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ABSTRACT 

Passive and active microwave rain sensors onboard earth-orbiting satellites 

estimate monthly rainfall from the instantaneous rain statistics collected during satellite 

overpasses. It is well known that climate-scale rain estimates from meteorological 

satellites incur sampling errors resulting from the process of discrete temporal sampling 

and statistical averaging. Sampling and retrieval errors ultimately become entangled in 

the estimation of the mean monthly rain rate. The sampling component of the error 

budget effectively introduces statistical noise into climate-scale rain estimates that 

obscure the error component associated with the instantaneous rain retrieval. Estimating 

the accuracy of the retrievals on monthly scales therefore necessitates a decomposition of 

the total error budget into sampling and retrieval error quantities. 

This paper presents results from a statistical evaluation of the sampling and 

retrieval errors for five different space-borne rain sensors on board nine orbiting 

satellites. Using an error decomposition methodology developed by one of the authors, 

sampling and retrieval errors were estimated at 0.25° resolution within 150 km of 

ground-based weather radars located at Kwajalein, Marshall Islands and Melbourne, 

Florida. Error and bias statistics were calculated according to the land, ocean and coast 

classifications of the surface terrain mask developed for the Goddard Profiling (GPROF) 

rain algorithm. Variations in the comparative error statistics are attributed to various 

factors related to differences in the swath geometry of each rain sensor, the orbital and 

instrument characteristics of the satellite and the regional climatology. The most 

significant result from this study found that each of the satellites incurred negative long-

term oceanic retrieval biases of 10 to 30%.  
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1. Introduction 

Meteorological satellites offer a practical, cost effective strategy of globally 

monitoring the circulation of water and energy in the atmosphere. Over the past twenty-

five years, technological advancements in microwave technology and algorithmic 

improvements in the rain retrievals have significantly reduced uncertainties in satellite-

observed rain rate retrievals. Recent studies have shown that the TRMM microwave 

imager (TMI) and the Advanced Microwave Scanning Radiometer (AMSR-E) can now 

replicate the rain rate distributions inferred from gauge-calibrated ground radars with 

impressive accuracy (Liu and Hou 2008, Wolff and Fisher 2009). However, significant 

uncertainties still exist due to the presence of sampling and retrieval errors in the monthly 

rainfall estimates (Wilheit, 1988, Laughlin 1981, McConnell and North 1987, Shin and 

North 1988, North 1988, Oki 1994, Steiner 1996, Bell and Kundu 2000, Fisher 2004, 

2007).  

It is in the monthly rain statistics that sampling and retrieval errors become 

entangled. An orbiting satellite, for example, only spends a few moments per day 

retrieving rainfall information over a fixed grid box on the earth’s surface, which over a 

month produces a temporally discrete time series of instantaneous snapshots separated by 

large time intervals. On average the satellite collects samples at a rate of between one to 

three samples per day over any 0.25° x 0.25° region in the sampling domain of the 

satellite. Monthly rain amounts must therefore be estimated from the unconditional mean 

rain rate as determined from a time series where most of the data is effectively missing.  

Sampling errors represent the mean uncertainty in the estimate due to the 

existence of large time gaps in the time series, defined as the difference between the 
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observed mean rain rate and the rain rate that would be estimated if the satellite measured 

the rainfall continuously. Retrieval errors, in contrast, can be defined as the difference 

between the retrieved and the actual rain rates when the satellite is overhead. Retrieval 

errors are largely attributed to the uncertainty in the radiometric measurement and the 

inversion process that produces retrieval of rain rates from the calibrated radiance 

measurement. Retrieval errors can also vary depending on a particular scene or rain 

climatology.  

In this study we will statistically quantify and assess the sampling and retrieval 

errors estimated at 0.25°- grid spacing for eight different satellites equipped with 

precipitation sensor. Table 1 furnishes a listing of the satellites in this study, along with 

the orbital and instrument characteristics of the rain sensors on board. The study analyzed 

data from four types of passive microwave rain sensors, including the TRMM Microwave 

Imager (TMI), the United States Defense Department’s Special Sensor Microwave 

Imager (SSM/I), the National Oceanic Atmospheric Administration’s Advanced 

Microwave Scanning Radiometer (AMSR-E), and the Advanced Microwave Sounding 

Unite (AMSU), as well as a space-borne precipitation radar (PR) that complements the 

TMI on board the TRMM satellite. In this analysis we also analyzed the retrieval errors 

the TRMM Combined (COM 2B31) rain product, which integrates rain information from 

the TRMM microwave imager (TMI 2A12) and the PR to produce hybrid rain retrievals.  

