

Fundamental Aeronautics Program

Subsonic Rotary Wing Project

Overview of Recent OVERFLOW Code Enhancements and Applications for the Subsonic **Rotary Wing Project** Terry Holst Chief Fundamental Modeling and Simulation Branch Ames Research Center 2012 Technical Conference March 13-15, 2012

Outline

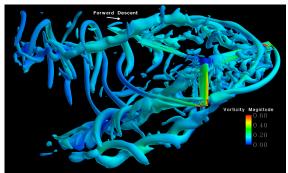
Motivation / Objective

OVERFLOW Improvements and Results

- Fuselage Drag Reduction Via Active Flow Control
- Turbulence Model Assessment for Rotorcraft Flows
- Rotorcraft Transition Modeling—Future
- Simulation of V22 Rotor System in Hover
- Simulation of UH60 Rotor System In Forward Flight
- Near Body Adaptive Mesh Refinement
- Heavy Lift Slowed-Rotor Compound Helicopter Flow Computations
- Isolated Rotorblade Flutter Computations

Motivation / Objective

- Helicopters/Tiltrotor Aircraft Provide Many Crucial Services
 - Emergency medical/rescue evacuation, security, offshore oil platforms, heavy-lift, military operations



- Aerodynamic performance and noise prediction
- Vortex wakes and vortex blade interaction (BVI)
- Rotor blade flexibility and vibration
- Moving components
- Multidisciplinary (aerodynamics, structures, trim)

- Many of These Phenomena Are Poorly Understood and Difficult to Accurately Predict
 - One objective of NASA's Subsonic Rotary Wing (SRW) Project is to develop physicsbased computational tools to address these issues

Fuselage Drag Reduction via Active Flow Control

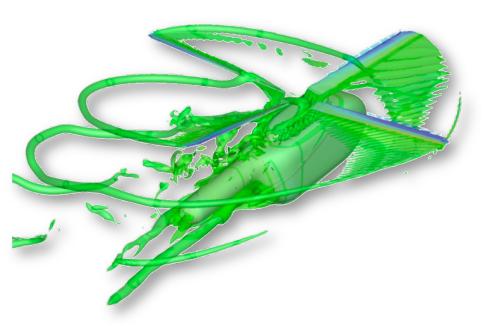
Problem

 Helicopter fuselage drag significantly reduces forward flight performance and must be reduced to enable high-speed flight

Objective

 Use CFD to provide guidance on design of active flow control system for fuselage drag reduction in forward flight for a mid-scale wind tunnel test

Approach

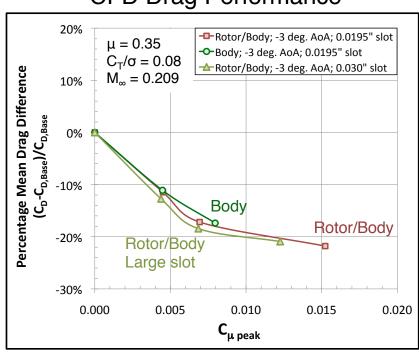

- Study placement of flow control actuators and actuator parameters using CFD
 - Generic fuselage shape (ROBIN-mod7)
 - OVERFLOW2/CAMRAD II loose coupling

Results

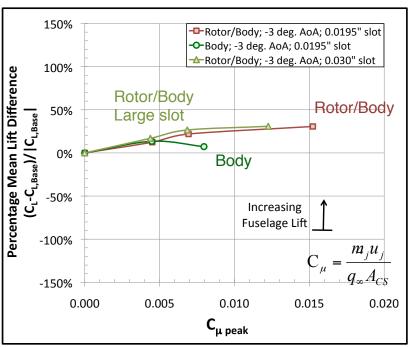
- Validated CFD using small scale isolated fuselage wind tunnel test
- Identified blowing slot locations and actuator parameters for maximum predicted fuselage drag reduction (~20% in forward flight)
- CFD also predicts maximum fuselage download reduction of 30%

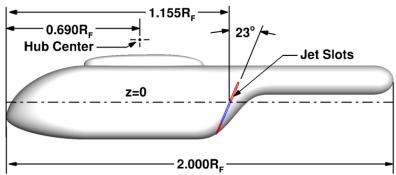
Significance

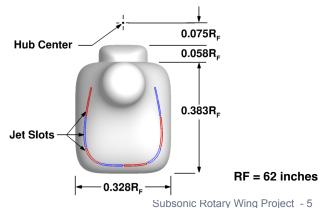
- Drag reduction with simultaneous download reduction offers potential to significantly improve helicopter performance in forward flight.
 - Drag reduction enables higher speeds
 - Download reduction allows increased payload and/or maneuver performance



