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ABSTRACT 

Herein we address design considerations and outline requirements for space telescopes with capabilities for high contrast 

imaging of exoplanets. The approach taken is to identify the span of potentially detectable Earth-sized terrestrial planets 

in the habitable zone of the nearest stars within 30 parsecs and estimate their inner working angles, flux ratios, SNR, 

sensitivities, wavefront error requirements and sensing and control times parametrically versus aperture size. We 

consider I, 2, 4, 8 and 16-meter diameter telescope apertures. The achievable science, range of telescope architectures, 

and the coronagraphic approach are all active areas of research and are all subject to change in a rapidly evolving field. 

Thus, presented is a snapshot of our current understanding with the goal of limiting the choices to those that appear 

currently technically feasible. We describe the top-level metrics of inner working angle, contrast and photometric 

throughput and explore how they are related to the range of target stars. A critical point is that for each telescope 

architecture and coronagraphic choice the telescope stability requirements have differing impacts on the design for open-

versus closed-loop sensing and control. 
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1. INTRODUCTION 

High contrast exoplanet imaging refers to numerous variations of coronagraphy and occulters whereby the starlight is 

suppressed relative to the planet light, thereby increasing the planet-to-star contrast. Contrast, as defined herein, is 

expressed as a ratio of the of the star's luminosity to planet's luminosity. A coronagraph operating at a contrast of 1010 

would imply that a star and planet differing by 10 orders of magnitude in luminosity would be detectable in the focal 

plane. An ideal coronagraph would suppress all the starlight leaving only the planet's light. The contrast that a given 

coronagraph operates at is a function of the angular separation of the planet-to-star since a planet with a large angular 

separation from its parent star sees a natural reduction in the starlight due it being concentrated into an Airy disk point 

spread function (Figure-l left). The planet-to-star angular separation at which the contrast falls below a required value is 

known as the inner working angle (IW A). Thus planets at or outside the IW A are considered detectable, while those in 
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the IW A are not. However, there is not a definitive break between inside and outside the IW A since the detectability is 

often a graceful function of the IW A (Figure-l right). The outer working angle (OW A) is the largest separation angle at 

which a planet could be detected and this is generally limited by the field-of-view of the optics and/or the number and 

density of actuators of the deformable mirrors within the coronagraph. 

Light collected by the aperture is absorbed, diffracted and/or scattered. It thus absorbs and spreads the focal plane planet 

light out over a larger region, and scatters starlight into the region of the planet; these effects lower the contrast. 

Throughput is generally lower for high contrast imaging systems than for simple imaging systems. This is due to the 

larger number of optics and the introduction of focal planet masks (occulting masks) and pupil plane (Lyot) masks. 

Ideally the star- and planet-light throughput would be zero and unity respectively. However this is not generally true in 

practice due to a host of effects that will be deseribed. 

The target star, if we assume it has one or more planets, would likely have dust and debris at or near the equatorial plane 

of the star; this contributes straylight known as exozodiacal light (exoZodi). Additionally dust in our solar system also 

contributes straylight known as local zodiacal light (Zodi). 

The target star is generally relatively close to our solar system, from I 30 parsecs, and thus is likely to have 

background stars and galaxies within the field-of-view that could initially be misinterpreted as planets. Relative motion 

and/or spectral differences can be used as discriminators. Additionally since a planet orbits its star, conditions would not 

always be favorable to detection since it may be too close to the star, or at a phase angle or inclination angle where little, 

or no, light is reflected from the planet towards the telescope. A single observation can only determine if a planet exists, 

but not whether it does not exist. Thus a given star system may have to be observed multiple times to definitively 

determine whether a planet exists. This is known as "completeness" (Brown (2004, Brown (2005, Brown and Soummer, 

(2010». Ensuring completeness to a given level links the number of observations for each star system, to overall mission 

lifetime. 

The signal-to-noise ratio (SNR) is the ratio of the collected planetary photons to the integrated noise contribution, which 

includes stellar leakage from diffraction, imperfect optics, occulting masks, Lyot stops, straylight, pointing jitter, finite 

size of target star, thermal and vibration induced optical instabilities, photon noise, read noise, dark current noise, and 
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out of field scatter. The SNR is a function of contrast, angular separation, and time. Solving for the time to a given SNR 

yields a viable sensitivity metric, e.g. solving for the time to a SNR = 5 (5-sigma detection) at the IW A. 

Contrast, IW A, OW A, and optical throughput are purely instrumental (telescope + coronagraph) parameters whereas 

SNR and sensitivity depends on the target star, angular separation of planet to star as well as the instrument's 

performance, thus the discovery space of potential science targets plays a large role in defining the required telescope 

and coronagraph architecture. 

The purpose of an exoplanet high contrast system is to detect and characterize exosolar planets. This problem is 

manifestly difficult due to typical terrestrial planets being _10 10 times dimmer than the parent star in reflected light and 

at angular separations as close as a few 10's of milli-arcseconds. In designing a high contrast imaging system, 

performance considerations have to include: aperture size, diffracting structure within the aperture, optical surface 

quality, optical stability, polychromatic effects, polarization, sensing and control approach and control times relative to 

drift rates, and pointing. and post-processing such as point spread function and background subtraction. 

High contrast imaging for exoplanets is not a new problem. The Hubble Space Telescope's (HST) original instrument 

complement contained a coronagraph, the Faint Object Camera (FOC) 1'/288 coronagraphic mode. However, few images 

were collected since HST's primary mirror conic constant rendered it impractical for coronagraphy. Subsequent HST 

instruments such as NICMOS, STiS and ACS/HRC had coronagraphs within them. However, contrasts corresponding 

to lO-9 to 10-10 suppression of the central star could only be achieved at significant OW A (e.g. Kalas et al 2008). If a 

future servicing mission were available for the Hubble Space Telescope (HST) then an area where a new HST scientific 

instrument could have a high impact on exoplanet science is with a high contrast instrument (Lyon, et. al. 2010). The 

James Webb Space Telescope (JWST) also will have significant high contrast imaging capabilities (Clampin et al. 

(2007». 

2. MAPPING OF SCIENCE REQUIREMENTS TO TELESCOPE 

2.1 Candidate Stars 

A database (HIP30), from the Hipparcos mission (Schneider 20 II, Turon et. aL 1995), of 2350 stars out to 30 parsecs 

has become a standard for designing mission architectures for direct imaging exoplanet missions. The HIP30 catalog has 
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been culled to a shorter list of 575 viable candidates, searchable for exoplanets by assuming that for each star a 

prospective planet exists at the orbital distance where liquid water could exist. i.e. in the habitable zone (HZ). The inner 

edge (water boils off and/or runaway greenhouse effect) of this zone is the inner HZ (iHz) and outer edge (where water 

remains in ice phase) is the outer HZ (oHZ) for terrestrial planets. We define a average HZ (aveHZ) as aveHZ = 

(1I2)(iHZ + oHZ) and use this as its nominal value. 