The sampling design of the Tropical Rainfall Measuring Mission (TRMM) 

satellite is especially noteworthy, for unlike the other satellites in Table 1, it flies in a 

sun-asynchronous orbit and is thus able to sample thediurnal cycle over about a 46-day 

mean period. The sampling frequency and the aperiodic variance in the sampling 
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frequency are both a function of latitude. TRMM collects more samples at higher 

latitudes near the satellite turning point. However, the sampling frequency is more highly 

variable because of the close conjunction of ascending and descending orbits near the 

satellite turning point. The satellite precession subsequently produces secondary sampling 

periods, some which are very short and some, which are very long (Negri et al., 2002). 

The other passive microwave (PMW) rain sensors fly in sun-synchronous, polar orbits 

and collect two samples per day at a near-constant sampling frequency for a given grid 

box. TRMM’s sampling design was intended to provide more representative rain 

statistics of the diurnal cycle. 

We estimated long-term sampling and retrieval errors and biases using the 

statistical decomposition methodology developed by Fisher (2004, 2007). This error 

model was applied to six years (2003-2008) of satellite data over two TRMM Ground 

Validation (GV) sites: Kwajalein (KWAJ) in the Central Pacific and Melbourne, Florida 

(MELB). The method decomposes the errors using monthly and instantaneous radar-

inferred rain estimates averaged at the satellite resolution of 0.25° and sub-sampled 

during satellite overpasses of the GV site. KWAJ and MELB provide two contrasting 

climate regimes for evaluating error characteristics associated with each sensor. KWAJ is 

strategically located in the Inter-Tropical Convergence Zone and represents a pure open 

ocean site.  The rainfall climatology of MELB is strongly influence by land-sea 

interaction and from the standpoint of satellite sampling is located at a higher latitude. 

This study is presented in seven sections. Section 2 provides a review of the 

published literature and further background on the nature of the sampling and retrieval of 

rainfall by satellites. Section 3 gives a description of the data used in the study. Section 4 



6 

explains the methodology. Section 5 considers diurnal and seasonal patterns of surface 

rainfall as observed by each of the satellites and its effects on sampling and retrievals. 

Section 6 statistically evaluates the sampling and retrieval errors from each sensor class 

at 0.25 and 0.50 scales. Section 7 will provide a summary and discussion of the results. 

 

2. Background 

To understand how sampling and retrieval errors become entangled in the 

monthly estimate, consider a single instantaneous overpass of an arbitrary grid box of 

area A in the sampling domain of the satellite and assume that the swath of the rain 

sensor samples the entire grid box (i.e., complete coverage).  We can now define the 

instantaneous retrieval error εret at time t during a single satellite overpass of A as the 

difference between the observed rain rate s0(xA, t) and the true rain mean areal rate 

rT(xA,t):    

€ 

εret = s0(xA ,t) − rT (xA ,t)    (1)  

where xA denotes the area defined by A. The instantaneous retrieval error defined in (1) 

represents the mean retrieval error averaged over the entire area of the grid box and 

characterizes the error associated with a single measurement of instantaneous surface 

rainfall.  

  Now consider the satellite’s estimation of monthly rainfall. An orbiting satellite 

cannot continuously sample the grid box (as defined by A) continuously, and instead 

typically collects about 1 to 3 instantaneous snapshots per day. For an arbitrarily selected 

grid box, the mean monthly rainfall is estimated from the total number of observations in 

one month. The total error ξerr for any given month is then defined as the difference 
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between the observed monthly rainfall for the satellite S0 and the true mean monthly 

rainfall RT,   

    

€ 

ξtot = S0 − RT ,      (2) 

where S0 and RT are defined as: 

    

€ 

S0 =
1
N

ω i
i=1

N

∑ s0(xA ,ti)      (3a) 

€ 

RT =
1
T

dt
0

T

∫ rT (xA ,t)A∫ dA     (3b) 

The parameter ω i in (3a) represents a weighting factor that accounts for the partial 

coverage of the gridbox and N represents the total number of satellite overpasses of A for 

a single month. In (3b), T denotes the time granule, which in this study is equal to a 

single month (Bell et al. 2001, Fisher 2007).  

