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Abstract 28 

 A land surface model’s ability to simulate states (e.g., soil moisture) and fluxes (e.g., 29 

runoff) is limited by uncertainties in meteorological forcing and parameter inputs as well as 30 

inadequacies in model physics.  In this study, anomalies of terrestrial water storage (TWS) 31 

observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission were 32 

assimilated into the NASA Catchment land surface model in western and central Europe for a 7-33 

year period, using a previously developed ensemble Kalman smoother.  GRACE data 34 

assimilation led to improved runoff correlations with gauge data in 17 out of 18 hydrological 35 

basins, even in basins smaller than the effective resolution of GRACE.  Improvements in root 36 

zone soil moisture were less conclusive, partly due to the shortness of the in situ data record.  In 37 

addition to improving temporal correlations, GRACE data assimilation also reduced increasing 38 

trends in simulated monthly TWS and runoff associated with increasing rates of precipitation.  39 

GRACE assimilated root zone soil moisture and TWS fields exhibited significant changes in 40 

their dryness rankings relative to those without data assimilation, suggesting that GRACE data 41 

assimilation could have a substantial impact on drought monitoring.  Signals of drought in 42 

GRACE TWS correlated well with MODIS Normalized Difference Vegetation Index (NDVI) 43 

data in most areas.  Although they detected the same droughts during warm seasons, drought 44 

signatures in GRACE derived TWS exhibited greater persistence than those in NDVI throughout 45 

all seasons, in part due to limitations associated with the seasonality of vegetation.     46 

  47 
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1. Introduction 48 

  Seasonal and interannual variability in terrestrial water storage (TWS) is of critical 49 

interest in water resource analysis and seasonal hydrological forecasts because TWS—which 50 

includes soil moisture, groundwater, surface water and snow—is an important hydrological 51 

indicator in its own right: volume of water stored in snowpack or groundwater, for example, 52 

reflects present hydrological conditions and can be used to infer the potential for future 53 

hydrological stress.  TWS is also important because of its role in other aspects of the 54 

hydrological cycle.  Its status can affect infiltration rates and subsurface flow, with associated 55 

impacts on runoff and recharge rates.  TWS anomalies can also affect the hydrological cycle 56 

through soil moisture feedbacks on the atmosphere.  One of the important aspects of TWS is its 57 

unique dynamics.  Soil moisture and groundwater are low-pass filters on the terrestrial 58 

hydrological cycle that gradually remove high frequency variability associated with atmospheric 59 

forcing as depth increases (Eltahir and Yeh, 1999; Wu et al. 2002).  This dynamic means that 60 

TWS acts as a “memory” component of the terrestrial hydrological cycle, with implications for 61 

land-atmosphere interactions (Koster and Suarez, 2001) and predictability in certain regions 62 

(Dirmeyer 2000; Dirmeyer et al., 2009; Koster et al., 2000b; Koster et al., 2010a).   63 

Interactions among components of TWS not only re-distribute water spatially but also 64 

increase the complexity of the hydrological cycle.  Groundwater, which accounts for a major part 65 

of TWS (Rodell and Famiglietti, 2001; Rodell et al., 2007; Yeh et al. 2006), can contribute 66 

substantially to stream flow in wet climates (Eltahir and Yeh, 1999).  This connection, combined 67 

with the long memory of groundwater variability, means that accurate information on 68 

groundwater can contribute significant skills to seasonal river discharge forecasts (Birkens and 69 

Van Beek, 2009).  Groundwater can also move upward to increase soil wetness through capillary 70 
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lift or act as a sink to receive excess soil moisture from the land surface (Schaller and Fan, 2009).  71 

As appreciation for these processes has grown, an increasing number of land surface models 72 

have been developed to account for the impact of groundwater on near surface processes (e.g., 73 

Koster et al., 2000a; Niu et al., 2007; Miguez-Macho et al., 2007; Yeh and Eltahir, 2005).  74 

Including groundwater in a land surface model enables a more complete simulation of the 75 

terrestrial water cycle, but it also subjects the modeled states to additional uncertainties 76 

associated with the added physical processes and parameters.  For instance, due to lack of global-77 

scale groundwater measurements, most models depend on calibration to obtain the temporal 78 

variability and dynamic range of groundwater tables, which may not represent the interactions 79 

realistically, especially under extreme wet or dry conditions.                     80 

Precipitation data sets are a major source of uncertainty for land surface modeling, and 81 

their impacts on modeled states and fluxes may differ depending on seasons and climates (Fekete 82 

et al., 2004; Gottschalck et al., 2005).  Great uncertainty also exists in model physics such as 83 

surface runoff algorithms which are often derived from empirical relationships (Koster et al., 84 

2000a; Niu et al., 2005; Schaake et al., 1996).  Stream flow is governed in varying degrees by 85 

topography, rainfall intensity, and soil wetness, making it a difficult process to simulate 86 

efficiently.  Due to differences in model physics and parameter values, estimates by various land 87 

surface models exhibit large discrepancies even when models are run using identical forcing data 88 

