75th Annual Meteoritical Society Meeting (2012)

5057.pdf

IN THE PURSUIT OF REGOLITHIC HOWARDITES.

J.A. Cartwright¹, U. Ott^{1,2}, D.W. Mittlefehldt³, J.S. Herrin⁴, K.R. Mertzman⁵, S. A. Mertzman⁵, Z. X. Peng⁴, and J. E. Quinn⁴. MPIC, Hahn-Meitner-Weg 1, 55128, Mainz, Germany. ²University of Western Hungary, 9700 Szombathely, Hungary. ³NASA/JSC, Houston, Texas, USA. ⁴ESCG, Houston, Texas, USA. ⁵Franklin & Marshall College, Lancaster, PA 17604, USA. Email: julia.cartwright@mpic.de

Introduction: The HED (\underline{H} owardite, \underline{E} ucrite and \underline{D} iogenite) meteorite clan likely originate from the asteroid 4-Vesta [1]. Howardites (polymict breccias of eucritic and diogenitic material) are believed to originate from the vestan surface, and many contain regolith-like features (impact and/or melt clasts, fragmental breccia clasts, carbonaceous chondrite fragments), which may relate to regolith-formation processes. Noble gas analysis can help determine true regolithic nature, as Solar Wind (SW) is implanted into grains at the upper-surfaces of solar system bodies lacking an atmosphere or magnetic field. Howardites from Vesta's true regolith would thus show evidence for SW components.

Thus far, we have identified 5 regolithic howardites: LEW 85313; MET 00423; PRA 04401; SCO 06040 and EET 87513; based on our noble gas analyses, with the latter 3 showing some evidence for a planetary(+SW) component, likely related to CM-like material present in the assemblage [2-5]. However, we did not find a good correlation between SW content and other petrologic regolithic features. Nor did we find an obvious correlation between SW and high siderophile element contents (Ni > 300 $\mu g/g$), or an Al_2O_3 range of 8-9 wt% and eucrite/diogenite (E/D) ratio of 2:1 as suggested by [6] to be further regolith indicators. Here, we report our latest noble gas data for two howardites GRO 95535, GRO 95602 and a polymict eucrite EET 87518 in continuing research aimed at better understanding the vestan regolith.

Results: Noble gas analysis was performed on an MAP 215-50 noble gas mass spectrometer using furnace step-heating. Our results, shown in Table 1, are compared with SW- (LEW 85313) and planetary-dominated (PRA 04401 ~60% CM) howardites [2]. EET 87518 is dominated by cosmogenic components. By comparison, both howardites show strong evidence for SW, with total $^{20}\text{Ne}/^{22}\text{Ne} \sim 8.7-8.8$ (SW: $^{20}\text{Ne}/^{22}\text{Ne}$ 13.78 [7]), and identical release patterns to our other CM-poor SW-rich samples. This suggests that these samples are from the vestan regolith. As they have lower Ni contents than suggested by [6], this further illustrates that these parameters may show some bias [2].

Table 1: Latest howardite and polymict eucrite noble gas results compared with typical SW-rich and planetary dominated howardites [2].

parca with typical over hon and planetary dominated howardites [2].							
		EET	GRO	GRO	LEW	PRA	
		87518	95535	95602	85313	04401	
	²² Ne (10 ⁻⁸)	5.6(1)	52.1(1.0)	6.1(1)	36.7(8)	6.6(3)	
	²⁰ Ne/ ²² Ne	0.84(0)	8.74(4)	8.79(4)	9.68(4)	3.22(4)	
	²¹ Ne/ ²² Ne	0.851(12)	0.295(4)	0.238(4)	0.157(1)	0.670(6)	
	²⁰ Ne _t (10 ⁻⁸)	0.22(16)	441(21)	52(3)	347(22)	16.9(11)	
	Ni	81.9	98.6	193	804	4720	
	Al_2O_3	11.3	7.6	8.5	9.2	4.3	
	E/D	7.3/1	1.3/1	1.8/1	2.3/1	1.8/1	

Ne concentrations in cc/g, Ni in μ g/g, Al₂O₃ in wt%, errors in parentheses. t = trapped.

References: [1] Drake M.J. (2001) Meteoritics & Planetary Science, 36:501-513. [2] Cartwright J.A. et al. (subm.) Geochimica et Cosmochimica Acta. [3] Herrin, J.S. et al. (2011) 42nd Lunar & Planetary Science Conference (abs. #2806). [4] Cartwright J.A. et al. (2012) 43rd Lunar & Planetary Science Conference (abs. #1211). [5] Buchanan P.C. et al. (1993) Meteoritics, 28:659-682. [6] Warren, P.H. et al. (2009) Geochimica et Cosmochimica Acta, 73:5918-5943. [7] Heber V.S. et al. (2009) Geochimica et Cosmochimica Acta, 73:7414-7432.