In addition to the retrieval error, some of the difference between the true and 

observed monthly rainfall results from the non-continuous sampling of the gridbox. If 

there was no retrieval error, the sampling error would be defined as the difference 

between the expressions in (3a) and (3b). The sampling and retrieval of monthly rainfall 

are illustrated in Figs. 1a and 1b. The rectangular region shown on the left side of Fig 1a 

presents a conceptual representation of A as a continuous function of time, while the right 

side of 1a illustrates the temporally discreet sampling of the region at Δt intervals. Note 

that at higher latitudes Δt has several recurring modes and so the picture shown is 

oversimplified relative to the actual sampling. Fig. 1b illustrates the instantaneous 

retrieval process of the TRMM satellite. Differences in the swath area of the sensor and 

the size of the TMI and PR sampling error characteristics are entirely attributed to 

differences in the swath area. The TMI, moreover, samples at five different frequencies 
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resulting in five different footprint sizes, which further complicates an accurate 

assessment of the footprint size. 

We can subsequently define the sampling and retrieval errors over A by 

considering a hypothetical scenario consisting of two satellites, one geosynchronous and 

the other orbiting. The geosynchronous satellite samples A continuously and estimates 

monthly rainfall

€ 

ˆ S 0 , while the orbiting satellite samples A intermittently. Based on this 

measurement scheme, the sampling and retrieval errors for a single month can be 

estimated with respect to S0, 

€ 

ˆ S 0  and RT as: 

€ 

ξsam = S0 − ˆ S 0,      (4a) 

€ 

ξret = ˆ S 0 − RT ,      (4b) 

From (4) it can be easily verified that the total error in (2) is simply the sum of ξret and 

ξ sam. In general, both sampling and retrieval errors contribute appreciably to the total 

error budget for the month. For a large sample estimates collected over several years, the 

mean error in the satellite is statistically estimated as:  

€ 

var(S0 − RT ) = var(ξsam + ξ ret ) =σ sam +σ re + 2cov(ξ sam,ξ ret ) .   (5) 

In (5), σret represents the expectation value for the retrieval error incurred while the 

satellite is overhead, whereas σ sam represents the expectation value in the sampling error 

associated with the missing rain information between observations (Laughlin 1981, North 

1988). Here it is assumed that the observations are independent and that the measurement 

error does not depend on when the measurement was made (Laughlin 1981 and Bell and 

Kundu 2000). Since it is assumed that S0 and RT are uncorrelated, the covariance term in 

(5) becomes negligible compared to the other two terms. In the next section we will 

define σ sam and σret in terms of satellite and ground based rain parameters. 
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3. Error Separation Methodology 

Even if it can be assumed that RT is known, there is still not enough information 

to quantify σ sam and σret, because both sources of error become entangled in the total 

error, defined in terms of the argument defined in (5) as var(S0 –RT). These errors cannot 

be independently quantified based on simple comparisons between space and ground 

measurements matched in time and space.  The statistical decomposition methodology 

developed by Fisher (2004, 2007) decouples sampling and retrieval errors estimated on 

regional scales by generating two monthly rain estimates from a continuous time series of 

high-resolution ground-based rain measurements. R0 is the rain rate determined from a 

continuous integration of the time series in a single month, while RS represents the mean 

monthly rain rate computed by sampling the ground data during times when the satellite 

is overhead.  The size of the grid box used was determined based on the minimum of the 

satellite product resolution (0.25° x 0.25°).  

This methodology assumes that the temporal sampling errors for S0 and RS are 

equivalent, since both estimates are matched in time and space. The sub-sampled GV 

estimate effectively introduces an additional degree of freedom used to establish a direct 

statistical connection between the dual processes of sampling and retrievals. 

