

Lattice Thermal Conductivity from Atomistic Simulations: ZrB₂ and HfB₂

John W. Lawson

NASA Ames Research Center

Murray S. Daw

Clemson University

Charles W. Bauschlicher

NASA Ames Research Center

NASA Fundamental Aeronautics Program (FAP) NASA Innovative Partners Program (IPP)

Overview

- Motivation and applications
- Multiscale materials modeling
- Atomic structure
- Interatomic potentials
- Simulations of lattice thermal conductivity for ZrB_2 and HfB_2
- Comparison to experiments

UHTC for Sharp Leading Edges

Sharp leading edge for hypersonic aircraft

- Enhances vehicle performance
- Improves safety

Higher temperature requirements

- Shuttle RCC leading edge: T~1650C
- Sharp leading edged vehicles: T>2000C

UHTC advantages for sharp leading edges

- Good mechanical properties
- Oxidation resistance
- <u>High thermal conductivity</u>
 - Effective thermal radiation
 - Thermal shock resistance

Leading edges of hypersonic vehicle

SEM image of UHTC microstructure

Multiscale Modeling of UHTC

- Framework integrates three methods
- Multiscale framework for ZrB₂ and HfB₂:
 - <u>Ab initio</u> fundamental chemistry, electronic structure impact on basic material properties
 - <u>Atomistic</u> thermal/mechanical properties, adhesion and thermal resistance of grain boundaries, fracture
 - <u>Continuum</u> macro properties, thermal/mechanical analysis of microstructure
- This talk focuses on atomistic methods
 - Development of interatomic potentials
 - Lattice thermal conductivity simulations
 - Other topics presented elsewhere

JL, Daw, Squire and Bauschlicher, (2012), submitted

Atomic Structure: ZrB₂ and HfB₂

Alternating layers of Zr/Hf (red) and Boron (gray)

Graphitic Boron layers with Zr/Hf over each ring

Electronic Spectra

Acoustic modes carry <u>heat</u>. Optical modes are <u>resistive</u>.

JL, Bauschlicher and Daw, J. Am. Ceram. Soc., (2011)

essentially identical

Tersoff Bond Order Potential

• <u>Two body terms</u> (A, λ , B, μ) energy

$$E = \sum_{i \neq j} \left[f_{R}^{[ij]}(d_{ij}) + b_{ij} f_{A}^{[ij]}(d_{ij}) \right]$$
$$f_{R}^{[ij]}(d) = A_{ij} \exp(-\lambda_{ij}d)$$
$$f_{A}^{[ij]}(d) = -B_{ij} \exp(-\mu_{ij}d)$$

• Bond order (β , λ_3 , n, m)

$$b_{ij} = (1 + \beta_i^{n_i} \zeta_{ij}^{n_i})^{-1/2n_i}$$

$$\zeta_{ij} = \sum_{k \neq i,j} f_C^{[ij]}(r_{ik}) \gamma_{ijk} g_i(\theta_{ijk}) \exp[\lambda_{3i} (d_{ij} - d_{ik})^{m_i}]$$

• <u>Angular function</u> (c, d, h)

$$g_i(\theta) = 1 + c_i^2 / d_i^2 - c_i^2 / [d_i^2 + (h_i - \cos \theta)^2]$$

First Step: Zr Potential

- Zr potential exists
- Developed new Zr potential
- Fit to *ab initio* database of crystal structures

Property(units)	Target	New	WM2
a ₀ (FCC) (A)	4.530	4.510	4.532
E ₀ (FCC) (eV)	-6.160	-6.159	-6.127
B(FCC) (eV/A ³)	0.578	0.5899	0.6011
B'(FCC)(eV/A ⁴)	-0.8160	-1.635	-1.948
C ₁₁ (FCC)(eV/A ³)	0.7740	0.6885	0.7404
C ₁₂ (FCC)(eV/A ³)	0.4810	0.5405	0.5314
C ₄₄ (FCC)(eV/A ³)	0.3560	0.5307	1.395
E _{vac} (FCC)(eV)	2.500	6.072	8.338
a ₀ (HCP) (A)	3.230	3.159	3.231
E ₀ (HCP) (eV)	-6.180	-6.242	-5.826
E ₀ (BCC) (eV)	-6.050	-6.159	-5.960

7

Williame and Massobrio, PRB 43 (1991), 11653

Second Step: Boron Potential

- No pubished Boron potentials
- Boron is *electron "deficient"*
- Boron may be *"frustrated"*
- Fit to simple structures

Structure	Property	Target	Fit
Hex sheet	a ₀	2.91	2.89
	E ₀	-5.15	-5.08
	E ₀ "	11.35	7.98
Tri sheet	a ₀	1.70	1.81
	E ₀	-5.71	-5.75
	E ₀ "	21.73	27.06
SC	a ₀	1.88	1.84
	E ₀	-5.33	-5.21
	E ₀ "	24.50	24.51
FCC	a ₀	2.86	2.84
	E ₀	-5.07	-5.22
	E ₀ "	21.85	12.28

Third Step: ZrB₂ Potentials

- Zr-Zr parameters fixed
- B-B parameters fixed
- Zr-B fit to small database
- Pot A = "new Zr" + B
- Pot B = WM2 + B
- Will Boron planes stay flat?

	Fitting Re	sults	
Property	Target	Pot A	Pot B
a ₀ (A)	3.170	3.143	3.140
c ₀ (A)	3.550	3.547	3.547
E ₀ (eV)	-21.70	-21.29	-21.55

Stable, multilayered system with **flat**, **hexagonal** Boron sheets!