(Mitchell et al., 2004).  The combination of uncertainties in forcing, input parameters and model 89 

physics has led to dramatically different predictions for runoff trends in response to future 90 

climate changes (Hoerling et al., 2009).    91 

The ambiguity in model estimates also complicates drought monitoring, which 92 

increasingly relies on model estimated soil moisture due to the current lack of accurate global 93 
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soil moisture measurements (Mo, 2008).  Although Koster et al. (2010b) provided a more 94 

optimistic assessment on soil moisture estimates by various models, Mo (2008) indicated that 95 

while drought indices derived from different models show stronger correlation in the eastern US, 96 

their correlation is so low in the western US that model based drought indices cannot be used for 97 

drought monitoring.  Drought monitoring is also complicated by the interaction between soil 98 

moisture and groundwater.  Through numerical simulations, Peters et al. (2005) showed that 99 

groundwater can provide moisture to reduce the impact of short-term droughts, but due to its 100 

long recovery time groundwater will also act to lengthen and increase the frequency of droughts.  101 

The importance of groundwater for drought monitoring has been recognized (Houborg et al., 102 

2011; Svoboda et al., 2002) and efforts are underway to combine information about groundwater 103 

variability as well as surface vegetation conditions with model estimated soil moisture to form 104 

comprehensive drought indices (http://www.drought.unl.edu/dm/monitor.html).  Nevertheless, 105 

such efforts are hindered by the lack of systematic groundwater measurements at continental 106 

scales, in addition to lack of accurate model based soil moisture estimates.            107 

 In order to capture the unique characteristics of TWS and reduce the uncertainty in model 108 

estimates, observations are needed to nudge model output towards reality.  The GRACE satellite 109 

system detects temporal water storage changes in the entire vertical profile, including snow 110 

mass, surface water, vegetation, soil moisture and groundwater (Tapley et al., 2004).  It is the 111 

only remote sensing platform that provides consistent monitoring of the Earth’s terrestrial water 112 

storage, including groundwater.  Recognizing the potential for GRACE data to improve the 113 

simulation of land surface processes, Zaitchik et al. (2008) developed an ensemble Kalman 114 

smoother (EnKS) to assimilate GRACE into the NASA Catchment model in the Mississippi 115 

basin, with promising results.  The EnKS provides a systematic and dynamic way to disaggregate 116 

http://www.drought.unl.edu/dm/monitor.html�
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GRACE-derived TWS anomaly estimates into snow, soil moisture, and groundwater 117 

components, so that the simulation of each component of TWS can be positively influenced.   118 

In this study, the EnKS and the Catchment model are applied in western and central 119 

Europe where climate and hydrological conditions differ significantly from the Mississippi area 120 

studied by Zaitchik et al. (2008).  As droughts are common in Europe, the unique ability of 121 

GRACE TWS to detect droughts and its potential for drought monitoring are considered in some 122 

detail.  The paper is organized as follows: Sections 2 and 3 describe the study domain, ground 123 

based validation data and the land surface model.  Section 4 briefly outlines the EnKS method 124 

and filter parameters.  Section 5 presents the model simulation results and comparisons with 125 

independent datasets.  Comparisons of anomalies of GRACE TWS with those of MODIS NDVI 126 

are also presented.  Section 6 concludes with a summary and discussion.    127 

2. Experiment site, GRACE and validation data 128 

 Figure 1 shows the simulation domain in western and central Europe.  For GRACE data 129 

assimilation, major hydrological watersheds were combined into nine major “basins” at the scale 130 

of GRACE observations, to accommodate the spatial resolution of GRACE TWS, which is about 131 

150,000 km2 at best (Rowlands et al., 2005; Swenson et al., 2006).  Table 1 lists the area of these 132 

basins, ranging from 300,000 to 800,000 km2.  Several islands and peninsulas such as Great 133 

Britain and Sweden/Norway were not included because GRACE TWS yielded much smaller 134 

dynamic ranges than model estimates, possibly due to the interference of ocean signals.     135 

GRACE TWS used in this study were processed by University of Texas Center for Space 136 

Research (CSR, Release CSR_RL04) using a Gaussian filter with a 300 km smoothing radius to 137 

remove the stripes seen in the spherical harmonic coefficient fields (Swenson and Wahr, 2006).  138 



7 
 

The anomalies of GRACE TWS were obtained by removing the temporal mean of the gravity 139 

field (including the solid earth and the atmosphere) in 2003-2007 and converted to equivalent 140 

water heights.  The 1o gridded GRACE TWS anomalies were mapped to the nine major basins 141 

using area-weighted averaging, and these values were converted to absolute TWS by adding the 142 

2003 – 2007 mean TWS from an open loop (no data assimilation) integration of the model. 143 

Figure 1 also shows the locations of in situ measurements used for validating data 144 

assimilation results, including 18 stream flow stations along three major rivers (Danube, Elbe 145 

and Rhine) and 12 soil moisture sites from the Soil Moisture Observing System - Meteorological 146 

Automatic Network Integrated Application (SMOSMANIA, Calvet et al., 2007) project.  The 147 

streamflow stations (station ids and drainage areas are given in Table 2) were chosen from 148 

