
1 
 

Aeroacoustic Study of a High-Fidelity Aircraft Model: 

Part 1- Steady Aerodynamic Measurements 

Mehdi R. Khorrami
1
, Judith A. Hannon

2
, Dan H. Neuhart

2
, and Gregory A. Markowski

3
 

NASA Langley Research Center, Hampton, Virginia, 23681 

and  

Thomas Van de Ven
4 
 

Gulfstream Aerospace Corporation, Savannah, Georgia 31402 

In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-

craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed 

aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap in-

teraction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted 

in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first 

entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic charac-

teristics of the fabricated model. Flap deflections of 39º, 20º, and 0º with the main landing gear on and off 

were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was 

tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces 

(lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary 

analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with 

Gulfstream’s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight 

data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction 

concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements ob-

tained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This 

permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with 

the tunnel in the open-jet mode. 

Nomenclature 

AOA, alpha = angle-of-attack 

b  = wing span 

CD  = drag coefficient 

CD0  = minimum drag coefficient 

CL  = lift coefficient 

CLmax  = maximum lift coefficient 

Cp  = pressure coefficient  

C  = local chord 

GAC  = Gulfstream Aerospace Corporation 

kPa  = kilo Pascals 

M  = Mach number 

Q  = wind tunnel dynamic pressure in psf  

Re  = Reynolds number 

psf  = Pounds per square foot 

X  = coordinate along chord 
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y  = coordinate along span 

 

I.  Introduction 

Steady improvement in the design of modern high-bypass ratio turbofan engines has transformed the airframe in-

to a major component of aircraft noise that is equal to, if not greater than, the engines during approach to landing. 

Acoustic measurements from flight tests
1-6 

and model-scale experiments
7, 8

 have identified the undercarriage system 

and the high-lift devices, such as slats and flaps, as prominent airframe noise sources.  The environmental noise im-

pact of the civil transport fleet during landing and take-off operations must be reduced to meet increasingly stringent 

community noise regulations.  The development and evaluation of viable airframe noise abatement technology re-

quires the availability of a high-fidelity, large-scale airframe model that would permit the assessment of candidate 

concepts under a relevant flight environment. The present paper discusses the steady aerodynamic testing of an 18% 

scale semi-span model of a Gulfstream aircraft. The model was produced specifically to conduct airframe noise 

studies and evaluate advanced noise reduction concepts for reducing landing gear, flap, and gear-flap interaction 

noise.  

The present work was performed as part of the NASA-Gulfstream partnership for airframe noise research. In this 

partnership, executed as a Space Act Agreement under NASA’s Environmentally Responsible Aviation (ERA) pro-

ject, a series of flight tests and model scale experiments are being performed systematically using a Gulfstream air-

craft as the baseline configuration. The joint effort began with an acoustic flight test in 2006 where the prominent 

airframe noise sources associated with the aircraft were identified and documented.
6 

The major noise sources are the 

flap side-edges, main landing gear, and nose landing gear. Gear-flap flow interaction was also identified as a likely 

source of noise. Given the relative structural isolation of the nose landing gear, a decision was made to investigate 

that source independently from the other sources; the aeroacoustic studies of a  nose landing gear have been docu-

mented in previous papers.
9, 10

 To facilitate detailed analyses of the remaining noise sources, a relatively large-scale 

semi-span replica of a Gulfstream aircraft has been designed and fabricated.  This high-fidelity model will be used to 

better understand the principles of airframe noise generation, improve and advance airframe noise prediction tools, 

and develop and evaluate efficient noise reduction concepts. Particularly, some of the most challenging and still un-

resolved issues on airframe noise generation, such as Reynolds number, geometric fidelity, and installation effects, 

will be addressed. To gain knowledge on these critical effects, the model-scale experiments are closely aligned with 

companion flight tests, where identical flow measurements (e.g, steady and unsteady surface pressure measurements 

on the aircraft wing, flap, and landing gear) will be taken using identical instrumentation at exactly the same loca-

tions as those on the model,.  

Aeroacoustic testing of the 18% model is to occur in a series of carefully planned entries in the NASA Langley 

Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14x22). The first entry, lasting twenty-three days, was 

completed November of 2010. The test was devoted to mapping the aerodynamic characteristics of the sub-scale 

model. During this entry, in addition to acquiring the global forces (lift and drag), steady and unsteady surface pres-

sure measurements were obtained. The early part of the second 14x22 tunnel entry will be dedicated to simultaneous 

acoustic and surface pressure measurements, while the latter part of the entry will be devoted to acquiring off-

surface flow measurements from the baseline model landing configuration.  

