Inc.

Antenna

GPS
Antenna

Novatel DGPS
Antenna

900MHz Omni

900MHZ 5dbi Rubber Duck Antenna 

http://www.l-com.com 
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CPU 
• Laptop Control Station with Reflection 
Architecture for UAS C&C through 
avionics CPU. 

Wireless Communications: 
• Microhard Spectra 910 Wireless Modem 
    (1 Watt Transmitter) 

Wireless Communications: 
• 6dB 900Mhz Omnidirectional Antenna, 
    5ft Fiberglass 

Controllers 
• USB Controller through avionics CPU 
• JR DSX9 2.4GHz DSM2 (bypass CPU) 

Ground Control System (GCS) 

Two completely separate, identical, and 
redundant ground stations. 

Reusing a well-tested redundant ground station 

configuration (EAV vehicle is shown). 
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Autopilot Controller Overview 

Sensor Modules Autopilot Module Actuator 

Modules

Commands

FMS

Lat/Lon

Modes

FMS

Controller

Modes and 

Targets

Controller Vehicle

Actuator

Commands

Sensors

State 

Information

Figure.  Conceptual Data Flow and Components 
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Sample Mission Script Commands 

// Program the Autopilot System. 

objAutopilot.ClearCommandList(); 
objAutopilot.AddCommand_Takeoff (  4500, -2000, 500.0, 80.0, 1000.0,  -0.34907, 50.0 ); 
objAutopilot.AddCommand_FlyToTrack ( 8070.9,  -6009.7, 500.0,  80.0,  1000.0 ); 
 
// Following heading until specified altitude is reached. 

objAutopilot.AddCommnd_SetFMSMode ( HEADINGHOLD, 0.0, ALTCMD, 400.0, SPDCMD, 80, 
ALTITUDE, GT, 300 ); 

// Follow a preprogrammed path. 

cmd=objAutopilot.AddCommand_FlyToTrack ( 10107.0, -1390.7, 500.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( 8904.5,  -902.8,  500.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( 6919.8,  -5568.9, 500.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( 3357.4,  1364.9,  500.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( -3319.9, 4457.2,  500.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( -5436.1, 3980.7,  500.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( -4371.0, 1696.2,  200.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( -741.1,  182.6,  50.0 ,  80.0,  1000.0 ); 
objAutopilot.AddCommand_FlyToTrack ( 2522.8,  -1267.5, -10.0,  80.0,  1000.0 ); 
objAutopilot.AddCommand_Jump ( cmd ); 
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+OnComponentUpdate()
+OnComponentReset()
+OnComponentInit()
+OnComponentTerminate()

-m_fms : FMS
-m_controller : AP
-m_vehicleState : AirplaneData

Autopilot

+Init()
+Update()
+IsComplete() : bool

Command

+Update()

AP

+Update()

-m_commandList[] : Command
-m_pActiveCommand : Command*
-m_timeInCommand_sec : double

FMS

1

0..*

-m_position_enuft : double
-m_speed_fps : double
-m_radius_ft : double
-m_initPosition_enuft : double
-m_nextWaypointPos_enuft
-m_isRadiusEnabled : bool
-m_isPerpAxisEnabled : bool
-m_isDynamicRadiusEnabled

DirectToWaypoint

-m_position_enuft[3]
-m_orientationEuler_rad[3]
-m_indicatedAirspeed_fps[1]
-m_altitude_sonarFt[1]

AirplaneData

-m_fmsLatMode : eFMSLatMode
-m_fmsLonMode : eFMSLonMode
-m_fmsSpeedMode : eFMSSpeedMode
-m_transitionVariable : eTrasitionVariable
-m_transitionCondition : eTransitionCondition
-m_transitionValue : double
-m_latModeValue : double
-m_lonModeValue : double
-m_spdModeValue : double

SetFMSMode

+FMSLATMODE_DISENGAGED
+FMSLATMODE_FLYTOWAYPOINT
+FMSLATMODE_TRACKTOWAYPOINT
+FMSLATMODE_CIRCLE
+FMSLATMODE_TO_ACCEL2VROT
+FMSLATMODE_WINGSLEVEL

«enumeration»
eFMSLatMode

+FMSLONMODE_DISENGAGED
+FMSLONMODE_ALTITUDE_HOLD
+FMSLONMODE_TO_ACCEL2VROT
+FMSLONMODE_TO_FULLCLIMB
+FMSLONMODE_GLIDE
+FMSLONMODE_FLARE

«enumeration»
eFMSLonMode

+FMSLONMODE_DISENGAGED
+FMSLONMODE_ALTITUDE_HOLD
+FMSLONMODE_TO_ACCEL2VROT
+FMSLONMODE_TO_FULLCLIMB
+FMSLONMODE_GLIDE
+FMSLONMODE_FLARE

«enumeration»
eFMSSpeedMode

+AIRSPEED
+ALTITUDE
+SONAR_ALTITUDE
+ROLL_ANGLE
+PITCH_ANGLE
+COMMAND_TIME
+SYSTEM_TIME

«enumeration»
eTrasitionVariable

+GT
+EQ
+LT

«enumeration»
eTransitionCondition

Autopilot Controller 

Figure.  Top Level Classes 
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Autopilot Controller Architecture 
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Autopilot Controller Architecture 