Global Runoff Data Center (GRDC) for their length of records.  Soil moisture measurements 149 

(started in 2007) are taken at 5, 10, 20 and 30 cm depths and every 30 minutes using impedance 150 

probes.  Monthly averaged stream flow and root zone soil moisture (vertically integrated using 151 

the four layer measurements) were used to validate model simulation results.    152 

3. The Catchment model and forcing data 153 

 The NASA Catchment model was developed for global scale coupled land/atmosphere 154 

modeling (Koster et al., 2000a).  It simulates water and energy balances on catchment tiles, with 155 

some catchments split by a 1.0ox1.25o atmospheric grid.  For the study domain, which consists of 156 

nearly 6000 tiles, the average tile size is around 1500 km2.  To increase sub-grid heterogeneity, 157 

each catchment contains dynamically changing saturated, transpiring and wilting areas where 158 

different runoff and ET schemes are applied.  The model contains three subsurface states for 159 

water balance calculation: surface excess (sfEx) and root zone excess (rtzEx), representing the 160 
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excessive soil moisture relative to the hydrostatic state for the top 2 cm and 100 cm of soils, 161 

respectively, and catchment deficit (catDef) defined as the amount of water (kg/m2, averaged 162 

over the catchment) needed to bring the catchment to saturation (assuming sfEx and rtzEx are 163 

zero).  Although groundwater is not explicitly simulated, its behavior, i.e., its two dimensional 164 

distribution and associated flow rates, is directly diagnosed from the catDef variable.  The model 165 

also has three snow layers for modeling snow water equivalent (SWE) and snow depth.  Thus, 166 

modeled TWS can be determined from sfEx, rtzEx, catDef and SWE in conjunction with model 167 

parameters.  Lakes and reservoirs are not directly included in simulated TWS because, over large 168 

scales at mid-latitudes, they only constitute a very small fraction of observed TWS variability 169 

(Rodell and Famiglietti, 2001).  The impact of GRACE data assimilation on runoff is exerted 170 

through its relationship with modeled states: sfEx, rtzEx, catDef and SWE.     171 

 Forcing fields were provided by the Global Land Data Assimilation System (GLDAS, 172 

Rodell et al. 2004). They are based on meteorological fields (temperature, humidity, wind speed 173 

and pressure) obtained from the NASA Global Modeling and Assimilation Office GEOS data 174 

assimilation system (Bloom et al., 2005), radiation fields from the U.S. Air Force Weather 175 

Agency, and precipitation prepared by spatially and temporally downscaling the 2.5o x2.5o, 5-day 176 

NOAA Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP; Xie and 177 

Arkin, 1997).  This GLDAS forcing data set, which has been used in previous data assimilation 178 

experiments (Reichle et al., 2007; Zaitchik et al., 2008), has a 3 hour temporal interval and a 2o × 179 

2.5o spatial resolution.   180 

A few adjustment and corrections were made in this study regarding the Catchment 181 

model and forcing fields.  Zaitchik et al. (2008) found that Catchment sometimes does not 182 

provide a large enough dynamic range to match that of GRACE TWS.  The same situation was 183 
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observed in this study region as well.  To mitigate this deficiency, following Houborg et al. 184 

(2011), the bedrock depth used for the model was uniformly increased by 2 m, which increased 185 

the dynamic range of catDef.  To partially compensate for the increase in bedrock depth, a lower 186 

value of the decay factor for saturated conductivity was used for the base flow calculation 187 

(Ducharne et al., 2000).  Longwave and shortwave radiation fields were further bias corrected 188 

based on NASA/GEWEX Surface Radiation Budget (SRB, Release-3.0) data by matching their 189 

spatial (for entire simulation area) and temporal averaged means with those of SRB.  The goal of 190 

these adjustments and corrections was to achieve reasonable estimates of fluxes (ET and runoff).                                    191 

Simulations were carried out from August 2002 to July 2009, which is the available 192 

GRACE data period at the start of this study.  Since previous forcing data were not available, the 193 

model was first run through 2002 to 2009 and then spun up for 10 years using the forcing fields 194 

from 2002.   A different initial condition, based on averaged model states from 2002-2009 on 195 

January 1 which yielded wetter soil moisture conditions than the one mentioned above, was also 196 

tested and the results (including runoff and soil moisture evaluations) were very similar to those 197 

presented here.    198 

4. GRACE data assimilation method 199 

 Zaitchik et al. (2008) presented a detailed description of the ensemble Kalman Smoother 200 

(EnKS) developed specifically for assimilating GRACE TWS into the Catchment model.  A brief 201 

outline of this assimilation method is presented here.  Like an ensemble Kalman filter (EnKF), 202 

the EnKS consists of two steps: forecast and update.  In the forecast step, the ensemble of the 203 

model runs forward in time with perturbations added to the states and forcing fields: 204 
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where M is the model; F represents all the forcing fields and G represents all the static 205 

parameters; T is the time; superscripts (-) and (+) refer to results for the forecast and update, 206 

respectively; X is the vector containing updated states (rtzEx, catDef and SWE) for each 207 

catchment tile, and the superscript i indicates the ith member of the ensemble.  srfEx was not 208 

updated in the EnKS because of its very weak correlation with monthly TWS but was included in 209 

model simulated TWS for accuracy.  Based on equation (1), the ensemble update equation can be 210 

written as: 211 
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(2) 
where K is the ensemble gain matrix; Y represents observations (GRACE TWS) and H is the 212 

observation operator that converts predicted states to the observation.   213 

The underscores in equation (2) indicate monthly TWS (observed or simulated) averaged 214 

for each major basin because the EnKS used here assimilates temporally integrated observations.  215 