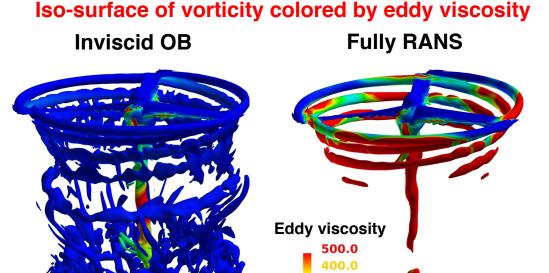
POCs: Brian Allan and Norman Schaeffler, NASA LaRC


Fuselage Drag Reduction via Active Flow Control




CFD Drag Performance

CFD Lift Performance



POCs: Brian Allan, Norman Schaeffler, NASA LARC

Turbulence Model Assessment for Rotorcraft Flows

- Most rotorcraft RANS computations use fixed-wing turbulence models (TM) >> Difficulties
- Effect of TM on rotorcraft flows largely unexplored
- Objective: Assess effect of TM on rotorcraft flows
- Study guidelines:
 - OVERFLOW flow solver
 - Hover & forward flight conditions
 - Two geometries: XV15, UH60
 - Near body (NB) & off body (OB) grids treated independently
 - NB & OB viscous terms activated independently
- Example results at right
 - Grid size: NB=19x10⁶, OB=28x10⁶
 - NB TM = Spalart-Almaras (SA)
 - NB viscous = RANS
- High levels of eddy viscosity (right) diffuse flow structure > large errors in FM

OB grid: SA (source term OFF) Viscous terms OFF FM = 0.777

OB grid: SA (source term ON) Viscous terms ON FM = 0.730

POC: Tom Pulliam, NASA Ames

300.0

200.0

100.0

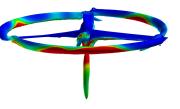
Turbulence Model Assessment—Grid Refinement

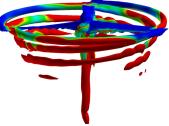
_	ΧV	V1	5	in	Н	O	ver	
•	$\boldsymbol{\Lambda}$	vi	J					

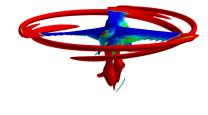
	Δ	_4	Λ	О
•	O	=1	U	

- Spalart-Almaras
- 14 Revolutions

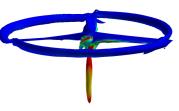
•	FM _{exp}	~	0.77
---	-------------------	---	------

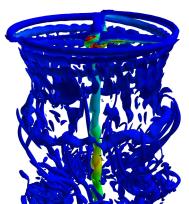

Coarse grid


NB OB FM (Inv OB) Grid (x10⁶) FM (RANS OB) 5.3 4.4 Coarse 0.785 0.752 0.730 Medium 19 28 0.777 207 0.772 0.715 Fine 80


Medium grid

Fine grid


OB grid: Source term OFF **Viscous terms OFF**



OB grid: Source term ON Viscous terms ON

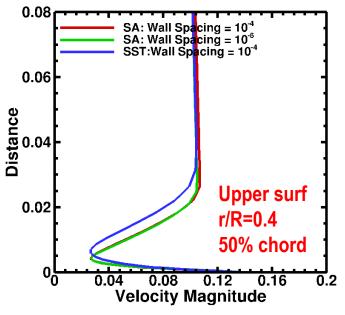
Iso-surface of vorticity colored by eddy viscosity

RED ~ High Blue ~ Low

POC: Tom Pulliam, NASA Ames

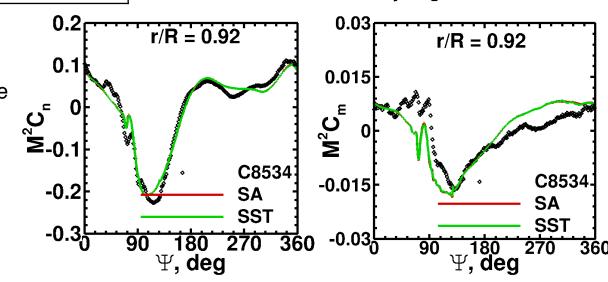
Subsonic Rotary Wing Project

Turbulence Model Assessment—UH60A Rotor



Hover results

- OVERFLOW with 5th O convection in OB, 2nd O time
- Isolated rotor with no trim tab
- Aeroelastic deflections based on exp measurement
- $M_{TIP}=0.65, \theta=10.5^{\circ}$

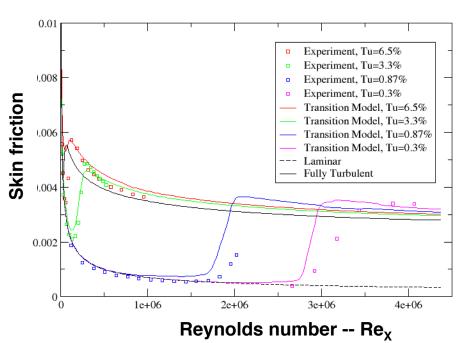

Model	FM	OB turb model options
SA-DES	0.7571	Hybrid RANS/LES
SA	0.7578	Source terms OFF, Inviscid
SST	0.7612	Source terms OFF, Inviscid
SA	0.7557	RANS
SST	0.7627	RANS