Figure-2 plots the 575 candidates versus distance from out solar system where the "All Stars" are the 2350 stars in the 

database and "Candidates" are the selected 575 candidate stars. The 5 other curves on show the stars by spectral classes 

based on effective blackbody temperature, M (d,500K), K, (3,500-5,000K), G (5,000-6,000K), F (6,000-7,500K) and A 

(7,500-10,000K). The number to the right of the spectral class in the legend shows the number of stars for each spectra 

class. There are 24 stars labeled as U-stars (for unknown) that have no listed spectral class in the database. G-stars are 

similar in spectral class to our own Sun. Overall there are 163 M, 219 K 124 G, 27 F and 18 A candidates. If a terrestrial 

planet existed within the HZ then based on the stars luminosity and spectral class a region around the star can be mapped 

to an angular separation of the planet from its parent star versus distance to the star as shown in Figure-3. The angular 

scale of the HZ is an important consideration in the sizing of the telescope aperture and sets the IWA for high contrast 

imaging. It is unlikely that all candidates will have a planet and the probability that a given planet has a terrestrial planet 

is known as llEARTH. Various estimates are available for as llEARTH and NASA's ongoing Kepler mission and ESA's 

ongoing COROT mission, will likely allow a more refined estimate in the near future. 

Scatter, diffraction, straylight and stability of the sensing and control limit the IW A. An approach limited to for example 

IWA = 2 A/D requires accurate sensing and control of wavefront and amplitude spatial frequencies at -2 cycles per 

aperture, i.e. of periods on the order of Y2 the diameter. This is due to the diffraction integral, in the small angle 

approximation, mapping periodic wavefront errors at N cycles per aperture to localized speckle in the focal plane at N 

AID. Thus approaches operating at small inner working angle require more demanding tolerances at low spatial 

frequencies, i.e. for points on the primary mirror that are physically further apart rand thereby more difficult to sense and 

control. While 4 IJD is considered as being conservative (Trauger & Traub (2007» and 1 AID as being considered very 

aggressive. it is expected that in the nearer term, while still aggressive. 21JD is more reasonable and exoplanets from the 

ground have been imaged at this IW A (Serabyn et. al. (2010». Thus, herein we assume a coronagraphic instrument with 
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an IW A of 2 AiD where A is the wavelength of visible band reflected planetary light (A = 550 nm) and D is the diameter 

of the aperture. 

The HZ is mapped to an aperture of a specific diameter, by setting the IW A to the mean HZ, IW A = 2Aj D = HZ or 

D = 2Aj HZ, and the integral number of candidates at or outside an IWA = 2 AID versus aperture diameter is plotted 

in Figure-4. Scaling to a different IW A is accomplished by shifting the abscissa by the same factor, e.g. for an IW A = 4 

AiD would require the abscissa (on a log scale) to shifted to the left such that on Figure-4 a meter aperture is shifted to a 

Y2 meter etc and thus the number of candidates would decrease. From Figure-4 it is seen that a l20-meter diameter 

telescope operating at IW A = 2 AiD would be required to assess all the candidate stars out to 30 parsecs. This 

excessively large aperture is driven by the M-stars that are colder and have peak luminosity in the NIR requiring that a 

planet in in the HZ be at closer angular separation for liquid water to exist. 

A 120-meter aperture telescope operating at IWA = 2 AiD is clearly difficult for a space mission but filtering out those 

M-stars requiring close IW A allows for more reasonable sized aperture as shown in Table-I. If llEARTH is assumed to be 

20% then the number of candidates would decrease by a factor of 5. Jovian (Jupiter analogues) planets could also be 

searched for and would generally result in a larger IWA. 

2.2 Planet-to-Star Luminosity Ratio and Aperture Flux 

The aperture sizing is based purely on inner working angle but the aperture collecting area is the primary consideration 

for signal-to-noise (SNR) ratio and sensitivity. Detector integration time could become prohibitive for some candidates 

due to low planetary photon count rates in visible light. A photometric model can be used to assess the photon count 

rates for contrast, SNR and sensitivity calculations. 

The luminosity ratio (Charbonneau et.a!' 1999, Winn 20 II) of the reflected planet light to emitted starlight is given by: 

2 

Luminosity Ratio ¢(fJ) 
(I) 
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Lp and Ls are the luminosities of the planet and star respectively, ex is the planets geometric albedo, Rp is the radius 

of the planet and Rd is the planets radial distance from the star. ¢(f3) is the orbital phase function given by 

sinf3+(n- f3)cosf3 [] , (.) . ( ) ¢(f3) = where f3 E 0, n is the phase angle and where cos f3 = - SIll 1 SIll 2n<l> where 
n 

i E [ 0, ~ ] is the inclination angle. An inclination angle of 0 implies the star system is seen face-on, and an inclination 

of n/2 implies the star system is seen edge-on. The orbital phase is given by <l> E [0,1] and for an inclination angle of 

o then ¢(f3)::::: 0.32 independent of phase angle. At an inclination angle of 90 degrees the phase function reaches a 

maximum of -0.32 and a value of 0.32 is used throughout, i.e. we assumed the best viewing conditions. The geometric 

albedo of Earth is 0.367 and this is also assumed throughout. The phase function is 0.32 for the point of longest 

elongation and this is not necessarily where the planet is brightest but where planet is visible (Charbonneau 1999). The 

radius of the Earth is 6378.1 km and the Sun-Earth distance is 149 x 106 km, yielding an Earth/Sun luminosity ratio of 

2.2xIO'lO. This value can be used to scale the luminosity ratio of an assumed Earth-sized terrestrial planet at the mean 

HZ around stars within the database via: 

_ a p ( Rp )2 ( Rd-EARTH )2 
-L-E-AR"'"'r'-''H-/-'L'-s-UN-' - a EARTH l Rp-EARTH) l Rd ) 

(2) 

where LEARTH / LSUN = 2.2 X 10-10 
is the luminosity ratio of Earth to the Sun and Lp / Ls is the luminosity ratio of the 

planet to star. The albedo and the radius of the planet are both not generally known before an observation and we assume 

they are both the same as for Earth to arrive at: 

2.2 X 10-10 

(3) 
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The radial distance for Earth from our Sun is I-AU. and as expected. the luminosity ratio scales inversely proportional to 

the square of the distance from the star. The inverse square is a consequence of assuming a the fixed Earth diameter 

planet. independent of how it formed or distance from its parent star. and. that its albedo is also constant; thus it's 

subtended solid angle as seen from it's parent star scales inversely as the square of its distance from its parent star. The 

Earth-sized planet is a tenuous assumption since terrestrial planets are likely to span a range of sizes, masses, albedos 

inclination and phase angles; it is however a reasonable assumption as a starting point for defining a range of potential 

telescope architectures. 

Figure-5 plots the luminosity ratio, color-coded for spectral class, for each of the 575 candidates assuming each has an 

Earth-sized terrestrial planet at the mean HZ. The ordinate is the number of stars with luminosity ratio greater than the 

value shown on the abscissa. The majority of star systems have luminosity ratios greater than 10- 10 with most A stars 

having less favorable luminosity ratios. G, K and M stars tend to have more favorable luminosity ratios. The luminosity 

ratio is independent of the telescope plus instrument and depends only on the star system. 