To accommodate the monthly averaged nature of GRACE observations, the EnKS collects 216 

Catchment model predictions of TWS on a first pass through each simulated month (three 217 

collections per month, to mimic GRACE overpass characteristics), calculates the update at the 218 

end of the month, and then iterates through the month a second time, uniformly (for each state) 219 

applying increments to each daily value of model states for each ensemble member.  Thus, X 220 

(without the underscore) in equation (2) represents daily estimates of model states on each 221 

catchment tile in month T.   222 
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All perturbation parameters and schemes were the same as Zaitchik et al. (2008) and 223 

Reichle et al. (2007), except that an observation (GRACE) error of 15 mm was used here, which 224 

is the average of the two GRACE errors (10 mm and 20 mm) tested by Zaitchik et al. (2008).   225 

5. Results 226 

 Two model integrations were performed from August 2002 to July 2009: the open loop 227 

(OL) representing the model-only performance and the data assimilation (DA) with GRACE data 228 

assimilation using the EnKS outlined above.  Since GRACE derived TWS values are anomalies 229 

only, simulation results were evaluated using time series correlations with in situ measurements.     230 

5.1 TWS 231 

 Figure 2 presents the time series of daily simulated TWS and GRACE monthly 232 

observations for the nine major basins.  The open loop run generally captured the seasonal 233 

variability and dynamic range of GRACE TWS.  OL differs from GRACE mostly in interannual 234 

variability, especially in Finland, Loire/Seine and Rhone/Po where OL exhibits a marked 235 

increase in TWS in the later modeling period.  While data assimilation checked that increase 236 

effectively, consistent with GRACE observations, it failed to reduce simulated TWS to the levels 237 

observed by GRACE in the Upper Danube in 2007 and 2008.  This failure was possibly caused 238 

by negligible ensemble spread during dry conditions due to a lack of precipitation to perturb and 239 

the fact that direct perturbations to sfEx and catDef are small.  Increasing the direct perturbations 240 

may enable TWS to go lower, but it may also lead to ensemble bias.  Nevertheless, in most cases 241 

EnKS was effective in nudging the simulated TWS toward GRACE TWS.             242 

To investigate the cause of the significant increase in OL TWS seen in the Finland, 243 

Vistula, Loire/Seine, and Rhone/Po basins, which was not observed as dramatically in the 244 
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GRACE observations (Figure 2), GLDAS/CMAP precipitation was compared with 1o × 1o 245 

Global Precipitation Climatology Project (GPCP) precipitation data (Adler et al., 2003) mapped 246 

to the major basins following the same approach as that for GRACE.  Figure 3 shows the 247 

comparison of annual (from August to July) precipitation totals in each basin.  In general, 248 

GLDAS/CMAP has a negative bias against GPCP in all basins except Turkey.  CMAP's low bias 249 

relative to other precipitation products stems from the fact that it does not correct for gauge 250 

under-catch (e.g., Yin et al., 2004).  More importantly, the annual variations of GPCP and 251 

GLDAS/CMAP precipitation are well correlated, and both products indicate that precipitation in 252 

the four basins named above increased towards the end of the simulation period.  Given that 253 

GRACE TWS also increased in those basins but to a lesser extent, we infer that either: (i) the 254 

model should have retained less water in the land and increased evapotranspiration (ET) and/or 255 

runoff instead, or (ii) the precipitation and GRACE datasets are inconsistent, due to errors in one 256 

or both.   257 

The rate of long-term TWS changes can be more clearly illustrated using the slope of 258 

monthly TWS calculated using Sen’s method (Helsel and Hirsch, 1992; Sen, 1968) as shown in 259 

Figure 4.  Slopes with a 0.1 significance level were identified using the Mann-Kendal test 260 

(Helsel and Hirsch, 1992) and marked in bold symbols.  These two methods have been widely 261 

used in analyzing trends in hydro-meteorological data sets (Mishra and Cherkauer, 2010; 262 

Lettenmaier et al., 1994; Yue and Wang, 2002).  Figure 4 shows that the slope of TWS (modeled 263 

or observed) generally becomes smaller as the basin moves from north to south, which resembles 264 

the increasing rate of annual precipitation in each basin (Figure 3), suggesting the strong 265 

correlation of TWS with long-term precipitation.  OL TWS generally exhibits larger rates of 266 

increase than GRACE-derived TWS, especially in Finland, Vistula, Loire/Seine and Upper 267 
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Danube, where larger increasing rates of precipitation were observed in the later modeling period 268 