In performing this type of analysis, the continuous and sub-sampled GV rainfall 

estimates R0 and RS must first be spatially averaged to the larger grid resolution of the 

satellite estimates. Mean monthly rain rates are then generated for each month at a spatial 

scale optimized for the satellite retrievals. Using R0 and RS as validation, we define he 

sampling and retrieval errors for a single month (ξ sam and ξret in terms of the three 

observables R0, RS and S0        
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€ 

ξsam = RS − R0      (6a) 

€ 

ξret = S0 − RS       (6b) 

Note that the statistically derived parameter RS appears in both of the above equations 

and is effectively linked to both sampling and retrievals.  

 Assuming that sampling and retrieval errors are uncorrelated (Bell and Kundu 

2000 and Fisher 2007), the random errors in the satellite estimate can be approximated as  

€ 

var(S0 − R0) ≈ var(ξsam ) + var(ξ ret ) =σ sam
2 +σ ret

2      (7) 

In this study, R0 is treated as a best estimate of RT. Fisher (2007) previously showed that 

if RT replaces R0, an additional variance term σR0 should be added the right hand side of 

(7) to account for the errors in the ground data (Fisher 2004, 2007).   

The annual and overall sampling and retrieval errors can now be analytically 

computed year-to-year from the empirical rain parameters, R0, RS and S0 using (6) and 

(7) as shown below 

€ 

σ sam = var(ξ sam ) = σRS
2 +σR0

2 − 2cov(RS ,R0)    (8) 

€ 

σ ret = var(ξ ret ) = σ
S0

2 +σRS
2 − 2cov(S0,RS )     (9) 

In this study, the variances on the right hand side of (8) and (9) were computed relative to 

the multi-year monthly means determined for each rain parameter from the six-year data 

period.  Previous applications of statistical error decomposition computed errors relative 

to the annual mean. This modification of the error model reduces the variability around 

the mean due to seasonal variations in the annual cycle. Here we have not explicitly 

accounted for errors in the GV data. If R0 is replaced by RT in (7), the definitions of σ sam 

and σret will not be directly affected because these depend on var(S0-R0).  Instead we 
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need to add an additional term σGV to account for the variance in R0 relative to RT 

(Fisher 2007). 

 An estimation of the sampling and retrieval biases for each sensor provides 

additional information for evaluating the structure of the error fields and assessing 

whether the combination of sampling and retrieval biases resulted in an over or 

underestimation of the long-term rainfall.  

Previous applications of this methodology estimated sampling and retrieval biases 

relative to the corresponding GV references R0 and RS as 

   rsb = (RSi
i=1

N

∑ − R0 i ) R0 i
i=1

N

∑      (10) 

   rrb = (S0 i − RSi )
i=1

N

∑ RSi
i=1

N

∑ .    (11) 

This bias estimator normalizes the total bias relative to the validation parameter, either R0 

(sampling) or RS (retrievals). The summations in the numerator and denominator are 

computed independently to ensure the stability of RS, which in some instances can 

approximate zero.  

 In this study we will also compute a mean sampling and retrieval bias, defined as 

   msb =
1
N

RSi − R0 i( )
i=1

N

∑      (12) 

   mrb =
1
N

S0 i − RSi( )
i=1

N

∑ .     (13)  

The factor N in (11) and (12) corresponds to the total number of 0.25° grid boxes. 

Sampling and retrieval biases are subsequently estimated using the same factor and is 

conveniently expressed in units of rain intensity (mm day-1 month-1), which can be more 
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directly compared to σ sam and σret. Since N also depends on the number of grid boxes in 

the GV domain for a given data period, the mean bias is not relative to the observations 

of a particular sensor.  

 

4. Data Description 

a. General Overview 

Satellite and GV monthly rain estimates for S0, RS and R0 were spatially matched 

at 0.25° for all grid boxes with 150 km from the ground radars located at KWAJ and 

MELB. The top two panels of Fig. 2 display a regional map for each GV site, with 

concentric range rings shown at 50-kilometer intervals out to 200 km. The lower two 

panels of Fig. 2 display the land, ocean and coast surface terrain mask for the Goddard 

Profiling (GPROF) Algorithm (Kummerow et al. 2001) in the estimation of rain rates for 

the TMI, AMSR-E and the SSM/I. This classification was used to stratify the data so that 

each classification could be separately analyzed.  