Figure-6 plots the luminosity ratio for a planet in the HZ versus angular separation for each of the spectral classes. M 

and K stars tend to have more favorable luminosity ratios for detection; however, they tend to be colder stars with the 

HZ closer to the star requiring either a smaller IWA or larger aperture telescope to achieve the required contrast. G, F 

and A stars have more favorable angular separations requiring larger IW A but smaller luminosity ratios requiring higher 

contrast to detect them. Figure-6 relates the telescope aperture (via the IWA) and the desired contrast (via the luminosity 

ratio) over the span of candidate stars in the HIP30 database. Figure-6 shows that the luminosity ratio scales as 

approximately the inverse of the angular separation independent of spectral class. This implies that a coronagraph may 

not have as stressing contrast requirements for HZ at smaller angular separations and a compromise exists between rw A 

and contrast when the available candidate stars are incorporated. 
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The stellar photon count rate at the telescope aperture is estimated from the star's visual magnitude, aperture diameter 

and spectral bandpass. The stellar and terrestrial aperture photon count rate for a planet in the HZ, with 

Fo = 108 phi sec- m2 nm, are given by: 

(4) 

Figure-7 plots the total collected of planetary photons/second for an aperture area of l-meter2 assuming each candidate 

has a planet in the HZ with a 20% spectral filter of full-width-half-max (FWHM) of ,1.A=11 0 nm centered on A=550. 

The estimates are from applying the 2nd equation in equation-4. Scaling to other aperture sizes is by multiplying by the 

aperture area in meters2
• These aperture count rates are not the detector count rates since diffraction and scatter spread 

the counts out, and absorption losses in the telescope optics, instrument and detector reduce the focal plane count rates. 

2.3 Focal Plane Count Rates 

The photon counts incident upon the aperture are subsequently absorbed and diffracted in the optics, and, have imperfect 

conversion from photon to electron counts by the detector. The diffraction is a consequence of the finite aperture size 

and results in redistribution of the photons into an optical point spread function (PSF). The ideal PSF of a circular 

aperture is the Airy disk function, where 8 = )8; + 8; is the sky angle in units of lam/D, given by: 

PSF( 8) = Jr[li (Jr8)]2 z Jr~ 3J3~_1--,-_ 
Jr8 16 1+ 83 

(5) 

The PSF is normalized such that its integral is unity. Its central core, to a radius of 8 = 1.22 AI D, contains -84% of 

the energy and a detector pixel is sized to account for 84% of the energy. 
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The respective stellar and planetary energy are each distributed into separate PSFs centered on their sky locations. For 

an angular separation of Bp , in units of AID, the distribution of focal plane photoelectron count rates is given by: 

Fs7:4R (8) = O.84SF;) 10 -;; (D/2)2 (313/16 )Jr~ (V 1 + ~4 8 3
) llAToq.e. 

FpLANET (8) = O.84( Fp/ Fs) Po 10 -'~; (D/2)2 (313/16 )Jr~ (V 1 + ~4 (8- 8p r) llAToq.e. (6) 

In equation-6 To is the end-to-end transmission of the optics, q.e.is the quantum efficiency in units of 

photoelectrons/photon, and S IS the starlight suppression factor of the coronagraph. The units of FsTAR (B) and 

FpL4NET (8) are photoelectrons per pixel per second. Based on the above model the ratio of focal plane planet detector 

counts to star counts at the location of the planet 8 = 8p is: 

(7) 

Where Q is a function of the planet-to-star angular separation and since the model in equation-6 has a B~dependency so 

does Q. All coronagraphs do not necessarily have this same dependency with angle but this is assumed based on 

assumptions about diffraction in Lyot and occulter type coronagraphs. It is likely that PIAA coronagraph, without an 

inverse PIAA, would have a higher order dependency, however in order to put the field of view back an inverse PIAA 

would be required and this would put the dependency back to - B~. Nulling type coronagraphs perform beam nulling in 

the pupil plane but will ultimately be brought to focus with a limiting aperture introducing diffraction that is also - e~. 

Thus based on limited information herein we assume the B; but with the caveat that other dependencies are likely but 
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are not yet well understood, as further information becomes available this should be revisited since a clear trade exists 

between the background diffraction dependency and performance of a given coronagraph. 

(1[4 yl 
Defining the contrast at the IW A as C = S II + 8 IWA 3) gives: 

(8) 

Thus a star system with a planet in the HZ for a coronagraph at the IWA and operating at C=lOlO would give Q=l 

implying the count rate from the star and planet in a pixel centered on the planet would be the same. "Q" expresses the 

ratio of the planet counts to leaked stellar counts and it is linear in contrast and linear in luminosity ratio but grows 

approximately as the cube of the angular separation when expressed in units of AID, implying doubling the aperture 

size moves the planet twice as far out in AID units and thus gives an 8 fold gain in Q. The optimal value of Q is 

discussed is a function of the sampling, detector noise characteristics, pointing jitter, finite size of a detectors pixel and 

where the planet occurs within the pixel, spectral bandpass and of the post-processing algorithms. Coronagraphs can 

operate with Q<! since matched filtering, Bayesian estimation (Kasdin and Braems, (2006» and nonlinear techniques 

can be employed to optimally estimate if a planct exists in a given dataset. 

2.4 Local and Exo-ZodiacaI Light 

The above does not contain the effects of local zodiacal and exo-zodiacal light. Model and observations of exoZodi 

generally show complex morphological behavior both radially and azimuthally and as function of the age of the stellar 
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system (Absil, (2010), Stark and Kuchner (2008). Herein we are primarily concerned with the deleterious effects both 

Zodi and exoZodi would have on the detection of terrestrial planets and are thus express both the Zodi and exoZodi as 

simplified models only at the assumed location of a terrestrial planet. Zodi and exoZodi are usually expressed in 

magnitude per arc second square. Conversion to photoelectron count rate in a detector pixel of solid angle on the sky of 

~Q is given by: 

_Mz JrD2 
FAPZ = FolO 2.S -4-~At1QToq.e. 

_MEZ JrD2 
F4pEZ = FoI0 2.5 -4-!1At1QToq.e (8) 

The units of ~Q are arcseconds-squared. Assuming that a given detector pixel is square of width A/ Dgives 

!1Q = (A/ D f * (3600 X 180/ Jr)2 arcseconds2 gives JrD2 !1At1Q = Jr A 2 !1A * (3600 X 180/ Jr)2 which is just 
4 4 

an expression of the radiance being conserved, i.e. the product of the aperture with solid angle is - A 2 • 

Typical values of M Z = 22 magnitudes/arcsecond2 and M EZ = 22 magnitudes/arcsecond2 where this value of exo-

Zodi is denoted as l-Zodi. Using 22 magnitudes/arcsec2 gives 0.15 photons/sec/pixel per meter2 of aperture without 

including the optics transmission and quantum efficiency. Figure-7 also shows the Zodi plotted as a solid line. Even 1-

Zodi has the net effect that some of the planets yield lower count rates per pixel than the Zodi. While the cxoZodi is not 

generally known models of it exist as a function of age of a given star system. Models show that Zodi is slowly varying 

spatial with respect to the scale of planet, hence it can in principle be subtracted off, but it does contribute photon noise 

after subtraction. Young systems, < 500 Myrs, can 1,000' s of times more dust than our solar system at 4.5 Gyrs age. The 

level of exoZodi represents a an unknown for the design of any high contrast exoplanet system at this time, however, 

ground based astronomy and JWST will likely make significant inroads to the levels of dust in nearby candidate systems. 
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2.5 Signal-to-Noise Ratio and Sensitivity 

The above set of calculations allows for the estimation of SNR parametrically as a function of aperture over the HIP30 

database of candidate stars. With the above relations and SNR, in the form of sensitivity, we are in a better position to 

estimate the realizable science for a specific set of architectures and to error budget these architectures for various 

coronagraphic approaches. The SNR is given by: 