(Figure 3).   269 

5.2 Stream flow and soil moisture 270 

Since stream flow is a product of upland surface runoff and subsurface runoff over a 271 

large area, gauged stream flow data are often used to evaluate model performances (Mishra and 272 

Cherkauer, 2010).  For the same reason, stream flow measurements were used here to not only 273 

evaluate the impact of GRACE data assimilation on runoff but also provide overall assessment of 274 

the EnKS.  Figure 5 shows the correlation of monthly simulated runoff with GRDC gauged data.  275 

Since Catchment does not have a routing scheme, the simulated stream flow is simply a spatial-276 

aggregation of tile-space (individual land element) runoff over the drainage area.  This is 277 

justifiable for monthly statistics, especially in smaller basins where the runoff response time is 278 

less than a month.  GRACE data assimilation improved the correlation in all watersheds but one 279 

(D5), with more improvements observed in larger basins along Danube.  Improvements in 280 

watersheds such as R6-R11, E1 and E2 (Table 2) with drainage areas smaller than their 281 

corresponding major basins (the scale at which GRACE TWS was generated) indicate that 282 

assimilation of GRACE TWS can influence simulation of land surface processes at sub-283 

observation scale.  The improvements shown in Figure 5 by DA all exceeded the 0.05 284 

significance level based on the William-Hotelling t-test (Steiger, 1980; Van Sickle, 2005).  It 285 

should be pointed out that many of the stream flow observations are not independent because 286 

they were measured at various points along the same river.   287 

Improvements in runoff correlations are attributed to the close relationship between base 288 

flow and catDef, which is the model state most affected by assimilation of GRACE TWS.  To 289 
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illustrate this, Figure 6 shows the time series of simulated runoff in comparison with GRDC 290 

measurements in Lower Danube 6742800, a sub-basin of the Lower Danube major basin.  DA 291 

significantly increased the runoff in the earlier period in accordance with changes in TWS, which 292 

helped improving the overall correlation and also lowered the increasing trend of runoff.  Figure 293 

7 shows the trend of runoff by OL, DA and GRDC gauge data in all GRDC basins.  Similar to 294 

TWS, model estimates (OL) show higher trends than observed runoff with significant trends 295 

detected for most basins while observed runoff shows no significant trend in any basin.  DA 296 

reduced trends in all basins, but did not change the significance of most trends.       297 

An important role of the EnKS is to disaggregate GRACE so that each TWS component 298 

can be nudged towards its true state.  To evaluate the vertical disaggregation, correlations of 299 

monthly root zone soil moisture estimated by OL and DA were calculated against in situ 300 

measurements from the SMOSMANIA sites and are given in Table 3.  The statistics were 301 

calculated using in situ point data and model estimates at the tile containing the station.  GRACE 302 

data assimilation generally did not have a significant impact on monthly correlations of soil 303 

moisture as the correlation of DA is not significantly different from OL at the 0.10 significance 304 

level, except at site URG.  The coarser spatial representation of the model and the GRACE data 305 

may not capture the localized nature of station measurements.  To alleviate the horizontal scale 306 

mismatch and obtain an overall impact on the entire SMOSMANIA area (about 4000 km2), the 307 

area averaged statistics for OL and DA were also calculated against the averaged in situ 308 

measurements and are given in Table 3 (last row) which shows that GRACE data assimilation 309 

did not change the correlation of averaged soil moisture time series in the sampling area.  The 310 

shorter SMOSMANIA data period (31 months) makes these statistics less conclusive because the 311 

confidence intervals are very large.     312 
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   313 

  5.3 Water budget 314 

   As hypothesized in section 5.1, elevated TWS by OL in Finland and Loire/Seine in the 315 

later modeling period were likely caused by either an underestimation of runoff and/or ET when 316 

precipitation rates increased or by improper increase in the precipitation rates themselves 317 

assuming GRACE data are accurate.  When GRACE data assimilation reduced TWS in these 318 

basins, it also decreased ET and runoff estimates because of their positive correlations with 319 

TWS.  As a result, the water budget of OL was not preserved by the simulation with GRACE 320 

data assimilation.  Figure 8 features the annual (August to July) mass imbalance, defined as 321 

simulated water budget (sum of total fluxes and net change in TWS) minus precipitation, of OL 322 

and DA.  As expected, OL has nearly zero mass imbalances throughout the entire period and in 323 

all basins while GRACE data assimilation disrupted the water budget, more so in Finland, 324 

Vistula, Loire/Seine and Rhone/Po, despite improving the simulation of TWS (assuming 325 

GRACE data are accurate).  Since GLDAS precipitation generally has a negative bias against 326 

GPCP (Figure 3), positive imbalances (i.e., larger ET and runoff) would be preferable to the 327 

negative ones produced by GRACE data assimilation in this case.  Unintended impacts of data 328 

assimilation on the water budget are always a danger, demanding the development of creative 329 

new assimilation techniques (e.g., Li et al., 2011; Pan and Wood, 2006; Zaitchik and Rodell, 330 

2009).   331 

5.4 Drought analysis                      332 

Droughts are common in Europe, and several episodes of severe droughts, including the 333 