Boundary layer profile comparisons

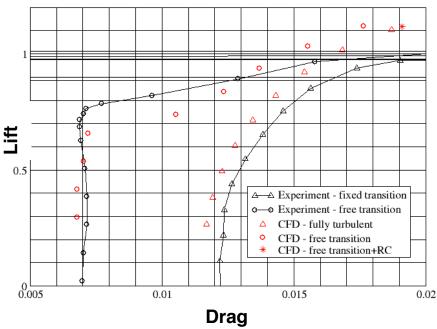
Forward flight results

- OVERFLOW/CAMRAD II, loose coupling
- High Speed Flight Counter (C8534: M_∞=0.236, μ=0.368)
- SA and SST TM models

POCs: Jasim Ahmad - NASA ARC

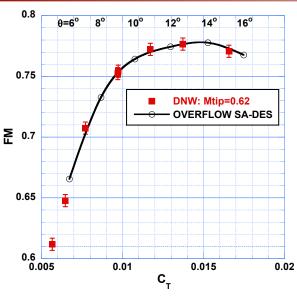

Rotorcraft Transition Modeling--Future

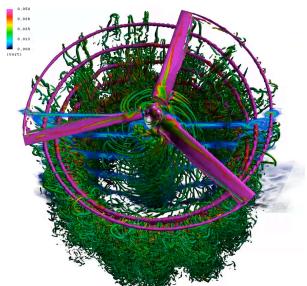
- Langtry-Menter transition model incorporated into OVERFLOW
 - Improves accuracy for cases with laminar-to-turbulent transition
 - Future effort: Include/evaluate Langtry-Menter model for rotorcraft flows to improve rotor blade stall prediction


Flat plate skin friction

Different free-stream turbulence levels illustrate effect of Langtry-Menter transition model

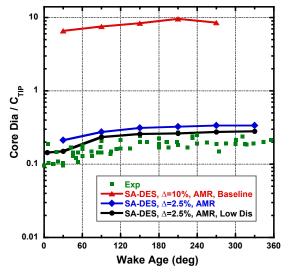
S809 airfoil drag polar

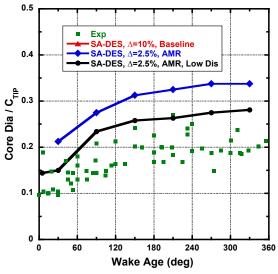

Comparisons between transitional and fully turbulent simulations.



POC: Pieter Buning, NASA Langley

Simulation of V22 Rotor System in Hover




FM within Experimental Error

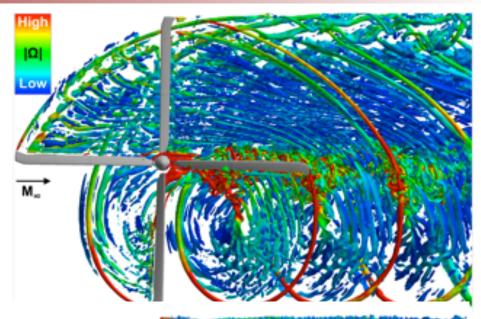
- Improved body resolution
- 5th-order spatial accuracy (OB convective terms)
- Detached Eddy Simulation (DES)

Adaptive Mesh Refinement

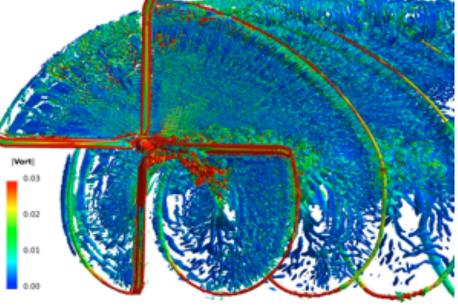
- Vortical worms produced due to blade wake shear-layer entrainment into vortex cores
- Prediction of vortex-core diameter growth more closely agrees with experiment
- Reduced dissipation

POC: Neal Chaderjian, NASA Ames

Simulation of UH60 Rotor System In Forward Flight


Baseline

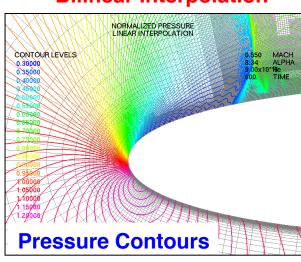
- Flight Counter C8534 (High-Speed Case)
 - $M_{\infty} = 0.236$
 - $\mu = 0.37$
- Uniform spacing in off body grid: $\Delta = 10\% C_{tip}$