SNR=-r========================== 
(9) 

iD is dark current in photoelectrons/sec/pixel, (Je is the detector readnoise and f1t is the detector integration time. The 

residual speckle noise is implicitly included in the term FSTARf1t since this term is the noise variance of the residual 

leaked starlight due to incomplete starlight suppression and imperfect wavefront control. The term FpLANETf1t is the 

photon noise due to the planet, and Fzl:l.t and FEZl:l.t are the photon noise assuming perfect subtraction of the Zodi and 

exoZodi. In practice these will be unlikely to be perfectly subtracted and will show up in a manner analogous to flat 

fielding error. The photon limited SNR can be taken as an upper bound on performance and is given by assuming that 

(Je = o and iD = 0 to give: 

SNR = -r=========== 
(10) 

The terms in the denominator are the photon noise from each the planet, stellar leakage (speckle noise), Zodi and 

exoZodi respectively. Scatter from out offield sources and background sources are not included. Solving equation-II for 

time yields the photon limited time to a SNR as: 
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(11 ) 

The terms within equation-I 2 were integrated over a V -band spectral filter for each of the 575 candidates for a I-meter 

diameter aperture and the "normalized" time versus angular separation plotted in Figure-8. The actual time (seconds) to 

10 

SNR are given by dividing the value on the ordinate of Figure-8 by the factor D 3 where D is the aperture diameter in 

10 

units of meters. Thus, for example, a normalized time of 106 seconds would scale down by a factor of 2 3 = 10.08 or 

to _105 seconds for a 2-meter diameter aperture. 

Times to different SNR's are given by multiplying by the ratio of squares of the SNRs per equation-I 2. Changing 

spectral filters is accomplished by multiplying time by the ratio of 110 nm to the new filters bandpass width while this 

is an approximation it is reasonable in visible light. 

Fig-8 is significant in that it couples the integration time for each of the candidates from each spectral class to its angular 

separation from the parent star for a planet in the HZ. The choice of aperture size in Figure-8 has been left unconstrained 

since we desire to estimate the science return parametrically versus aperture, i.e. the scaling shown in Figure-8 now 

allow for parametrically assessing exoplanet detection performance as a function of aperture size and these results are 

Table-1: Candidate Stars versus Aperture 
Diameter IWA Number of Stars at or outside IWA At (days) 
(meters) (mas) A (18) F (27) G (124) K (219) M (163) U (24) Total (575 to SNR = 5 

1m 226.9 5 1 2 1 0 0 9 159.19 
2m 113.4 16 8 6 1 0 0 31 120.74 
4m 56.7 17 22 50 5 0 0 94 33.76 
8m 28.4 17 27 119 30 1 0 194 6.08 
16 m 14.2 17 27 124 132 9 0 309 0.79 

shown in Table-I. 
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2.6 Detection Summary 

Table-I summarizes the number of stars, that if exoplanets exist within their HZ, could be detected for 5 aperture sizes; 

and, the amount of time to SNR=5 in days to detect these planets using a spectral filter centered on 550 nm with FWHM 

of I 10 nm. The number of stars increases with increasing aperture (Figure-9 top) size while the integration time 

decreases (Figure-9 bottom). A 4-meter aperture operating at 2 AiD IW A would be capable of detecting a total of 94 HZ 

exoplanets with 50 of those G-stars if exoplanets existed around them. If we assume that to completely search the system 

it would take 5 visits at 33.76 days per visit it would yield a total of 168.8 days and if 'hARTH is 20% then potentially 

-18 exoplanets in the HZ could be detected. At the time these 18 exoplanets were definitively detected they could be 

spectrally characterized to a SNR=5 with a 10 nm width spectral filter in (110 nmllO nm)33.8 days = 371.4 days, or 

approximately I-year per planet. Lower spectral resolutions would give shorter times. 

2.7 Characterization and Spectroscopy 

Spectroscopic detection is one of the prime mission drivers since it is what would be used to determine if biomarkers 

existed within a planets atmosphere. Spectroscopy is more time consuming since the light must be dispersed into spectral 

bands and integrated long enough to achieve the SNR per spectral band. These times can be long if the collection area is 

small per the example in the previous section. Additionally the planet may not be visible throughout the time it takes to 

integrate enough light since the planet is moving in its orbit. Also the atmospheric abundances and pressures may be 

such that the absorption lines are only small dips in the spectrum and if not sufficiently pressured broadened could be 

very narrow, all of which when combined may make the spectral characterization difficult. An alternative approach is 

spectrophotometry, i.e. filter spectroscopy, whereby a set of filters centered on either specific spectral lines and/or colors 

are used. If the spectral filters are used serially then the times would still be long, however, if dichroic beam splitters are 

used then all the filters could be brought to bear at the same time, effectively multiplexing the time as a dispersing 

spectrometer would, but with each filters width optimized for a specific spectral signature. While the range of options is 

large and ill defined at this point we do show the time to SNR versus aperture size versus spectral resolution to enable 

setting a bound on the time to spectrally characterize. 
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3. ARCHITECTURE CONSIDERATIONS 

3.1 Generic Model of Internal Coronagraph 

In order to assess the tolerances on a given architecture a generic approach is needed which applies to viable 

coronagraphs. In order to impart insight and delineate the sensitivities to errors and control frequencies an approximated 

analytic formalism is developed. An 8th order Lyot-type coronagraph (Kuchner and Traub (2002» is shown in Fig-IO 

whereby propagation of light through the coronagraph can be broken down to: (i) propagation from telescopes exit pupil 

to I st focal plane, (ii) application of an occulting mask, (iii) propagation from this occulting plane to a re-imaged exit 

pupil, (iv) application of a Lyot stop, and (v) propagation to the final science focal plane. While not immediately 

obvious, such a model can encompass most coronagraphs, provided the correct terms are identified. We will first step 

through the sequence of steps as shown in Fig-IO and subsequently approximate the terms that are important for 

wavefront and amplitude errors. 

Let the complex electric field at the telescopes exit pupil be given by: 

(12) 

Where the approximation is straightforward and based on retaining up to the I st order term in the small angle 

approximation of the phasor term. This is a common approximation in coronagraphy since in order for a coronagraph to 

operate at high contrast it must operate in a regime where the small angle approximation is valid. The effect of this 

approximation and its range of limitation has been explored in the context of coronagraphy by multiple authors see, 

Perrin et. al. (2003) and Sivaramakrishnan (2002). 

The normalized pupil plane coordinates is given by r = (x,y) such that Irl ~ D/2 where Dis the diameter of the 

aperture. For elliptical or segmented or sparse apertures it is the largest distance between any two points within the 

aperture, is the mean amplitude and oA (r) represents a fractional variation in the amplitude after traversing the 

telescope, O¢( r) is the phase errors incurred in passing through the telescope and O¢( r) (2lC/ A) W (r) relates the 

wavefront error, W (r) , to the phase errors and where A is the wavelength. The errors in a coronagraph need to be 
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small to detect a planet and hence the small angle approximation has been used in equation-I 3 whereby terms to only 

first order have been retained. 