2003 drought (associated with the 2003 European heat wave, Rebetez et al., 2006; Zaitchik et al., 334 
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2006) that spread across western and central Europe and the 2007/2008 droughts that affected 335 

southern and southwestern Europe (SOER Synthesis, 2010), were detected by GRACE TWS 336 

(Figure 2).  Because droughts can be defined in a variety of ways depending on what indicators 337 

are taken into account, it can be instructive to compare a new drought observation with a more 338 

common indicator.  Here we compare GRACE based TWS with monthly Normalized Difference 339 

Vegetation Index (NDVI) as recorded by the Moderate Resolution Imaging Spectroradiometer 340 

(MODIS) instrument on NASA’s Terra satellite.  NDVI is strongly correlated with green 341 

biomass (Tucker, 1979), and is often used in satellite based drought-monitoring (e.g., Brown et 342 

al., 2008).  Basin averaged NDVI was derived by averaging the Level-3 0.05o MODIS NDVI 343 

monthly product (lpdaac.usgs.gov) across the same basins that were used to extract GRACE 344 

observations.   345 

Figure 9 shows the averaged dryness ranks of NDVI and GRACE TWS in the summer 346 

season (April to September) for the 2003 to 2008 period (2002 and 2009 were excluded due to 347 

their incomplete summer seasons).  To give equal weight to all monthly rankings, the averaged 348 

ranks in Figure 9 were obtained by first ranking each data set for each month and then averaging 349 

the ranks of summer months.  GRACE TWS indicated 2003 as the driest condition in all basins 350 

except Loire/Seine, Lower Danube and Turkey, while NDVI only shows 2003 as the most severe 351 

drought in Rhone/Po, Upper Danube and Dnieper and a drought condition in Rhine/Elbe/Oder 352 

and Loire/Seine.  The 2007/2008 droughts along the south and southwestern region (in 353 

Rhone/Po, Lower/upper Danube, Dnieper and Turkey) were indicated by both types of 354 

observations.  The largest discrepancies between the two sources are in Finland and Vistula 355 

where, despite the increasing trend in precipitation (Figure 3), NDVI shows decreasing trends.  356 
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This is probably due to the fact that vegetation growth in the high latitude and high elevation 357 

regions is limited by energy availability, not by water availability (Karnieli et al., 2010).   358 

Note that GRACE TWS characterized the 2003 drought in Loire/Seine as less severe than 359 

the 2005 drought (SOER Synthesis, 2010).  According to GRACE, the land was very wet in 360 

early 2003 (Figure 2), and as a result dry meteorological conditions took longer to severely 361 

impact total TWS.  In this situation, the effect of drought is less evident in the TWS anomaly 362 

than it is in the maximum decline of GRACE TWS from its early spring peak to the lowest value 363 

in the fall, which roughly measures the amount of water lost in the warm season.  As seen in 364 

Figure 9, Loire/Seine and Upper Danube, which were at or near the center of the heat wave, 365 

experienced the most significant water loss in 2003.  This is one of the advantages using a 366 

physical-based variable for drought monitoring because drought conditions can be evaluated 367 

from other aspects than anomalies.       368 

  The reason that we only compared the dryness rank of GRACE and NDVI during the 369 

warm season in Figure 9 is that NDVI is insensitive to water shortage when vegetation is 370 

senescent or when coverage is low (Karnieli et al., 2010).  This can be seen in Figure 10 where 371 

the seasonal cycles of GRACE TWS and NDVI in the Lower Danube basin are presented.  372 

GRACE TWS shows signs of stress in 2007 very consistently over all seasons, in contrast with 373 

NDVI which indicated vegetation stress only after June.  GRACE-derived TWS also exhibits 374 

large inter-annual variability and larger dynamic ranges that can provide more information on 375 

drought severity.  These qualities, true in most areas (Rodell, 2011), are important both for 376 

drought monitoring and for early detection of drought onset and therefore make GRACE a useful 377 

complement to high-resolution NDVI-based measures of drought, especially in regions with low 378 

vegetation cover or where water is not a limiting factor for vegetation growth.  379 
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Figures 9 and 10 show the dryness ranks based on GRACE TWS data alone.  To 380 

demonstrate the potential value of integrating GRACE and other data with a land surface model 381 

for drought monitoring, Figure 11 plots the dryness ranks (among 2002 to 2009) of OL and DA 382 

estimated root zone soil moisture (upper panels), which is of particular interest for monitoring 383 

agricultural droughts, and TWS (lower panels), which is an indicator of water depletion in the 384 

deeper subsurface, for November 2007.  GRACE DA intensified the drought condition in 385 