Given the volume of aerodynamic data already collected, and the need to provide a full description of the critical 

aspects of the semi-span model and the associated flow field, the present paper is devoted only to the steady meas-

urements. An account of the unsteady data is given in a companion paper by Khorrami and Neuhart.
11

   

II.  Model Description 

The model is an 18% scale semi-span, high-fidelity replica of a Gulfstream aircraft (see Fig. 1). It was designed, 

fabricated, instrumented, and integrated at NASA LaRC based on a set of geometry files provided by Gulfstream. 

The decision to use a semi-span configuration was based solely on the desire to maximize the model scale in order 

to conduct the test at a reasonable Reynolds number and to maintain high geometric fidelity.  During the pre-design 

period, Euler computations of the model at the highest flap setting indicated that the effect of the vertical and hori-

zontal tails on lift distribution was negligible. Based on these computations and consultations with Gulfstream engi-

neers, the horizontal and vertical tails were excluded from the model.  

A.  Determination of Model Scale 

The model scale was determined early in the design process in order to have an estimate for wind tunnel wall in-

terference effects. The classical wall correction code CMWALL
12

 was used for this analysis. The code was modified 
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to use the Maskell attached-wake blockage model instead of the apparent drag model, since the minimum drag, CD0, 

could be specified accurately. Four model scales of 16%, 18%, 20%, and 22% were considered. Although a 20% 

scale model size was deemed to be feasible, a more conservative approach pointed to the 18% scale as having a low-

er risk of encountering tunnel interference effects.   

            

a) Installed in NASA LaRC 14x22 tunnel          b) Exploded view of model 

Figure 1. 18% scale semi-span model of a Gulfstream aircraft. 

B.  Model Components 

The model geometry comprises a fuselage, wing, flap, flow-through nacelle, pylon, and main landing gear. The 

five segment fuselage is made of a light weight composite skin attached to an aluminum skeleton for structural sup-

port (Fig. 2a). From nose to tail, the model is 185.4 in (4.709 m) long. To minimize the influence of tunnel floor 

boundary layer on aerodynamic measurements, the fuselage profile at the symmetry plane was extended in a two-

dimensional fashion (Fig. 2b) by 3 in (7.62 cm), followed by 0.5 in (1.27 cm) long nylon brush seals to prevent flow 

seepage under the model.  

            

a) Aluminum ribs supporting composite skin         b) All five skin segments assembled 

Figure 2. 18% scale semi-span model fuselage. 
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The powerplant is represented by a flow-through nacelle and the supporting pylon. Both subcomponents are 

made from multiple segments of polycarbonate material (see Fig. 3) using a rapid prototyping process. The polycar-

bonate pylon was designed as a hollow piece containing an aluminum plate that is bolted on one side to the fuselage 

ribs and on the opposite side to the nacelle. The rough surfaces were hand worked to obtain a relatively smooth fin-

ish. No attempt was made to measure the surface 

finish on the nacelle or the pylon. 

The wing is made of multiple aluminum 

segments. The wing span (measured from the 

wind tunnel floor to the tip of the winglet) is 

104.5 in (2.654 m). To accommodate the large 

number of pressure orifices, a significant portion 

of the wing volume was designed to be hollow. 

A large door on the bottom of the wing provides 

easy access to the pressure tubes and other inter-

nal instrumentation hardware. An exploded view 

of the wing from the bottom side is shown in 

Fig. 4, displaying some of the intricate details of 

the various subcomponents. The wing profile 

required a tight tolerance of 0.005 in (0.127 mm) 

near the wing leading and trailing edges and 

0.010 in (0.254 mm) everywhere else. Post-

machining Quality Assurance (QA) of the wing 

showed that the desired accuracy had been 

attained. The specified wing surface finish 

was 64 micro inches RMS (root-mean-

square value) or better, which was main-

tained during the machining process.   

By far, the flap is the most intricate 

component of the 18% Gulfstream model. 