Propagation through the sequence of 5 steps shown in figure-lOis accomplished by stepping through: 

ASF( e) = f P(r)e dr 

tcol/(e)ASF(e)=tcol/(e)f P(r)e dr (i) ~ Exit pupil to focal plane 

(ii) ~ Apply occulting mask 

(ii) Re-image the exit pupil 

(iv) ~ Apply Lyot stop 

ftc()fI(e)ASF(e)e de=tcol/(r)**p(r) (13) 

L(r)[t(()1/ (I') * *p(r) ] 
( v ) ~ Propagate to science focal plane 

f L( r)[iCOR (r) * *p(r) Je dr = ASF; (e) * * [t((JR (e)ASF( e) ] 

In equation-14 8 = ( Bt' By) is the focal plane coordinate mapped to sky angular coordinates, ASF ( 8) is the complex 

scalar field in the I sl focal plane known as the amplitude spread function, teoR ( 8) E [J is the focal plane occulting mask 

and can either be real (amplitude mask) or complex (phase and/or amplitude and phase mask), L(r)is the Lyot stop, 

and is usually a region of the re-imaged exit pupil that is smaller, i.e. less relative area, than the original exit pupil, and 

ASFL ( 8) is the amplitude spread function of the Lyot stop. "* *" denotes 2D convolution. Magnifications are 

implicitly taken into account by choosing to work in relative pupil coordinates and angular sky coordinates. Overall 

phase factors have been neglected since they do not contribute the final result. The form of the propagators take the form 

of 2-dimensional Fourier transforms with conjugate variables given by rand B. The science focal plane's complex 

electric field and intensity are respectively given by: 

(e) = ASFL (e) * *(tCOR (e)ASF( e)) 

(e)=IAs~"(e)**( {e)AsF(e)f (l 
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Equation-IS describes the basic propagation through an internal coronagraph and can be used to model most variations 

including Lyot coronagraphs with various occulting masks and Lyot stops (Kuchner & Traub, 2002), quadrant phase 

masks (Rouan 2000), vortex type coronagraphs (Mawet, 2010), and visible nulling coronagraphs (Lyon, 2011). External 

occulters (Cash 2006, Vanderbei 2007, Lyon, 2007) also approximately fit into this model since the starlight is 

suppressed prior to entering the telescope and the residual starlight entering the aperture is subsequently diffracted into 

an Airy like pattern. Phase Induced Amplitude Apodization (PIAA) (Guyon, 2003) performs pupil remapping and 

requires a different model. However, if a PIA A is used with an inverse PIAA the field of view is reconstructed after 

suppression and subsequently brought to focus yielding a similar dependence, i.e. the residual will follow approximately 

an Airy disk like dependence. 

3.2 Wavefront and Amplitnde Errors 

The approach taken is to use the forms derived in section 3.1 based on the linear expansion of the wavefront phasor to 

assess first order requirements on sensing and control to achieve the contrast at the IW A for each of the candidate stars. 

Multiple authors have used various forms of these approaches in the context of coronagraphy to derive scaling relations 

(Soummer (2007), Sivaramakrishnan (2005» as the linear approach imparts physical insight and is generally used for 

simplicity. Full scale modeling ultimately is required to assess where the deviations of the simpler models from the more 

rigorous models. The form we use herein is derived herein for completeness. 

The approximated form of the telescope pupil can now be used in equation-IS to yield: 

(15) 

where ASF;) (e)is the amplitude spread function without amplitude and phase errors and 5A(e),5¢(e) are the 2D 

Fourier transforms of the amplitude and phase errors respectively. If ASF;) (e) is much more compact than 

5A ( e) + i5¢( e) then equation-l 6 can be approximated by: 

(16) 
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Let ( oA (a)) = (o¢( a)) = 0, since mean amplitude and phase errors do not contribute to a lost in contrast, to give: 

(17) 

where TCOR ( a) = ItCOR (at is the intensity transmittance of the coronagraph versus angle on the sky and where we 

have used PSD JA ( a) = (lOA ( af) and PSD &/J (a) = (I O¢( af) for the power spectral densities of the amplitude 

and phase errors respectively. 

The power spectral densities are based on ensemble averages of the Fourier transforms of the wavefront and amplitude 

errors in keeping with the formal definition of the power spectral density. Thus a given PSD does not represent a specific 

realization of wavefront or amplitude induced speckle, but does represent an average over an ensemble of these speckles 

induced by different realizations of wavefront and amplitude errors. Use of PSDs to specify optical surfaces, wavefront 

and amplitude errors is now standardized approach and was used to specify the requirements on the Hubble Space 

Telescope, Chandra X-ray observatory (Harvey et.al (1988)) and the James Webb Space Telescope among others and a 

PSD transfer function approach was developed for a visible nulling coronagraph (Lyon (2005». 

A perfect coronagraph is when the first term, PSFL (a) * *[ TCOR (a) PSFo (a) ] = 0, and the remainder gives the 

leakage as: 

lLEAK (a) ~ PSFL (a) * *{ TCOR (a)[ PSD JA ( a) + PSD &/J (a)]} 
(18) 

If we normalize the PSDs such that integral over the focal plane, i.e. all spatial frequencies, is unity then the focal plane 

leakage is given by: 

( I 
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) , 2n 
and aSA ' a~ are the amplitude and phase error variances respectively. where a &/I = -:f a OIV and a O\V is the rms 

wavefront error in the same units as the wavelength. Interchange between spatial frequencies, in cycles per aperture 

(cpa) and angle on the sky in units of AID, is trivial in these units; e.g. a spatial frequency of 4-cpa gives a speckle 

centered on 4AI D of width defined by the width of Lyot stop PSF, i.e. where 0 is the stopped down o. The net effect 

is that, to I st order, amplitude and phase errors both induce focal plane speckle, however the focal plane location of the 

amplitude error induced speckle does not change nor scale with wavelength, whereas both the focal plane location and 

brightness of a wavefront error speckle varies with wavelength (Shaklan (2006». 

For a fixed given integral, i.e. a white noise and a power law PSO, both with the same power integrated out to a given 

spatial frequency, yields a power-law PSO with more power in the lower spatial frequencies thereby requiring 

progressively tighter tolerances on the sensing and control at low spatial frequencies and correspondingly less control at 

mid- and high-spatial frequencies. Low spatial frequencies arise from points on the surface that are far apart, i.e. long 

correlation lengths. Thus the most stressing tolerances are for those that are the most difficult to control. 

A white noise PSO is however unlikely, conventional polishing and coating practices tend to yield mirror surface PSDs 

(Harvey, 2009, and Church, 1995) and residual coating error PSOs that follow power law functions of the form 

1 
z where /" is the knee spatial frequency, so called because on a log-log plot the PSD has break over 

1 + (II!"t 

point at the knee frequency. The exponent, a, is typically or order 2 - 3, and the point at which the PSO is larger than 

the PSF is the transition from diffraction to scatter limited (Bely 2003). If we assume a normalized, PSD of the form: 

._) a (2n) PSD(I = 2) sin - . a for a> 2 
2n /,,- a 1 +(I~/ /,,) (20) 

2 This functional form is normalized such that its integral over all 20 spatial frequencies is equal to the variance aT of 

the total amplitude or phase error and where I ~ = . The PSD has units of power per spatial frequency 

squared, where spatial frequency in cpa or equivalently in AID of angle. 
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3.3 Temporal Drift and Control 

The amplitude and phase errors are also dynamic in that they vary with time due to thermal and structural variations in 

the optics and the structures, which mount the optics. Even if the primary and secondary mirrors are dimensionally stable 

the truss structure has eigenmodes which when excited cause the footprint of the primary mirror (PM) beam to shift or 

shear on the secondary mirror (SM). This implies that the spatial frequency on the PM will shcar on the SM causing 

temporal variations of both the amplitude and phase errors and this occurs throughout the optical system, i.e. modal 

excitations and thermal drift shift and distort the optical surfaces. Thus the PSDs have a component in the temporal 

frequency domain and are actually 3-dimensional with respect to the frequencies (f"J"J; ) where the first two 

frequencies are spatial frequencies in cpa in x- and -y directions and the third is the temporal frequency in Hz. The 3D 

PSD then gives the power at a given spatial-temporal frequency. This is a more natural way to specify both the critical 

spatial and temporal frequencies, and the interplay between them, and lends itself well to the formalism of sensing and 

control via a transfer function approach for each contributor, and for wavefront and amplitude sensing and DM control. 