Loire/Seine and Upper Danube relative to the open loop.  The updates in both the root zone soil 386 

moisture and TWS demonstrate that data assimilation makes it possible to apply GRACE for 387 

monitoring both agricultural and hydrological droughts, and to do so with much greater spatial 388 

resolutions than with GRACE alone.   389 

6. Summary and Discussions 390 

This study demonstrated the value of GRACE TWS for correcting errors in model 391 

estimated TWS and its influence on related land surface processes.  In particular, assimilation 392 

significantly improved runoff correlation in most basins, which attests to the overall robustness 393 

of the assimilation technique and the usefulness of GRACE TWS for runoff estimation.  The 394 

improved runoff correlation in small watersheds also shows the potential of GRACE TWS to 395 

contribute to simulation of finer scale hydrological processes through data assimilation based 396 

downscaling.  Assimilation of GRACE TWS did not improve the correlation of soil moisture 397 

with in situ measurements, perhaps due to the short in situ data record or insufficient spatial 398 

sampling.  Although groundwater was not validated directly due to lack of in situ measurements, 399 

the improvements in stream flow estimates suggest more realistic estimates of subsurface water 400 

storage which controls baseflow.   401 
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GRACE data assimilation had a significant impact on reducing trends of modeled TWS 402 

and runoff.  The original inconsistency between the GRACE and OL trends is caused by 403 

deficiencies in either the model’s physics, the forcing data or the GRACE data themselves.  The 404 

case presented here represents a relatively short period during which annual precipitation 405 

increased at a much higher rate in several basins than long term annual precipitation trends 406 

(Mishra and Cherkauer, 2010; Solomon et al., 2007).  The fact that GRACE TWS was able to 407 

change the trend in runoff suggests that GRACE TWS data, if independently validated, may 408 

assist in model and forcing evaluation and calibration, which is an important part of climate 409 

prediction (Mishra and Cherkauer, 2010), especially in regions with scarce observation data.  410 

However, only models able to simulate groundwater storage can take full advantage of GRACE, 411 

because assimilation of GRACE TWS requires an analogous model state.                   412 

Monitoring of droughts has suffered from lack of reliable information on the water stored 413 

below the uppermost soil layer. Since GRACE measures the water storage changes in the entire 414 

profile, it provides valuable information on drought development beyond what can be seen at the 415 

surface.  Its large dynamic range and inter-annual variability also provides better quantification 416 

of the severity of water depletion in the subsurface.  The continued monitoring of dry conditions 417 

throughout all seasons, which cannot be achieved using vegetation based indicators, may further 418 

assist in tracking prolonged droughts and/or providing early signs of drought development.     419 

While data assimilation of GRACE TWS helps to fill the need for regional to global scale 420 

information on deep moisture storage variability, it also presents some challenges.  Since drought 421 

indices are derived based on the long term climatology of a given variable (Mo, 2008) and the 422 

GRACE observation period is not long enough to generate its own climatology, GRACE based 423 

drought indices must be linked to a model simulation that begins well prior to data assimilation.  424 
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This requires that the estimates from GRACE assimilation have the same dynamic range as 425 

GRACE, so that the anomalies from the assimilation period are comparable to the climatology.  426 

To accomplish this, it may be necessary to modify parameters such as the bedrock depth, which 427 

controls the amount of water available from storage to be lost during a drought (Houborg et al., 428 

2011).  The changing trends in DA TWS, as found in this study, may also reduce the dynamic 429 

range and the magnitude of anomalies and thus present a new challenge.  Statistical techniques 430 

such as cumulative distribution function matching may also be used to ensure that the modeled 431 

and observed climatologies are consistent prior to generating drought indices (Houborg et al., 432 

2011).  Nevertheless, these challenges should not discourage the use of GRACE data 433 

assimilation for drought monitoring because the dryness information provided by GRACE TWS 434 

can lead to more objective and reliable drought indices (Rodell, 2011).                       435 

Water budget imbalance caused by GRACE data assimilation is an important issue for 436 

future research because existing flux biases may be exacerbated (assuming precipitation forcing 437 

data were accurately estimated).  In this example, we speculate, without the benefit of ET and 438 

runoff observations in Finland and Loire/Seine regions, that a low bias in modeled ET and runoff 439 

might have caused the TWS anomaly to be elevated, which, when corrected by GRACE data 440 

assimilation, further reduced ET and/or runoff.  This water budget imbalance might have been 441 

avoided, if observations of ET and runoff were available and assimilated simultaneously with 442 

GRACE TWS.  Given that ET and runoff observations are rarely assimilated into land surface 443 

models, a more likely solution would be to remove excess TWS during the assimilation process 444 

in conjunction with increasing simulated ET and/or runoff.  Exploring creative new data 445 

assimilation strategies such as this is recommended so that the benefits of GRACE DA can be 446 
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realized while avoiding detrimental effects on modeled water budgets (Li et al., 2011; Pan and 447 

Wood, 2006; Zaitchik and Rodell, 2009). 448 
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Figures 625 

Figure 1: Study area and major basin boundaries.  The blue cross and red triangle represent 626 

locations of GRDC stream flow and SMOSMANIA soil moisture sites, respectively.  Numbers 1 627 

to 9 represent the nine major basins given in Table 1.   628 

Figure 2: Time series of daily simulated TWS and monthly GRACE TWS in the nine major 629 

basins. 630 

Figure 3: Comparisons of annual GLDAS and GPCP precipitation in the nine basins. 631 

Figure 4: Slopes of trend for monthly TWS in the nine major basins.  Trends with a 0.1 632 

significance level are marked with bold symbols. 633 

Figure 5: Correlations of monthly simulated runoff with GRDC stream flow.  All improvements 634 

by DA exceed the 0.05 significance level.  Station ids are given in Table 2.   635 