The flap is both swept and tapered. Meas-

ured along its trailing edge, it is 55.17 in 

(1.401 m) long with a maximum thickness 

of 1.36 in (3.45 cm), which occurs at the 

inboard edge. The dual requirements of 

high geometric fidelity and extensive in-

strumentation of the flap surfaces made its 

design an extremely challenging task. To 

accommodate the instrumentation, most of 

the flap volume had to be divided into a 

series of cavities with complex passages at 

the leading edge and tips. The thin-walled, clam shell structure of the flap necessitated making this component from 

high strength steel, dramatically increasing the fabrication time and cost. A tight tolerance of 0.005 in (0.127 mm) 

was specified for the entire flap contour. Post-fabrication QA of the flap revealed that the desired accuracy had been 

achieved. The specified flap surface finish was 64 micro inches RMS or better. An exploded top view of the flap, 

showing all the relevant subcomponents, is displayed in Fig. 5. For the Gulfstream aircraft flap, the brackets and the 

associated flap tracks reside on the top side.  Moreover, the flap tips (also referred as flap side-edges) have been 

designed in a modular fashion to allow evaluation of various tip treatments aimed at reducing flap noise. 

 

Figure 3. Flow-through engine nacelle and pylon bolted 

to aft fuselage skeleton. 

 

Figure 4. Exploded bottom view of wing. 
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Figure 5. Exploded top view of flap.  

Design and fabrication of the main landing gear was also a challenge. Again, the multitude of constraints associ-

ated with replicating some of the finest geometric details (e.g., brake system, hydraulic and electrical lines, etc.) and 

with managing the extensive instrumentation made the fabrication and integration of the main landing gear an ex-

pensive and time consuming task. Figure 6 presents an exploded view of the landing gear, showing some of the larg-

er subcomponents including the gear cavity and door. Most of the landing gear components were made using rapid 

prototyping processes—Fused Deposition Modeling (polycarbonate material) or Direct Metal Sintering (stainless 

steel powder). However, some of the larger and geometrically simpler components were fabricated using standard 

machining practices. No attempt was made to attain extremely smooth gear surfaces. Although slightly rough com-

ing out of the rapid prototyping process, most of the surfaces were accepted as they were. Nevertheless, care was 

exercised to ensure that those surface areas that were deemed to be excessively rough were manually smoothed. 

     

Figure 6. Exploded global and expanded views of main landing gear. 

After model integration, QA of the assembled model for locations of the steady and unsteady pressure ports 

(nearly 650 points) on the wing and flap was performed. Except for a small number (five or six), the “as built” pres-

sure port locations were all within the specified tight tolerances. 
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C.  Model Instrumentation 

To gain insight into the principles of airframe noise generation and to help validate/advance computational simu-

lation tools, extensive steady and unsteady, on-surface and off-surface flow, as well as acoustic measurements, must 

be acquired. Although the present paper is focused on steady measurements, other aspects of the instrumentation are 

provided here for completeness. The majority of model components were heavily instrumented with static surface 

pressure orifices to measure, in addition to global forces (lift, drag, etc.), some of the more complex flow features 

that create noise.  As prominent noise sources, the flap inboard and outboard tips and the various components of the 

main landing gear were populated with a significant number of miniature unsteady pressure sensors. In total, 758 

static pressure ports with 0.020in (0.5 mm) inner diameter, 69 dynamic pressure transducers, and 12 accelerometers 

were installed on the model. An account of the static port distribution on various components is provided below. A 

detailed description of unsteady sensor placement is given in the companion paper by Khorrami and Neuhart.
11

  

Of the total static ports, 345 were installed on the wing in eight full rows, two partial rows, and two full rows on 

the winglet. For the full rows, more than a third of the orifices were concentrated near the leading edge region to 

resolve the flow attachment locations and suction peaks. This was the best resolution that could be achieved given 

the small radius of curvature at the leading edge. Figure 7 displays a top view of the spanwise location and number-

ing of the wing pressure rows. Rows numbered 2 and 8 are partial rows with ports located at the wing edges adjacent 

to the flap tips. Note in Fig. 7a that the wing pressure rows extend over the darker color area that overlaps the 

stowed flap top surface. This darker region represents the wing spoiler, which was treated as part of the wing for 

instrumentation purposes.  

  

a) Wing                                                                         b) Winglet 

Figure 7. Spanwise location and identification number for rows of static pressure orifices. 

 The flap possesses 254 pressure ports unevenly distributed among eleven rows (see Fig. 8). To resolve the finer 

details of the surface pressure features at the flap inboard and outboard tips, a larger number of orifices were ac-

commodated in rows 1, 2, and 11.  To substantially reduce the number of pressure tubes that had to be routed from 

the flap to the wing, four 64-port Scanivalve pressure modules (ZOC22b model) were implanted inside the flap cavi-

ties. Also contained inside these cavities are the electrical wiring, inline amplifiers, and temperature compensators 

for some of the 41 dynamic pressure sensors and 2 accelerometers. Figure 9 is a partial bottom view of the flap cavi-

ties showing the instrumentation wiring and tubing. 
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Figure 8. Flap orifice row distribution and numbering.   Figure 9. Flap bottom view showing instrumentation. 