[ 2J-l Assume a temporal PSD of the form:::::; 1 + (i) iD) where iD is the temporal knee or drift frequency. It is likely 

that the underlying form of the temporal PSD approximately follows this functional form but with sharp or high Q 

modes due to the natural frequencies of the structure. Excitation of these modes can occur due to reaction and 

momentum wheels; the assumption herein is that they are well damped, or isolated, and that this PSD form represents a 

reasonable approximation to the underlying model. 

The overall error spatial-temporal PSDs becomes: 

PSD(i- F) 2 a . (21C) 1 1 
dl = (J'T 1C3 F

2j' SIll -;; (I-I!)a 1 (F If' 
I n D 1+ ifF + Jr!.D I J n 

for a> 2 
(21 ) 

with .ft E [0,00] and III = with (ft' ) E [ 0,00 ]. The units of the total error PSD are now power per 

spatial frequency squared per Hz. The integral of total error PSD over all spatial and temporal frequencies is (J';. There 

is an implicit assumption in this PSD form in that it assumes that the spatial errors are uncorrelated with the temporal 
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errors. Strictly speaking this is not the most general case since for example a periodic temporal variation of the SM 

support structure will introduce time variations that are different at differing spatial frequencies. It is more proper to 

think of this separable functional form of the PSD as a bound on the errors. 

Let the maximum frequency at which the deformable mirror (DM) is controlled be given by Ie and let the spatial 

frequency exponent be a = 3 and divide the spatial frequency into the 3 bands for low-, mid- and high-spatial 

frequency. Integrating over the 3 bands from 0 to the control frequency with a knee frequency of h, = 1 cpa and 

a = 3 gives the contribution from each band: 

{

Low if E [ 0, 4 ] cpa {a LO 

Mid ---1 f E [ 4, 32] cpa ---1 a lvllD = aT 

High f E [32, O<J] cpa a HI 
{

0.710992 

tan -I ( fe J 0.338612 

fD 0.128267 (22) 

If Ie» fD' or equivalently the system is stable relative to the control, then tan- I (fel fD) Z 1[12 then 

azo + a;flD + a!/ = ai· Thus only as the ratio of the control to drift frequency exceeds unity the control efficacy 

approaches unity (Figure-II). 

Folding in the temporal PSD leads to a modified leakage term by multiplying the PSDs by the idealized control term to 

give a leakage contribution in the science focal plane of: 

(23) 

Thus the leakage is strong function of the ratio of the control to drift frequency and for low control frequencies, 

fe «fl)' then 1[ _II!. Z 1[( fD)' implies leakage increases linearly with drift frequency, i.e. as a random 
2 tan /Jl) 2\fe 

walk, where for Ie > ID the upper limit is asymptotically approached. 

The ratio of the leaked starlight, at the planet location OF' to the planet light is 

the luminosity ratio of the star-to-planet. In general to 'see the planet against this background requires 
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L 
p (_ ) 2 1, i.e. the planet should appear brighter than the leaked speckle. This implies that the fractional leaked 

LS/LEAK Op 

starlight is at. or lower, than the luminosity ratio. The ratio Ls / Lp is the inverse of the required operating contrast, 

therefore to 'see' the planet requires: 

(24) 

The required operating contrast (C) is set by the science and / LEAK ( Op ) relates it to the instrument requirements. Thus 

for each star with a planet in the HZ at an angular separation of Op' with a given luminosity ratio, a requirement can be 

set on / LEAK ( Op )and thus a requirement on the rms amplitude and wavefront errors and implicitly on their PSDs. 

Since the leakage is proportional to the inverse of the contrast this implies that the contrast increases with increasing 

control frequency, or conversely, that the tolerances on the amplitude and wavefront errors are more stressing for control 

frequencies slower than the drift frequencies. Thus a telescope with faster control, relative to its drift, has more relaxed 

tolerances on amplitude and wavefront errors. 

If we assume a cubic spatial frequency power-law PSD, a = 3, and coronagraphic transmission at the IW A of 

T (0) = 1 and integrating the leakage over a region defined by a focal plane speckle to give 

/ LEAK ( 0) ;:::; a~PSD &p (0) and integrating the 3D PSD out to the control frequency fe yields 

- 3 ~ a
2 

PSD ( f ) = 2? - T i . Equating the two gives: 
211: J;,- 4 1 + (IJII J;, r 

( 8) = 10-10 and solving for 
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where (J'WFE is the rms wavefront error at a single spatial frequency of 2 cpa but with the temporal control folded in. If 

2 
the control frequency is much greater than the drift frequency then tan -I (fe / fD) ;:,; 1 and an upper-bound of 

1C 

(J WFE ::::: 0.0089 nrn at 2 cpa. Note that this (J' WFE is the rms of a single spatial term of the PSD integrated over all 

temporal frequencies. Figure-II plots the wavefront error at this single spatial frequency versus the ratio of control to 

drift frequency. Thus, as expected, the tolerance to achieve and hold contrast is more stressing as the control frequency 

falls below the drift frequency. Control at frequencies less than the drift frequency places increasingly demanding 

tolerances on the wavefront and amplitude errors thus the lower the control frequency the lower the allowable etTOrs and 

a clear trade exists between allowable wavefront error and the ratio of control to drift frequencies, and, this trade has 

significant impact on the design of a flight coronagraphic system. 

For each of the candidate stars in the HIP30 database the expected HZ and flux ratio have been calculated (Figure-6) and 

this therefore sets a requirement on the wavefront and amplitude errors at the spatial frequency defined by the HZ. A 

lower bound on the phase sensing precision is inferred from the Heisenberg uncertainty relations. The product of the 

uncertainty in photon counts and phase is given by (n)(¢)~I/2and is equal to Yz for all naturally occurring light 

(Loudon, 1983), and where (n) = (Jnand (¢) = (Jf/J' The lower bound on the standard deviation in sensing phase for a 

given photon rate is: 

1 1 A 1 
(J =--= ~(J =--.=== 

I!J 2j;; 2~ R/lt WFE 41C ~ RJ1t 
(26) 

The number of detected photons is 11. and Rnl1t is the product of the photon count rate with integration time. This 

expresses a theoretical lower bound on the precision of phase sensing that in practice is usually not achievable due to 

sampling. detector quantization and other noise sources. However the theoretical precision can be used to estimate the 

bound on wavefront sensing precision. For example sensing of 0.1 nm rms wavefront error requires -200.000 photons 

23 



per speckle (or per spatial frequency). If only the photons that leak through the coronagraph are used for wavefront 

sensing then the integration times are longer than if all the photons could be optimally used. 