Figure 6: Monthly time series of estimated runoff in comparison with GRDC gauge data. 636 

Figure 7: Slopes of trend for monthly runoff at GRDC stations. Trends with a 0.1 significance 637 

level are marked with bold symbols. 638 

Figure 8: Annual mass imbalance (simulated water budget minus precipitation) for OL and DA 639 

in the nine major basins.  640 

Figure 9: Averaged dryness ranks of NDVI and GRACE TWS for the summer growing season 641 

(April to September) during the 2003 to 2008 period and maximum GRACE TWS declines from 642 

spring to fall in each year. 643 

Figure 10: Seasonal cycles of GRACE TWS and NDVI in Lower Danube. 644 
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Figure 11: Dryness ranks of simulated root zone soil moisture and TWS for November 2007 in 645 

the 2002 to 2009 period. 646 
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 648 

 649 

Figure 1. Study area and major basin boundaries.  The blue cross and red triangle represent 650 

locations of GRDC stream flow and SMOSMANIA soil moisture sites, respectively.  Numbers 1 651 

to 9 represent the nine major basins given in Table 1.   652 
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 654 

Figure 2. Time series of daily simulated TWS and monthly GRACE TWS in the nine major 655 

basins. 656 

  657 
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 658 

Figure 3. Comparisons of annual GLDAS and GPCP precipitation in the nine basins.  659 
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 660 

Figure 4. Slopes of trend for monthly TWS time series in the nine major basins.  Trends with a 661 

0.1 significance level are marked with bold symbols. 662 
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 664 

Figure 5. Correlations of monthly simulated runoff with GRDC stream flow.  All improvements 665 

by DA exceed the 0.05 significance level.  Station ids are given in Table 2.   666 
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 668 

 Figure 6. Monthly time series of estimated runoff in comparison with GRDC gauge data. 669 
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 672 

 673 

Figure 7. Slopes of trend for monthly runoff at GRDC stations. Trends with a 0.1 significance 674 

level are marked with bold symbols. 675 
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 677 

 Figure 8. Annual mass imbalance (simulated water budget minus precipitation) for OL and DA 678 

in the nine major basins.  679 
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 680 

 681 

Figure 9. Averaged dryness ranks of NDVI and GRACE TWS for the summer growing season 682 

(April to September) during the 2003 to 2008 period and maximum GRACE TWS declines from 683 

spring to fall in each year. 684 

 685 

 686 
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 687 

 688 

Figure 10. Seasonal cycles of GRACE TWS and NDVI in Lower Danube. 689 
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 690 

Figure 11. Dryness ranks of simulated root zone soil moisture and TWS for November 2007. 691 
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Table1: Major basins and their drainage areas. 693 

Table 2: GRDC stations, drainage areas and record lengths. 694 

Table 3: Correlations of monthly averaged simulated soil moisture with observations at 695 

SMOSMANIA sites.  Except for the URG site, the OL and DA correlation values are not 696 

significantly different at the 0.10 significance level.  697 

  698 
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Table 1: Major basins and their drainage areas.    699 

  700 

basin ID basin name Area 
(km2) 

1 Finland 498000 
2 Vistula 547000 
3 Rhine/Elbe/Oder 797000 
4 Loire/Seine 393000 
5 Rhone/Po 319000 
6 Lower Danube 503000 
7 Upper Danube 490000 
8 Dnieper 721000 
9 Turkey 403000 

   701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 
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Table 2: GRDC stations, drainage areas and record lengths.  712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

Station ID GRDC 
number 

drainage area 
(km2) 

record length 
(months) 

 Rhine 
R1 6435060 160800 65 
R2 6335020 159300 77 
R3 6335050 147600 77 
R4 6335060 144200 77 
R5 6335070 139500 77 
R6 6335100 103500 77 
R7 6335150 98200 77 
R8 6335180 68800 77 
R9 6335170 53100 77 
R10 6335200 50200 77 
R11 6335400 34600 77 

 Elbe 
E1 6340110 131900 77 
E2 6340150 123500 77 

 Danube 
D1 6742900 807000 77 
D2 6742800 709100 84 
D3 6742500 658400 84 
D4 6742201 570900 77 
D5 6242501 101500 53 
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Table 3: Correlations of monthly simulated soil moisture with observations at SMOSMANIA 728 

sites.  Except for the URG site, the OL and DA correlation values are not significantly different 729 

at the 0.10 significance level. 730 

 731 

site record length 
(months) 

correlation 
OL DA 

CDM 31 0.75 0.67 
CRD 29 0.71 0.76 
LHS 26 0.62 0.51 
LZC 28 0.68 0.67 
MNT 29 0.90 0.90 
MTM 22 0.67 0.66 
NBN 28 0.44 0.36 
PRG 25 0.80 0.77 
SBR 31 0.83 0.83 
SFL 31 0.67 0.72 
SVN 28 0.65 0.56 
URG 31 0.81 0.75 

Average 31 0.84 0.84 
 732 

 733 

 734 

 735 

 736 
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