 

b. GV Rain products 

  The rain parameters R0 and RS, as described in the previous section, were 

computed from the operational TRMM 3A54 and 2A53 GV rain products obtained for 

KWAJ and MELB. The 3A54 provides a 2x2 km monthly rain map for computing R0 and 

the 2A53 provides at 2x2 km instantaneous rain rates, which are used for computing RS. 

These rain products are generated by the TRMM Satellite Validation Office and archived 

and distributed through NASA’s Goddard Earth Sciences Data and Information Services 

Center (GES-DISC). The 3A54 products are derived from the 2A53 by piecewise 
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integration of the instantaneous rain maps over a one-month period. Contiguous rain 

maps, however, are only forward integrated up to fifteen minutes. Missing data 

introduces a potential source of GV uncertainty that is not directly accounted for in this 

analysis (Wolff et al 2005).  

Table 2 shows the number of days per year when the radar was down for more 

than 4 hours in a day and the mean number of days per month that radar was down. Radar 

downtime affects the determination of both R0 and RS. Radar downtime only affects the 

estimate of R0 when it is raining. RS, on the other hand, is only affected when the satellite 

is overhead through the number of samples collected in a given month. Since RS is based 

on the unconditional rain rate, the mean will be affected whether it is raining or not. 

Moreover, because RS and S0 are determined from matching statistics, S0 is also affected 

by radar downtime, which reduces the number of observations relative to the total 

number of overpasses in a month (i.e., there is no matching when the radar is down). 

Consequently, the number of observations used to compute RS and S0 can never exceed 

the number of overpasses, but can be systematically lower, which will tend to increase 

the estimated variances. 

Another potential source of error in our analysis relates to not accounting for 

partial coverage of the grid box by the satellite. In this study, we assumed full coverage, 

which is not always true, but is a reasonable assumption so long as the satellite 

observation covers a significant fraction of the grid box. However, the GV radar provides 

complete coverage for all grid boxes inside of the radar domain. Consequently, the value 

computed for RS and R0 are always based on 100% coverage of the grid box.  Not 
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accounting for partial coverage in the estimate of S0, can lead to some mixing of 

sampling and retrieval errors.  

 The radar rain rates were estimated out to 150 km using the lowest available 

Constant Altitude Plan Position Indicator (CAPPI). A CAPPI represents a cross section 

through the radar volume scan containing multiple tilts (relative to the polar angle). It 

should be noted that the lowest level CAPPI changes abruptly from 1.5 to 3 kilometers at 

a distance of 100 km from the radar. MELB has gauges located at all distances within the 

radar’s sampling domain and can account for this jump by relying on the gauge 

information. KWAJ, however, only has gauges out to about 100 km and so confidence 

levels in the GV rain estimates at KWAJ are considerably lower beyond 100 km.  

 c. Satellite rain products 

Instantaneous rain rates were obtained for AMSR-E, SSM/I, AMSU-B and the 

TRMM from orbital track data processed at 0.25° grid-resolution inside of a grid-space 

that extended out to 150 km. The analysis consists of a 156 grid boxes. The TMI, AMSR-

E and SSM/I were each processed using version 6 of the GPROF rain algorithm 

(Kummerow et al. 2001, Olson et al. 2006). GPROF applies a Bayesian inversion 

methodology that relates brightness temperature to rain rate by matching observed 

brightness temperatures to a database of simulated rain profiles constructed from a state 

of the art cloud-resolving model. AMSU applies the AMSU-B rain rate algorithm 

developed at NOAA, which infers rain rates from the scattering information in the 89 and 

150 GHz channels (Spencer 1989, Weng et al. 2003; Qiu et al. 2005).  

The instantaneous rain products were next matched to the ground-based radar 

estimates during satellite overpass times at 0.25°. The PR rain rates were inferred based 
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on a determination of an effective reflectivity factor that involves a two-way correction 

for attenuation through the intervening precipitation observed downward from above the 

cloud. The attenuation correction represents a significant potential source of error. 