There were 105 static orifices installed on the main landing gear. The distribution of ports on the various sub-

components is as follows: 32 on each wheel, 23 combined on the two main struts, and 18 on the door. The ports on 

each wheel are arranged in one circumferential row placed in the middle of the tire and in two transverse rows at 

110º and 180º as shown in Fig. 10.  The wheels are designed to be rotated ±30º in 10º increments to increase the 

span of surface pressure measurements on the tires. In addition to the static ports, 29 unsteady pressure transducers 

were installed on the gear: 12 on the wheels, 7 on the two main struts, and the remaining 10 on the door. Also, 2 

accelerometers were housed inside the gear, one in each wheel, to measure vibration. As was the case for the flap, 

the need to accommodate this level of instrumentation on the main gear placed a severe challenge on routing the 

associated tubing and wiring. To eliminate the need to route the 64 static pressure tubes for the wheels through the 

rear strut, two 32-port Pressure Systems ESP (Electronically Scanned Pressure) modules (32HD model) were im-

planted inside the tires, one in each side.  

 

Figure 10. Static pressure orifices on the main landing gear.  
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There are 54 pressure ports on the fuselage, arranged in two circumferential rows (rows 1 and 2) and one nearly 

streamwise row (row 3) that is intended for capturing wing-body juncture effects (see Fig. 11). 

 

Figure 11. Static pressure orifices on the fuselage. 

To obtain accurate measurements of lift and drag, the semi-span model was designed to couple with the NASA 

LaRC VST-8 strain gauge balance (see Fig. 1b).  The normal force on the VST-8 has a capability of 5,000 pounds 

and an accuracy of 0.23% full scale.  Because of the way the model was mounted, the model axial force was actually 

measured by the side force of the balance.  The VST-8 side force has a capability of 1,500 pounds and an accuracy 

of 0.16% full scale.  

III. Results 

The first entry into the LaRC 14x22 tunnel was completed November 2010. This test was devoted entirely to the 

aerodynamic characteristics of the model. Configurations of 39º, 20º, and 0º flap deflections with the main landing 

gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the 

model was tested with the 14x22 tunnel in both the closed-wall and open-wall (jet) modes. Given the specific inter-

est in airframe noise during landing operations, the 39º flap setting was the initial and most heavily tested configura-

tion of the experiment. Therefore, results for this baseline setting at Mach 0.2 with the tunnel in the close-wall mode 

are the focus of the present paper.  

A.  Test Conditions 

Most of the data were taken for a nominal Mach number of 0.20. At this Mach number, the tunnel dynamic pres-

sure, Q, and the freestream speed are 58 psf (2.77 kPa) and 223 ft/sec (68 m/sec), respectively. The corresponding 

Reynolds number is 1.33 million per foot (4.40 million per meter) resulting in a value of 3.40 million based on the 

18% model mean aerodynamic chord of 30.8” (0.782 m). Based on a previous study
13

, the freestream turbulence 

level in the 14x22 tunnel (in the closed-wall configuration) typically ranges between 0.05% and 0.09%, and at this 

condition was measured at 0.07%. With the tunnel in the open wall (jet) configuration, the levels are substantially 

higher and approach 0.25%.
14

  

B.  Boundary Layer Trips 

Aerodynamic testing commenced without any transition strips applied to the model. This was done to determine 

whether aerodynamically, at 18% of scale, the model exhibits a low or high Reynolds number (Re) behavior. While 

variation of the lift coefficient (CL) versus angle-of-attack (alpha) displayed high Re behavior, closer scrutiny of the 

state of the wing leading edge boundary layer indicated that some improvement in the CL behavior near stall may be 

possible by tripping the wing boundary layer. This state was determined by employing Napthalene sublimation. The 

chemical, dissolved in a solvent and sprayed on the model surface, manifested as a thin, white coating. As the tunnel 

was brought up to the desired flow condition, the chemical coating under  turbulent flow exhibited higher heat trans-

fer rates  and skin friction, facilitating faster sublimation of the chemical. The resulting contrast between the areas of 

turbulent and laminar flow (i.e., dark and light areas, respectively) indicated the extent of laminar flow over the 

model. Based on a series of trials, the size and location of the boundary layer trips was determined so that fully-

turbulent, full-scale flow conditions over the wing surface could be simulated.  