To derive a theoretical bound for coronagraphic wavefront error use equations 21 and 27, and ignoring amplitude errors: 

(27) 

If we assume the integral (convolution) is taken over the region defined by a single speckle, i.e. over PSFL (0), and 

that the transmission of the coronagraph at the location of the planet is unity, i.e. TeoR (Or) = 1 and use the phase PSD 

with a knee frequency of I-cpa and exponent of 3 and solve for the wavefront precision at the IW A gives: 

(28) 

The wavefront error requirement derived in equation-29 scales inversely as the square root of contrast and approximately 

as the cube of the angular separation due to the assumed form for the wavefront error PSD. For a knee frequency such 

that 1" « IWA the requirement scales as - IWA ~ /.fl. and for a knee frequency such 1" »IWA (white noise 

assumption) the requirement scales linearly with the knee frequency. 

Equation-29 expresses the required rms wavefront error required to achieve a given contrast at a given IW A folding in 

the knee frequency and ratio of control to drift frequency. The required rms wavefront error was estimated via equation-

29 for each of the HIP30 candidates and plotted versus angular separation in Figure-I 2. Figure-I 2 assumes a power law 

PSD with an exponent of 3 and a knee frequency of I cpa, a 4-meter telescope at a wavelength of 550 nm, and assumes 

that the control frequency is fast with respect to the drift frequency. 

The most stressing requirements are for the G stars and an angular separations of I lam/D. The results for coronagraphs 

with IW A = 2 lamlD does not significantly different results yielding approximately wavefront error requirements of 

-0.006 nm rms. 

24 



This requirement implicitly assumes the photons are available to sense to this level however there are clearly two cases: 

(I) all the photons from the target star, or, (2) only the photons that leak through the occulter, i.e. dark photons. Folding 

in the time to sense to each wavefront error requirement for each of the HIP30 stars under these two assumptions results 

in the two extremes plotted in Figure-I3. Using only the dark photons implies only those stellar photons which are 

leaked by the occulting mask and Lyot stop, and using all the photons refers to using all the stellar photons collected by 

telescope. The time to sense the two extremes varies dramatically as shown in Figure-I3. 

A third case arises, that of internal metrology. Internal metrology would generally require photon sources internal to 

telescope and optics to sense the relative placements, deformations and drifts of the optics and components. In an 

internal metrology approach the photons used for sensing and control are not from the stellar source but from a source 

internal to the spacecraft, such as one or more lasers, and hence not limited by the stellar photon rates and could result in 

a robust sensing and control but with the added complexity of additional optics to route the lasers to the optics and 

possibly separate detectors. Such an approach should be considered as part of the sensing and control trade space but is 

not further discussed herein. 

Figure-13 plots the time to sense to each of the required wavefront errors versus angular separation for each of the 

HIP30 candidates but assuming a V -band spectral filter centered on 550 nm with a 4-meter aperture. A broader filter 

would shorten the time, however, it has not yet been shown that sensing and control through a coronagraph is feasible 

with broadband filters. It is seen that the times are prohibitively long using only the leaked photons at the final control 

step. Such an approach would likely require internal metrology, unless as many of the photons that are available from all 

the photons collected are available, i.e. the photons which are reflected and/or absorbed at the occulting mask are also 

used (lower plot). Figure- I3 assumes that effectively no drift occurs in the wavefront during the sensing time. If drift 

does occur then tolerances are more demanding and it would scale as the functional form shown in Figure-II. 

One of the underlying questions is whether enough photons are collected from a given target star to control to the 

contrast needed? The results shown in Figure- I3 attempts to answer that question. No reasonable mission could fly if 

only the leaked photons were used as the prime photon source for sensing and control. However, modulation schemes 

whereby the deformable mirror andlor other optics are deliberately moved to modulate the leaked photons would greatly 

shorten the time. A multitude of wavefront control approaches have been or under development and many are based on 
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variations of electric field conjugation, see e.g. Give' on (2009) and references therein. What is not clear in these 

approaches are the amount of photons actually collected to achieve the contrast results. 

Control can be broken down into a hierarchy of regimes. In optical sensing and control what is generally sensed is 

electrons from the detector from which it is inferred that photons are counted via the quantum efficiency, thus photon 

counts are measured and a model and/or algorithmic approach subsequently used to convert photons to estimates of the 

amplitude and wavefront errors. However, wavefront error cannot ever be directly measured since it corresponds to 

phase of the optical field which is not an observable (Loudon, 1983) and only photons converted to electrons in the form 

of current is measured. 

Figure-14 shows an example of stability and control for the proposed Extrasolar Planetary Imaging Coronagraph (EPIC) 

mission (Clampin, 2009). Top left shows rms WFE in nm based on the rollup of a structural/thermal/optical model of the 

telescope and visible nulling coronagraph instrument versus time. Primary reason for growth in wavefront error is slow 

thermal drift due to spacecraft rolling with respect to sun angle during an observation from heliocentric orbit. The box 

shows the time window over which the requirement is met. Upper right shows the inverse of contrast (leakage) versus 

time. This is for a coronagraphic mission for Jovian planets and hence requires a less demanding 109 contrast than a 

terrestrial planet mission. Based on the EPIC model a 7,000 sec stability window is achieved which allows for an active 

control scheme whereby null control sequences, -1,200 sec, are interlaced with observing sequences of approximately 

7,000 seconds and where at the outset of observing sequence the wavefront error is better than required but drifts like a 

random walk up to its requirement prior to the null control sequence. A terrestrial planet detection mission will have 

more demanding tolerances on the achieving and maintaining the contrast which will likely drive it short stability times 

and hence short observation windows if an active scheme is used. An adaptive scheme where continuous control occurs 

through the science observation may be more robust. 

For many optical control systems the phase is fit to the control modes of the DM, i.e. either as modeled or measured 

influence functions of the DM, or as a linear superposition of these influence functions, implying a linear model. Each 

influence function is the change in wavefront due to a unit motion of a single control degree-of-freedom (OOF) and there 

are as many influence functions as control OOF's. Each influence function is controlled by a voltage or set of voltages 

on the actuators. Various approaches such as combining the influence functions and solving the eigenmodes to 
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orthogonalize and reduce the DOFs are available (Murphy 2001). However, from a control point of view these 

approaches infer wavefront and/or amplitude and subsequently decompose it into control modes, and feedback to 

actuators in either an active or adaptive fashion. An alternative approach is to directly map what is measured, i.e. 

photons (or electrons), to the control voltages of the DM and remove the step of converting to wavefront and amplitude 

errors, an approach deemed 'null control'. Such an approach implies that no separation of wavefront and amplitude 

errors are required, the only thing matters in a coronagraph are the leaked focal plane photons which reduce the contrast 

and thus the control system works to reduce these directly by choosing combinations of actuator motions which 

minimize the "darkness" at a specific or range of locations in the focal plane (Lyon (2011). This can also be performed 

in an active of adaptive fashion, where active refers to performing the control prior to each observation but not during it. 

If an out of specification condition occurred during the observation then control could be re-started. Adaptive refers to 

control throughout the observation in a closed-loop approach. There are advantages and disadvantages of each 

Sensing and control defines a complex parameter space whereby square law type wavefront sensing (incoherent) versus 

interferometric (coherent) with using only the photons from the stellar source, or, using internal metrology. If the drift 

rates are fast relative to the photon collection time to sense for control then there may be no choice but to add internal 

metrology to mitigate the starved photon problem. 