Lattice Thermal Conductivity

• Green-Kubo thermal conductivity tensor

$$\kappa_{\mu\nu} = \frac{1}{Vk_B T^2} \int_0^\infty \left\langle J_\mu(\tau) J_\nu(0) \right\rangle d\tau$$

• Heat current $J(x_i, v_i)$, energy e_i , stress-tensor S_i

$$J = \frac{1}{V} \left[\sum_{i} e_{i} v_{i} - \sum_{i} S_{i} v_{i} \right]$$
$$J = \frac{1}{V} \left[\sum_{i} e_{i} v_{i} + \frac{1}{2} \sum_{i < j} \left(f_{ij} \cdot \left(v_{i} + v_{j} \right) \right) \cdot x_{ij} \right]$$

JL, Daw and Bauschlicher, J. App. Phys, (2011)

Heat Current Correlation Function

- Monoatomic systems (e.g. Si) have monoatomic decay
- $\underline{\text{ZrB}}_2$ has $\underline{\text{longer}}$ period than $\underline{\text{HfB}}_2$ at T=300K
- ZrB₂ at <u>T=1000K</u> has <u>longer</u> period than <u>T=300K</u>

- Correlations oscillates with metal-B optical modes
- C_{xx} and C_{yy} oscillate with <u>in-plane</u> mode frequency
- C_{zz} oscillates with <u>out-of-plane</u> mode frequency

Lattice Thermal Conductivity: ZrB₂

- 8 independent, 10 ns simulations, T=300K
- 8x8x16 unit cell, 12,255 atoms
- κ_{xx} =60 W/(m.K), κ_{zz} =40 W/(m.K)

Lattice Thermal Conductivity: HfB₂

- 8 independent, 10 ns simulations
- 8x8x16 unit cell (12 atoms)= 12,255 atoms
- $\kappa_{xx} = 76 W/(m.K), \kappa_{zz} = 65 W/(m.K)$

Thermal Conductivity vs Temperature

8 independent, 10 ns simulations for each point
Data fit to 1/T curves

Experimental Data Comparison

- Polycrystalline ZrB₂
 - $\kappa_e = 33$ W/mK, $\kappa_{lat} = 22$ W/mK
 - $\kappa_{lat} \sim 0.3 \kappa_{tot}$
- Single crystal ZrB₂
 - $\kappa_{xx} = 140 \text{ W/mK}$, $\kappa_{zz} = 100 \text{ W/mK}$
 - 1 sample, 1 measurement
 - defects uncharacterized
 - $\kappa_{xx} = 45 \text{ W/mK}$, $\kappa_{zz} = 30 \text{ W/mK}$
- Data needed for ZrB₂ and HfB₂
- Simulation data reasonable at 300K but too low for higher T

 $\kappa = \kappa_e + \kappa_{lat}$

Zimmermann, Hilmas, Fahrenholtz Dinwiddie, Porter, Wang, J. Am. Ceram. Soc., (2008) Kinoshita, Otani, Kamiyama, Amano, Akasaki, Suda, Matsunami, Japan. J. App. Phys., (2001)

Conclusions

- Atomistic simulations for ZrB₂ and HfB₂:
 - Developed first interatomic potentials for UTHC
 - Lattice thermal conductivity using Green-Kubo formalism
 - Heat current correlation function oscillations
 - Thermal conductivity versus temperature
 - Reasonable agreement with experiment
- Modeling unanswered questions:
 - Interatomic potential fidelity
 - Lattice TC without potentials (*ab initio*, Boltzmann,...)
 - Conducting versus resistive vibrational modes
 - Isotope and defect effects
 - Interface thermal resistance: grain boundaries *
- Experimental unanswered questions:
 - Single crystal characterization and thermal conductivity
 - Electronic versus lattice thermal conductivity

Extra Slides

ZrB₂ Potential Curves

Test Results

Properties	Ab Initio	Pot A	Pot B
C ₁₁	556	365	422
C ₁₂	57	156	156
C ₁₃	113	173	171
C ₃₃	419	307	320
C ₄₄	234	106	119
В	233	227	240
G	226	98	118
A(=C ₃₃ /C ₁₁)	0.75	0.84	0.76

Properties not included in fit

VASP = *ab initio* code ¹⁹

- $\kappa = \rho C v l_{mfp}$
 - scattering restricts $l_{\rm mfp}$
- **Region I**: $\kappa \sim T^3$
 - dilute phonons
 - boundary scattering
 - quantum statistics
- **Region II**: κ_{max}
- **Region III**: $\kappa \sim 1/T$
 - high phonon density
 - phonon, pt. defect scattering
- **Region IV**: κ_{\min} , $l_{mfp} =$ "a"

Summary

- <u>No</u> atomistic simulations for ZrB_2 due to lack interatomic potentials
- Potentials are prerequisite for atomistic simulations of *mechanical* and *thermal* properties
- We developed such potentials for ZrB₂
- ZrB₂ potentials give stable structures with flat, hexagonal B planes
- We performed the <u>first</u> atomistic simulations for these materials
- Lattice thermal conductivity was evaluated for single crystals
- Reasonable agreement with experiments
- Future/current work:
 - Grain boundaries: energetics and thermal interface resistance
 - Integration into multiscale framework
 - Potentials and applications for *Hf* and *HfB*₂