Another potential source of error involves algorithmic assumptions relating to the drop 

size distribution. The COM algorithm was developed by Haddad et al (1996) and utilizes 

the rain information from both the PR and the TMI in the determination of combined rain 

rate constrained to the sampling region of the PR. 

5. Sampling, Retrievals and Climatology 

 a. KWAJ and MELB: general rain climatology  

Climate-scale rain rate observations from orbiting satellites are limited in their 

ability to accurately resolve quasi-permanent climatic features, such as the diurnal cycle, 

due to discrete, non-continuous sampling, under-sampling and over-sampling. The 

systematic coupling of satellite sampling to the regional climatology can introduce 

additional error variance and bias into the monthly rain estimates (Shin et al. 1990, Bell 

and Reid 1996, Salby and Callaghan 1997).  In this section the effects of climatology on 

the sampling and retrieval error statistics will be assessed with respect to the diurnal and 

annual cycle.  

b. Diurnal cycle 

The rain statistics collected during the month are also sensitive to the mean 

sampling frequency, the relative sampling intervals between overpasses and the 

autocorrelation time (Shin and North 1988 and Bell and Kundu 2000). Non-

representative sampling of the diurnal cycle can produce systematic errors in the 

estimation of monthly rainfall, especially for the polar orbiting satellites (Shin et al. 1990, 
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Bell and Reid 1996, Salby and Callaghan 1997 and McCollum et al. 2002). A single polar 

orbiting satellite, for example, only collects two observations per day at the same two 

nominal times and consequently cannot directly observe, even in a statistical sense, the 

phase and amplitude associated with the mean diurnal cycle. The TRMM satellite, on the 

other hand, precesses through the diurnal cycle over a characteristic sampling period of 

about 46 days, which exceeds the time scale over which the observations are integrated 

(i.e., one month).  

A diurnal climatology is displayed in Fig. 3 for KWAJ and MELB using the six 

years of radar data from the study period. Fig. 3 plots the conditional rain rate as a 

function of the hour. The conditional mean rain rate provides an indicator of the expected 

observed rain rate when it is raining and is especially relevant for sun-synchronous 

satellite orbits.  The nominal overpass times for each of the polar orbiting satellites (day 

and night) are denoted in each panel by symbols superimposed onto this climatology. The 

phase and amplitude of the diurnal cycles for KWAJ and MELB differ significantly and 

help to illustrate important differences between the two climate regimes. KWAJ exhibits 

a low-amplitude diurnal signal, with a small nocturnal maximum characteristic of tropical 

oceanic rainfall (Wolff and Fisher 2009). The mean hourly rain rate subsequently varies 

within a narrow range of values. MELB, on the other hand, exhibits a high-amplitude 

convective phase during the early and late afternoon hours. The difference between the 

maximum and minimum mean hourly rain rates differ by about 2.0 mm/hr. The polar 

orbiting satellites obviously are not capable of resolving the diurnal climatology, but non-

representative sampling of the diurnal cycle is expected to produce larger sampling errors 

in the monthly estimates.  
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Although the satellite orbits tend to be relatively stable, there does exist some 

long-term drift in the overpass times over the lifetime of each satellite. Figure 4 displays 

a long-term plot of the equator crossing times for each satellite and shows that the orbital 

drift varies from satellite to satellite. This drift amounted to about three hours for the 

three most extreme cases (F14, F15 and N16) over the six-year observation period. 

Figure 5 displays the diurnal cycle for KWAJ and MELB as observed by the 

TRMM satellite and the ground sensors (both continuous and non-continuous sampling). 

The MELB diurnal cycle was further stratified into ocean, land and coast regimes. The R0 

rain profile displayed in each plot provides the best estimate of the true diurnal 

climatology (as inferred from six years of rain statistics) and is used to assess differences 

in the TMI, PR, COM and the sub-sampled estimates RTMI and RPR due to temporal 

sampling errors.  