Derivations and assessment of the entire sensing and control trade space is outside the scope of this work but we 

attempted to address it at a conceptual level based upon expected stellar photon rates from the HIP30 catalog. The 

important parameter is the ratio of the drift to control rate; if the drift is slow with respect to the control then a quasi

static condition occurs whereby control may be needed only at the outset of an observation. One possibility would be to 

specify the telescope requirements such that this condition is always true, but it may result in telescope, which is either 

unbuildable or untestable, or prohibitively expensive. However, the telescope dynamic tolerances can only be relaxed to 

the point where the lowest photon rate science target still gives enough photons to achieve closed-loop. Otherwise a 

degradation in performance will result. Alternatively if only a few of the science sources drive the requirements, an 

alternative approach would be to remove those candidate sources deemed most stressing, alleviating the stressing 

requirements, or alternatively set the sensing and control separately for each star system such that it is optimal for the 

location of the HZ. 
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4. SUMMARY AND CONCLUSIONS 

Herein we have mapped a candidate database of stars within 30 parsecs and deduced the flux ratio, contrast, inner 

working angle, and time to SNR, for each star for each spectral class, assuming an Earth-sized terrestrial planet in its 

habitable zone, and an IW A = 2 A/D, and diffraction dependency on the background that scales as the cube of the inner 

working angle. Based on these assumptions the primary conclusions are: 

(1) Assessment of all stars within 30 parsecs would require a 120-m telescope operating at IW A = 2 A/D, however 

a 4-m telescope operating at IW A = = 2 AID would allow for searching 94 stars, of which 50 are G-stars, within 

-34 days per visit, or -170 days total if each was visited 5 times for completeness. 

(2) The set of 575 candidate stars have flux ratios which vary from 3x I 0- 11 to 5x I 0-8 with most G-stars having flux 

ratios between 3xl 0- 10 to Ix10-8 implying contrast requirements at the IWA from 0.3xl 010 to 108
. 

(3) The flux ratio has an approximately linear dependence versus planet-to-star angular separation with the mqjority 

of G-stars falling between 5 mas and 100 mas, however, the planets in closer in HZ have more favorable 

contrast ratios. M-stars would have planets in the HZ and the smallest separation while F would be at the largest 

separations. 

(4) The aperture flux of candidate planets in the HZ varies by only a factor of 3 over the span of angular 

separations and spectral classes. 

10/ 
(5) The V-band sensitivity scales as - D /3 and yields time to SNR=5 for a planet in the HZ that varies by 

approximately 4-orders of magnitude and for a 4-meter telescopes varies from -10 seconds to -100,000 

seconds with most G-stars in the range of 1,000 - 100,000 seconds. 

(6) The luminosity ratio scales as approximately the inverse of the angular separation independent of spectral class 

implying that a clear trade/compromise exists between IW A and contrast when the available candidate stars are 

incorporated into the design approach. 

The most stressing stars, close IW A, requires wavefront tolerances of -0.008 nm rms wavefront error for 

control times that are comparable to drift times, however for slow control, i.e. control times that are long 
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relative to the drift times requires significantly more demanding tolerances. Adaptive controls appears to be the 

most promising since this appears feasible relative to the dynamics of realistic spacecraft and wavefront drifts. 

(8) The wavefront error requirements are a strong function of the angular separation and are > 0.008 nm rms 

wavefront error for the majority of G-stars. 

(9) The times to sense and control is limited by the photon statistics which sets a bound on recovery of wavefront 

errors based on the photon count rates. Wavefront or null control approaches based only the leaked starlight, 

without modulating to increase the counts, have prohibitively long sensing times. Modulation schemes, which 

deliberately change the wavefront errors in a known and deterministic way greatly increase the counts and 

hence shorten the sensing and control times. Approaches that use all the stellar photons have sensing times that 

are -8-orders of magnitude shorter than schemes that use only leakage photons. In practice this can be 

accomplished with a visible nulling coronagraph that uses both the bright and dark output channels, or by 

approaches which pick stellar photons off from the front of the occulting mask. 
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FIGURE CAPTIONS 

Figure-1: Contrast and Focal Plane Diffraction. Example of a 4-meter circular aperture telescope's ideal diffraction 

pattern at A = 500 nm. The stars Airy disk normalized to unity at the peak and a planet with a luminosity of 10,10 of 

the star separated by 100 mas would appear only 106-107 times dimmer due to the angular separation. 

Figure-2: Hipparcos Stars < 30 parsecs from Earth. All 2350 Hipparcos stars plotted versus distance from Earth (black) 

and then are filtered by selection criteria to a list of 575 candidates (blue) and separated by stellar spectral class. 

Figure-3: Candidate Stars Mean Habitable Zone versus Distance to Star by Spectral Class. All candidate HZ's are < 1 

arcsec from parent star and concentrated between 1 and 100 milli-arcseconds. 

Figure-4: HIP30 Stars mapped to Telescope Diameter. Candidate HZ is mapped to high contrast imaging system 

operating at IWA = 2A/D. Assessment of all stars within 30 parsecs would require a 120-m telescope, however, a 4-m 

would allow for searching 94 stars, of which 50 are G-stars, within -34 days per visit, or -170 days total if each was 

visited 5 times for completeness. 

Figure-5: Number of Candidates versus Luminosity Ratio for each Spectral Class. Luminosity ratio is independent of the 

telescope and instrument and depends only on the star system. 

Figure-6: Luminosity Ratio for Terrestrial Planet in HZ for each Spectral Class vs Angular Separation. Relates IWA and 

contrast to science requirements. 

Figure-7: Aperture Flux of Planet in HZ vs Angular Separation. Zodi shown as flux in pixel of solid angle ~A? 

Figure-8: Normalized V-band Sensitivity. Divide the normalized sensitivity by D 1013 to arrive at the actual time (in 

seconds) to achieve a SNR=5 for each candidate star with a planet in the HZ for a V-band filter. 
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Figure-9: (Top) Number of Stars wlHZ at or outside IWA versus aperture diameter (bar plot of 2nd to last column in 

Table-I). (Bottom) Time (days) to SNR=5for a single observation «f each of candidates versus aperture in Table-l (last 

column of Table-I). 

Figure-10: Star and Planet Light Propagation through 8th Order Lyot Coronagraph 

Figure-11: WFE at 2 cpa vs Control. Full control effectiveness is not reached until the control frequency exceeds the 

drift frequency. 

Figure-12: Required WFE for each HIP30 candidate to yield stellar leakage, at the location of planet in HZ, equal to the 

planet brightness assuming the control frequency is fast with respect to drift. 

Figure-13: Photon Limited Time to sense WFE for each HIP30 candidate to yield leakage equal to planet brightness, at 

planet in HZ, assuming fast control wrt the drift. Upper plot is time to sense assuming only photons that leak by the mask, 

in lower all photons are used. 

Figure-14: Stability and Control Sequence for Extrasolar Planetary Imaging Coronagraph. Top left shows rms WFE in nm 

based on the rollup of a structural/thermal/optical model of the telescope and visible nulling coronagraph instrument 

versus time. Upper right shows the inverse of contrast (leakage) versus time. Bottom shows an active control scheme 

whereby null control sequences, -1,200 sec, are interlaced with observing sequences of approximately 7,000 seconds. 
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