Throttle from 
Airspeed
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Example FMS State Diagrams 
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Example FMS State Diagrams 
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Geometric Modeling 

• Geometric modeling utilized to derive 
computational fluid models, dynamics models 

• Utilized robotic FaroArm for 3D geometric data 
acquisition and model generation 

• Error Analysis 

• Position error maximum 
 +/-9.00 mm  

• Variation of the drag cross section: 
-2.78% to 2.73% 

• Variation of the lift cross section: 
-0.56% to 0.57% 
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Dynamic Modeling and Simulation 

• Simulation studies used for dynamics 
and performance predictions, control 
law development 

• Dynamic models generated from STAR 
Navier-Stokes analyses 

• Time consuming process, provides 
estimates for all major dynamic 
coefficients 

• Lower fidelity method for comparison 

• X-Foil model using estimated properties  

• Vehicle Sketchpad / Vorview models 

• Simulation Models 

• Linear model (Matlab) containing 
stability derivatives, control law 
development 

• Non-linear model for simulation testing 

• Model assumptions and estimates will 
be continuously refined throughout 
development 

• Flight test data will be used for 
parameter estimation 

Simulation Studies

SketchPad /Vorview courtesy of J. Totah (NASA/ARC/TI) 

X-Foil courtesy of  Z.Mahboubi (Stanford/AA) 
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CFD Modeling 

• CFD model and analysis performed by John 
Melton (ARC-AUS) 

• STAR N-S analysis derived from geometry 

• Navier-Stokes drag coefficient estimates 
derived for small number of conditions 

• Assumed fully turbulent boundary layer 

• Comparisons with lower order models 

• Airfoil derivatives from X-Foil for 
comparison 
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6-DOF Simulation Model 

States: 

P𝑒 =  𝑋𝑒  𝑌𝑒  𝑍𝑒 
𝑇  ;  V𝑏 =  𝑢  𝑣  𝑤 𝑇; q =  𝑞0  𝑞1 𝑞2  𝑞3 

𝑇  ;ω𝑏 =  𝑝  𝑞  𝑟 T  

Kinematics: 

P 𝑒 =  Ω𝐸𝑒P𝑒 + R𝑏2𝑒V𝑏  

q = −0.5ω bq 
V 𝑏 = − ω𝑏 × v𝑏 −  R𝑒2𝑏Ω𝐸𝑒

2 + R𝑒2𝑏Ω𝐸𝑒R𝑏2𝑒ω𝑏 + R𝑒2𝑏g𝑒
+ 𝑚−1 F𝑃𝑅𝑏 +  −𝐷𝑟𝑎𝑔 𝑌 − 𝐿𝑖𝑓𝑡 𝑅𝑤𝑖2𝑏  

ω 𝑏 = −Jb
−1ω 𝑏 Jb + Jb

−1 T𝑃𝑅𝑏 +  𝐿 𝑀 𝑁   

Dynamics: 

 

 

Lift = QSClα α, δflp  + Q ∗ Sht ∗
dCl

dδele
δele +  

QSc 

2V
 

dCl

dα 
α +  

QSc 

2V
 ∗

dCl

dq
q 

Drag =  QSCD0
+ QS ∗ CDα

 α, δflap   + QSCDδflap
 δflap  + QSHT  

dCD

dδele
 δele + QS  

dCD

dβ 
 β 

Y = QSCYβ
 β + QS  

dCY

dδail
 δail +  QS  

dCY

dδrdr
 δrdr + QS  

b

2V
  

dCY

dp
 p +  QS  

b

2V
  

dCY

dr
 r 

L = QSCLβ
 β +  QS

b2

2V
 

dCL

dr
 r + QS 

b2

2V
  

dCL

dp
 p + QSb  

dCL

dδail
 δail + QSvt MA      vt  

dCL

dδrdr
 δrdr  

M = QSc  
dCM

dδα
 α + QSc CM0

+  QSc CM flap
+  QS  

c 

2V
 

dCM

dq
q +  QS

c 2

2V
 ∗ α  ∗

dCM

dα 
+  QSht MA     

ht  
dCM

δele
 δele  

N = QSbCNββ +  QS  
b2

2V
 

dCN

dp
p +  QS 

b2

2V
 

dCN

dr
r +  QSb  

dCN

δail
 δail + QSvt MA     

vt  
dCN

dδrdr
 δrdr  

• Table driven 
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NASA EAV model 
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Simulation 
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Development Status and Progress 

• Preliminary Design 

• Engine Integration 

• Preliminary Flight Test 

• Modeling and Simulation 

• Airframe Modification 

• Actuator installation, control surface splitting, landing 
gear installation 

• Avionics Integration 

• Actuation System Integration  

• CDHS/Autopilot Integration  

• Propulsion System Integration (completed April-2012) 

• Acceptance and Environmental Testing 

• Flight Worthiness Statement / AFSRB 

• Flight Testing and Autopilot Tuning 
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Introduction to the Swift UAS 
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