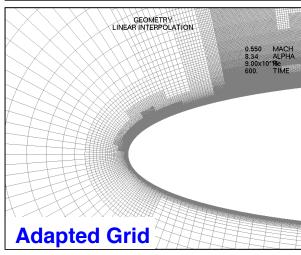

Adaptive Mesh Refinement (AMR)

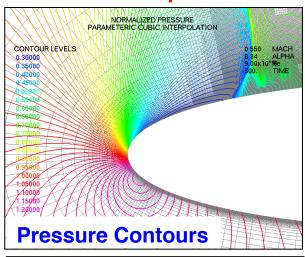
- Three-level AMR used for off body grid:
 - Δ , $\Delta/2$, $\Delta/4 = 10\%$, 5%, 2.5% C_{tip}
- Improved resolution of vortex core size
- Improved resolution of wake shear layer

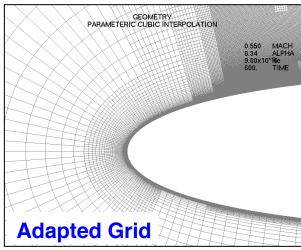
POC: Neal Chaderjian, NASA Ames

Baseline Wake Grid 69x10⁶ Pts


AMR Wake Grid 465x10⁶ Pts

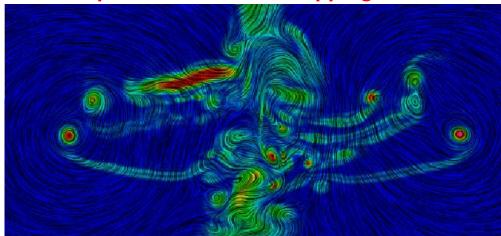

Near-Body Adaptive Mesh Refinement (AMR)

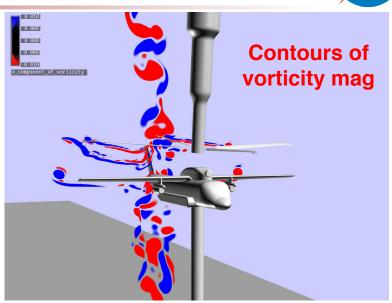

Cubic Interpolation Used to Avoid Oscillations Due to Faceted Surface Representation


Bilinear Interpolation

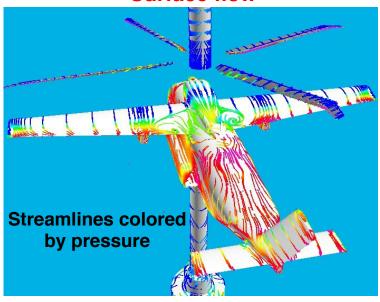
Cubic Interpolation

POCs: Pieter Buning, NASA LARC, Tom Pulliam, NASA ARC


Heavy Lift Slowed-Rotor Compound Helicopter Flow Computations


OVERFLOW2 computations

- 5th O convection terms in OB, 2nd O time
- SST turbulence model
- Structured grid (113x10⁶ points)
- Test performed in LaRC 14x22-ft subsonic tunnel
- Tunnel ceilings, support structure modeled
- Rotor radius = 0.8966m with non-uniform twist and tapered planform
- μ =0.54, M_{∞} =0.21



POCs: Jasim Ahmad, David Kao, NASA ARC; Brian Allan, NASA LaRC

Surface flow

Isolated Rotorblade Flutter Computations

Codes utilized

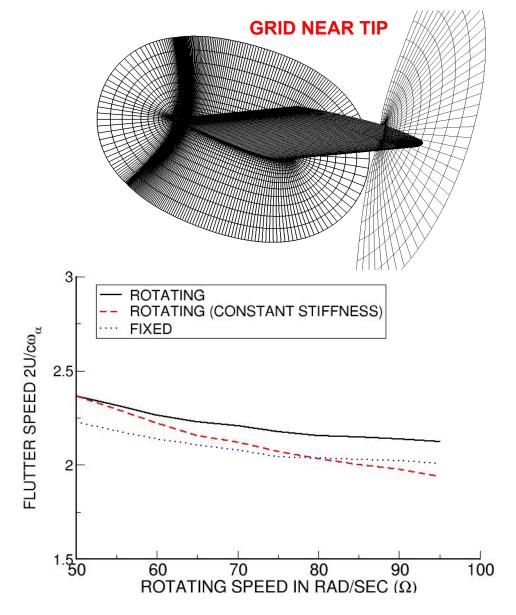
- OVERFLOW2.2
- MODFLU (U-g method)

Coupling Approach

- Lagrange equations
- Frequency domain
- UNIX script
- RUNMOD using MPIEXEC

Geometry

- NACA0012 isolated blade Grid
 - 1.8x10⁶ points


Modes

- Bending
- Torsion

Computational cost

 Flutter Boundary in 24 hrs using 1000 cores

POC: G. Guruswamy, NASA Ames