The boundary layer on the bottom surface of the wing was tripped from the root to the tip at a streamwise loca-

tion corresponding to 9.5% of the local chord. The trip was comprised of a series of trip dots having a diameter of 

0.1 in (2.5 mm). The wing span was divided into three equal segments with trip dots having heights of 0.008 in 
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(0.203 mm), 0.007 in (0.178 mm), and 0.006 in (0.152 mm) applied to the inboard (adjacent to the wing root), mid-

dle, and outboard (wing tip) segments, respectively.  

For the top surface of the wing, starting from the root, the trip dots were applied only to the first 69 in (1.75 m) 

along the leading edge.  The dots were positioned at 2.5% of the local chord, slightly upstream of the location where 

peak suction occurs. Three equal segments of transition dots with heights of 0.006 in (0.152 mm), 0.005 in (0.127 

mm), and 0.0045 in (0.114 mm) were applied on the top surface. Tripping the outer 33% of the wing span proved to 

be detrimental to the lift and resulted in early stall. Therefore, a decision was made to forgo forced transition and 

allow the boundary layer to develop naturally for the outer portion of the wing span. 

C.  Flap 39º (Baseline) Configuration 

The measured lift (CL) and drag (CD) coefficients for the baseline configuration are plotted in Fig. 12. Included 

in the plots are data provided by Gulfstream Aerospace Corporation (GAC) from their 5.6% scale full-span model 

and full-scale (flight) tests. The lateral offset in the CL curves arises from comparing untrimmed model scale data to 

trimmed flight data. Also, included in this offset are the tunnel wall effects. Thus, the fact that the lift slopes corre-

sponding to the 18% model and full-scale data are nearly identical (in the linear regime) is a mere coincidence. This 

is one of those rare occasions where the tunnel wall plus the missing horizontal tail effects have caused the 18% 

model lift slope to mimic the free-air flight data. We will revisit this point shortly.  

In Figure 12a, notice that the lift curve for the 5.6% scale model deviates from a linear behavior at relatively low 

angles of attack, followed by a gradual loss of lift (stall) that persists over a large angle range. These two character-

istics are classical manifestations of low Re behavior. In contrast, the lift distribution for the 18% scale model cap-

tures nearly the full extent of the linear regime followed by the appearance of an abrupt stall condition that is typical 

of high Re behavior of wings in high-lift configurations. A plausible cause for the difference in CLmax between flight 

and the 18% scale model is Re effects, and to a lesser extent, aeroelastic effects 
 
(videogrammetry was used during 

the test to obtain an estimate of the maximum wing-tip deflection).  

   

a) Lift coefficient                                                    b) Drag coefficient 

Figure 12. Variation of lift and drag coefficients with angle-of-attack. 

The behavior of CD with increasing alpha for the two models and flight test is shown in Fig. 12b.  The full-scale 

values were obtained using the quadratic equation CD = k CL
2
 + CD0. The constants, k and CD0, were provided by 

Gulfstream Flight Sciences Engineering. Again, the 5.6% scale model displays typical low Re behavior—its CD is 

much higher than, and deviates early from, that of the full scale aircraft. The drag for the 18% scale semi-span mod-

el tracks closely the flight data variation, rising dramatically when stall is encountered. 

We now return to Fig. 12a and the issue of trimmed flight data versus untrimmed wind tunnel model measure-

ments. To demonstrate that the 18% model lift coefficient closely tracks the full-scale data required two separate 

corrective steps executed serially. The first step involved accounting for tunnel wall interference effects using clas-

sical wall corrections that take into account solid/wake blockage and general downwash.
15

 The resultant lift and 

pitching moment coefficients represent the untrimmed free-air values. In the second step, neglecting higher order 
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effects, the wall corrected pitching moment coefficient was used to determine the lift coefficient associated with the 

horizontal tail to maintain a zero pitching moment. The trimmed lift coefficient for the 18% model is plotted in Fig. 

13. Also included in the plot is the lift coefficient from the intermediate step when only the tunnel wall corrections 

are applied. The wall and trim corrected lift coefficients associated with the 18% model now closely track the full-

scale values and the two datasets show a remarkable agreement over the entire linear range.  