RTMI and RPR show very good agreement with the TMI and the PR. They capture 

both phase and amplitude associated with the observed fine structure. The observed 

variability in RTMI and RPR relative to R0 is entirely attributed to sampling effects. In the 

two ocean cases S0 (i.e., TMI, PR and COM), RTMI and RPR exhibit considerable random 

variability around the R0 profile. R0, in contrast, varies smoothly in all four panels of Fig. 

5. The pdf of these two oceanic climatologies differ mainly in that a low amplitude 

maximum occurs in the early morning for KWAJ and the early evening for MELB. 

For KWAJ, there exists a low amplitude nocturnal maximum between 4 and 5 am 

and relative minimum in the late afternoon. MELB, on the other hand, exhibits a small 

maximum in the early evening around 16 LST. This maximum is coupled with the 

decaying phase of sea-breeze circulation. By averaging over three hour time-steps, the 
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random variability relative to R0 can be further reduced (Negri et al.). It is clear in the 

MELB Ocean case, however, that additional averaging will not resolve the late afternoon 

maximum evident in the R0 climatology, even with additional averaging. Because the 

MELB profiles are stratified into three distinct cases, there are fewer samples available 

for each case, which likely accounts for some of additional variability observed in the 

ocean case. Similarly, the PR and RPR show significantly more variability relative to the 

TMI and RTMI due to the substantial differences in the PR and TMI swath, which results 

in fewer samples for the PR.  

c. Annual cycle 

Whereas sampling errors are modulated by the phase and amplitude of the diurnal 

cycle, retrieval errors tend to be more sensitive to variations in the annual cycle due to the 

affects of seasonal changes in the microphysical properties of rainfall. McCollum et al. 

(2002) observed that microwave rain estimates over the United States tended to 

overestimate summertime rainfall, while underestimating wintertime rainfall. Fisher 

(2004, 2007) observed the same tendency for Oklahoma and Central Florida. Similarly, 

any seasonal changes that affect drop size distributions will have an affect on the PR’s 

measured reflectivity. 

Figures 6 and 7 display the annual cycle for KWAJ and MELB for the rain 

sensors listed in Table 1 using data from the six-year study period. Satellite and GV 

annual climatologies were determined from monthly rain estimates for S0, RS and R0. R0, 

which is independent of the satellite overpass time, provides an absolute baseline for 

comparing S0 and RS. For MELB, land, ocean and coast climatologies were estimated 

independently using GROF land, ocean and coast classifications.  
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KWAJ annual satellite and GV climatologies are shown in Fig. 6. KWAJ receives 

the bulk of its annual rainfall during the rainy season from about May to November. S0 

and RS for each satellite are closely correlated. .  For most of the sensors in Fig. 6, RS 

tends to exceed S0, especially during the rainy season. This trend suggests the existence 

of a negative retrieval bias relative to the GV radar-inferred estimates. We can see this 

pattern clearly for the case of the three TRMM rain products shown along the top row of 

Fig. 6, where there appears to be a substantial retrieval bias during the peak months of the 

rainy season. The long term mean monthly statistics for R0 and RS are also reasonably 

well correlated, though there are differences that tend to appear during the peak of the 

rainy season.  

The long-term averages for MELB shown in Fig. 7 reflect differences between the 

ocean, land and coast cases. MELB-Land and MELB-Coast receive the bulk of the 

annual rainfall between June and September, whereas MELB-Ocean exhibits an absolute 

maximum in September during the climatological peak in tropical cyclone and easterly 

wave activity. A secondary oceanic maximum in June is also observed. Differences 

between land, coast and ocean are most distinct for AMSR shown in Fig. 7g (these 

differences also appear in N17, which is not shown). Comparing the MELB R0-Land and 

R0-Coast profiles in Fig. 7i to S0, all of the satellite sensors tend to overestimate the peak 

rainfall during June, July and August. It is also interesting to note the differences between 

the PR and the TMI, for both sensors sample rainfall from the same orbiting platform. 