Sample plots of pressure variation over the wing 

and flap are shown in Fig. 14. Row 5 on the wing and 

Row 6 on the flap are at the spanwise location corre-

sponding to the flap mid-span. Notice that the suction 

peaks for both wing and flap are captured relatively 

well. For airframe noise, the pressure distributions ad-

jacent to the flap tips are of critical importance. Typi-

cally, most of the noise generated by the flaps occurs at 

the side edges. In most instances, the vortex roll-up 

process at the flap tips is quite complex, resulting in an 

intricate system of multiple vortices. To capture the 

surface imprints of the complex flow structures, static 

orifice rows were installed very close to the flap side 

edges. The pressure distributions at the flap inboard 

and outboard edges are plotted in Fig. 15. At both tips, 

peak suction occurs either at or aft of the mid-chord 

location. The broad suction peak is caused by the pres-

ence of a strong streamwise vortex. 

   

 

 

  

a) Row 5 on wing                                                     b)  Row 6 on flap 

Figure 14. Pressure distribution on wing and flap at a spanwise location corresponding to flap mid-span. 

 

 Figure 13. Corrected CL values for 18% model. 
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a) Inboard                                                              b) Outboard  

Figure 15. Pressure distribution on flap close to the side edges. 

As in any experiment, demonstrating data repeatability is quite important. This issue becomes even more critical 

when, as in the present case, the model undergoes numerous configuration changes during the test. Representative 

plots comparing the measured surface pressures (for the same landing configuration) from three distinct runs are 

shown in Figs. 16-17. In these plots, Run 45 corresponds to the pressure data already shown in Figs. 14-15. The re-

peat Run 53 was obtained a day later without any model configuration changes occurring between the two runs. Run 

108 was a repeat run performed towards the end of the test after the model had been subjected to significant number 

of changes (e.g., flap deflection angles, removal and reinstallation of the main gear, etc.).  
Close scrutiny of all the static pressure rows on the 

wing showed remarkable agreement between the three 

wind tunnel runs. As depicted in Fig. 16, the three 

datasets are virtually identical. Except for a few ports 

on various rows, similar good agreement between the 

three runs was also observed over the entire flap. The 

most noticeable differences occur on the bottom sur-

face of Row 11, which is the closest row to the flap 

outboard edge (Fig. 17b). Given the excellent data 

repeatability observed at all other flap rows (not 

shown), it is very difficult to speculate on the cause 

and location of the differences. It is possible that some 

subtle damage may have been sustained by the model 

during the numerous flap changes that were executed, 

considering the miniature and fragile nature of the 

pressure tubing at the outboard edge.   

  

 

    

 
Figure 16.  Sample wing pressure showing data re-

peatability. 
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a) Inboard edge                                                                  b) Outboard edge  

Figure 17. Sample pressure plots showing data repeatability at the two flap edges. 

D.  Main Gear Effects 

One particular component of airframe noise that has received little attention is gear-flap interaction noise. For 

many aircraft, the position of the main landing gear after deployment is almost coincident with the spanwise location 

of the flap inboard edge. The unsteady wake shed by the main gear interacts directly with the flap inboard edge, hav-

ing the potential to generate noise. To assess the effect of the gear on the aerodynamic behavior of the model, the 

main landing gear was removed and the cavity sealed. The variation of lift and drag with angle of attack for the 18% 

model with and without the main gear is shown in Fig. 18. As suspected, gear removal (retraction) has little effect on 

the global lift distribution. There are few noticeable differences between the lift curves for the two configurations up 

to model stall. As expected, there is a clear decrease in model drag at all angles when the gear is off—the bluff body 

components of landing gear are known to be high-drag producers.  

   

a) Lift coefficient                                                          b) Drag coefficient 

Figure 18. Aerodynamic effects of main landing gear retraction. 
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 Although the effects of gear on the integrated lift coefficient are small, the local effects are very important to 

airframe noise. To examine how the wake from the main gear affects the flap inboard edge flow field, Cp distribu-

tions for the first two rows at the flap inboard edge are plotted in Fig. 19. Notice that the gear has a profound effect 

on the inboard tip loading. Given the larger pressure difference when the gear wake is not present, vortex roll-up at 

the inboard edge should be much cleaner resulting in vortices that are noticeably stronger. Also observe that, unlike 

the gear-on configuration, a well defined attachment region develops near the flap leading edge. At the second row 

(Fig. 19b), which is 1.6 flap thicknesses away from the inboard edge, the increase in vortex suction is quite apparent. 

Although not shown, the effects of gear removal on the local pressure field diminish rather quickly as the sampling 

row moves inward from the edge.  

    

a) First row from the edge.                                      b) Second row from the edge. 

Figure 19. Effect of main gear removal on the pressure distribution at the inboard edge. 

E. Reynolds (Mach) Number Effects 

Reynolds number effects are of critical concern in sub-scale model testing. It is desirable to show that the flow 

fields in the vicinity of the source regions are well established at M = 0.20 and remain fairly unaffected with further 

increases in flow speed, i.e, Re effects are negligible. To assess the influence of Re on the aerodynamic characteris-

tics of the 18% scale model, most configurations of interest were tested at Mach numbers of 0.16 (Re = 2.75 mil-

lion), 0.20 (3.40 million), and 0.24 (4.01 million).  The lower and higher speeds were carefully selected to represent 

a 20% variation from the M = 0.20 (nominal speed) and to provide a Re range that is 50% greater than that at M = 

0.16 (note that even with this expanded range, the model Re falls significantly below the actual flight Re associated 

with the landing aircraft, which is on the order of 20 million). For the two lowest M, aerodynamic measurements 

were performed up to, and past, stall. For M = 0.24, the measurements were limited to moderate angles of attack due 

to the combination of  maximum allowable balance load and designed critical load of the model. 

Comparison of the aerodynamic data at the three measured flow speeds did not reveal any noticeable Re varia-

tions. The global forces (CL, CD, etc.) could be collapsed onto a single curve with only minor differences at the stall 

condition. Similar data collapse was also observed for local pressure distributions. Given the importance of the local 

flow field at the flap tip regions, the pressures from the two rows closest to the inboard and outboard edges for the 

highest flap deflection and gear-on condition are plotted in Fig. 20.   Notice that the pressure field at the two edges 

remains mostly unchanged with increasing speed, indicating a lack of Re dependence within the range tested.  Fig-

ure 20a also indirectly demonstrates that the gear wake remains unaffected with changes in speed, because the in-

board edge pressure distribution is similar for all speeds tested. The pressures measured at the flap interior rows (not 

shown) display a similar lack of speed dependency as that depicted in Fig. 20.  However, rows 5-9 on the flap show 

a slight increase in peak suction at higher speeds. This increment is due to thinning of the flap boundary layer that 

brings the accelerating flow through the gap closer to the flap surface.   
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a) Inboard edge                                                                  b) Outboard edge 

Figure 20. Effects of Mach number variation on pressure distribution at the flap side edges. 

F. Closed vs. Open Walls Tunnel Configuration 

The planned acoustic and off-surface (particle image velocimetry) flow measurements require the tunnel in an 

open-wall (open-jet) configuration.  In this mode, the reverberating effects of the tunnel walls on the acoustic field 

are eliminated and better optical access for the flow measurements is gained. Associated with the open-wall testing, 

however, is the possibility of introducing other factors that may negatively impact the aerodynamic characteristics of 

the model.  While the model scale was selected based on conservative estimates, there was no a priori guarantee that 

the efficiency of the 14x22 tunnel could be maintained with walls lifted.  Depending on the model size and how 

much lift it produces, the open jet may be deflected substantially and severely affect the performance of the model. 

In particular, for the present case where the high-lift aerodynamic performance through stall is desired, the impact of 

testing in open-wall tunnel configuration had to be carefully documented.  

Comparison of lift coefficients with the tunnel in the 

closed- and open-wall configurations is shown in Fig. 

21. The most important trend to highlight in this figure 

is that the character of the lift curve is preserved for 

angles up to, and beyond, the stall condition. As ex-

pected, the presence of the model and the lift it generat-

ed deflected the jet and reduced the effective angle of 

attack seen by the model in the open-wall configuration. 

It is well known that the corresponding lift coefficients 

for the free-air case would reside somewhere between 

the closed- and open-wall wind tunnel measurements. 

Included in Fig. 21 is the free-air CL values obtained 

from applying wall corrections to the closed-wall tunnel 

data. Notice that the corrected lift curve lies much closer 

to that for the open-wall tunnel. In fact, up to moderate 

values of alpha, there is little difference between the two 

curves. This behavior bodes well for the planned air-

frame noise and off-surface flow measurements to be 

conducted at low angles of attack (landing conditions) 

with the tunnel in open-wall mode. As indicated earlier, 

the lower lift levels experienced in the tunnel with walls 

open is directly related to jet deflection and reduction in the effective angle of attack seen by the wing. To demon-

strate this point, it is illustrative to examine the chordwise pressure distribution on the wing and flap. Representative 

pressure plots from select rows on the wing for the landing condition are displayed in Fig. 22. Notice that the closed-

 
Figure 21. Tunnel configuration effects on lift coef-

ficient. 
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wall pressures for alpha = 3º fall in between the corresponding open-wall pressures obtained at 3º and 4º. It is also 

observed that most of the change in the pressure coefficients occurs on the top surface near the wing leading edge, 

where small variations in alpha have the potential to produce measurable changes in the suction peak. Irrespective of 

which wing row is considered, downstream of the mid-chord region all three curves coalesce more or less into a 

single curve showing no visible differences.  

 

     

a) Wing row 3                                                     b) Wing row 6 

    

c)  Wing row 9         d) Wing row 11 

Figure 22. Tunnel configuration effects on wing pressure distribution. 

In contrast to the wing, the pressure field on the flap is expected to remain unaffected by the change in tunnel 

configuration. For angles of attack up to moderate values, the most critical parameter influencing the pressure field 

on the flap is its deflection angle relative to the wing. All other parameters are of secondary importance. This asser-

tion is clearly demonstrated in Fig. 23, where sample pressures for flap rows adjacent to the edges and the mid-span 

are shown. Notice the independence of the flap pressure distribution from changes in tunnel configuration or wing 

angle of attack.  The chordwise pressure distributions acquired with the tunnel walls closed and open are virtually 

indistinguishable. The same is true for the data obtained at two different angles of attack in the open-wall configura-
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tion. In fact, had we plotted the measured pressures at alpha = 2º, 5º, or even 6º, no discernible differences would 

have emerged with what is shown in Fig. 23. For airframe noise measurement, the invariance of the flap pressure 

field to tunnel configuration or angle of attack changes is advantageous. During future wind tunnel measurements, 

matching the angle of attack of a landing Gulfstream aircraft becomes less of a concern as long as the flap deflection 

angle is set properly. 

     

a) Flap inboard edge                                                        b) Flap outboard edge 

 

c)  Flap mid-span 

Figure 23. Tunnel configuration effects on flap pressure distribution. 

IV. Concluding Remarks 

Under an ongoing NASA-Gulfstream partnership, an 18% scale semi-span model of a Gulfstream aircraft was 

designed and fabricated to conduct airframe noise research and develop effective noise reduction technologies. A 

high level of geometric fidelity was maintained for the model to allow direct comparison with the previously ob-

tained full-scale acoustic data, and with results from upcoming flight tests. The model was instrumented with a sig-

nificant number of surface mounted static ports and dynamic sensors to capture the global, as well as local, character 

of the steady and unsteady pressure field.  
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The aeroacoustic testing of the 18% model is to be accomplished in two phases.   The initial phase, reported 

here, was conducted in the LaRC 14x22 tunnel to fully map the aerodynamic characteristics of the model.  Flap de-

flection angles of 39º, 20º, and 0º with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, 

and 0.24. Only results for the 39º flap deflection (landing condition) are presented in this paper. Additionally, for 

each configuration, the model was tested with the 14x22 tunnel both in the closed-wall and open-wall (jet) modes. 

The aerodynamic measurements acquired in this entry comprise the global forces (lift and drag) plus extensive 

steady and unsteady surface pressures. The latter are presented in a companion paper.     

Analysis of the measured forces indicates that the lift, drag, and stall characteristics of the 18% model compare 

well with the corresponding Gulfstream aircraft high Reynolds number flight data. The favorable comparison be-

tween the wind-tunnel and full-scale data will allow the semi-span model to be used as a test bed for develop-

ing/evaluating airframe noise reduction concepts under a relevant environment. Comparison of the surface pressures 

obtained at the three Mach numbers revealed no significant Reynolds number effects.  Considering that the model 

had gone through numerous configuration changes during the test, good data repeatability was displayed by the sur-

face pressures. The pressure field at the flap inboard edge showed significant flow interaction with the wake emanat-

ing from the main landing gear. It was revealed that removing the gear significantly affects local pressures by allow-

ing the formation of a stronger vortex at the edge, resulting in a broader and higher suction peak.     

 Comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configura-

tions showed that the model maintains its aerodynamic character over the entire angle-of-attack range, including the 

stall regime. This favorable comparison alleviates most of the concerns and trepidations associated with open-jet 

testing. As a result, the acoustic and off-surface flow measurements, planned for the second entry, will be conducted 

with the 14x22 tunnel in the open-wall mode. It is anticipated that the present aerodynamic data, together with the 

second phase off-surface velocity and far field acoustic measurements, augmented with full-scale data, will consti-

tute a comprehensive and unique dataset to validate and improve our prediction tools for airframe noise. 
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