The PR tracks closely with RS for all three cases, but for the TMI, there appear to be 

significant retrieval errors over land during the peak rainfall months. 
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6. Results and Discussion 

 a. Error Correlation Structure 

Scatter diagrams of the satellite estimates of monthly rainfall are used to 

characterize the sampling (RS vs. R0) and retrieval (S0 vs. RS) errors and to evaluate the 

correlation structure between the estimated and validation parameters. The relevant 

validation parameters in each case are taken to represent the independent variable: R0 for 

the sampling case and RS for the retrieval case. The analysis and discussion that follows 

will ascribe meaning to the correlation coefficients and slope parameters determined from 

linear regressions of the random variables associated with sampling and retrievals.  

1) Sampling  

Scatter diagrams of RS versus R0 are presented in Figs. 8 and 9 for KWAJ and 

MELB for each of the rain sensors. Monthly estimates for MELB were further subdivided 

into sub-categories corresponding to the GPROF land, ocean and coast surface terrain 

classifications. Correlation coefficients and slope parameters were calculated for each 

distribution. These are displayed in Table 4. Sampling errors were estimated by 

evaluating statistical differences between sub-sampled and continuously sampled GV 

radar data as described in Section 3.  

Table 3 evaluates the sampling frequency for each sensor relative to the average 

number of overpasses per month for a randomly selected 0.25° grid box inside of 100 km 

from the GV radar. The Table shows that the TMI and PR collect significantly more 

samples at MELB than at KWAJ (nearly a factor of 2 difference in number) due to 

TRMM’s lower angle of inclination and its sun-asynchronous orbit. Shin and North 

(1987) conducted simulations of the TRMM orbit prior to launch and found that TRMM 
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sampling errors were reduced at higher latitudes due to increased sampling. Their 

findings are consistent the results of this study.  

It is also observed that the polar orbiters collected a few more samples on average 

over MELB than KWAJ, but this apparent difference is due to reductions in the area of 

the 0.25° grid box, which varies with latitude due to converging lines of longitude at the 

poles. F14 was the only sensor with fewer observations over MELB, while over KWAJ 

its sampling statistics are comparable to the other polar orbiters. This anomaly in the 

MELB sampling statistics for F14 is therefore probably due to missing overpasses over 

related to radar downtime. 

All the scatter diagrams for KWAJ in Fig. 8 display a similar structure and are 

characterized by a large range of RS values and a much narrower range of R0 values. 

Table 4 indicates that RS and R0 are generally not well correlated at the monthly scale, 

but the degree of correlation is sensitive to differences in the temporal and spatial 

sampling characteristics of the sensor. For KWAJ, the observed inter-sensor variability 

depends primary on the relative swath width of the sensor, for near to the equator the 

satellite sampling frequency is nearly constant for the different satellites analyzed in this 

study.  

Table 4 for KWAJ indicates that the AMSU rain sensors on average exhibited the 

highest correlation, while the PR/COM group displayed the lowest correlation. This 

predictable result shows the dependency of the sampling error on the swath geometry of 

the sensor. AMSU sweeps out a 1600 km swath width compared to a 247 km swath for 

the PR. It subsequently covers an area 6.5 times larger than the PR per overpass. Slope 

values for the PMW sensors (excluding PR/COM) range from 0.98 to 1.15. Discrete 
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temporal sampling results in the satellite tending to overestimate rainfall when S0 and RS 

are both high, while underestimating rainfall when S0 and RS are very low. Consequently 

a small number of overestimates at the high end are compensated by a much larger 

number of underestimates at the low end. Fisher (2004) observed similar results in the 

long-term PDF of monthly estimates from the TMI and PR collected over Oklahoma. 

Morrissey and Janowiak (1996) attributed this error correlation structure to a conditional 

sampling bias in climate-scale estimates resulting from discreet temporal sampling of the 

satellite. They found that the magnitude and sign of the bias depended on the mean 

monthly rain rate.  

Diagnosing the effects on the MELB results shown in Fig. 9 is more complex due 

to differences in the land, ocean and coast sub-climate regimes. First examining the polar 

orbiting PMW sensors, F13 and F14 regress appear to incur negative oceanic sampling 

biases.  This can be inferred from Fig. 9 together with the slope of the regression shown 

in Table 4. AMSR-E, F15, N15 and N16, on the other hand, appear to incur a positive 

bias. F13 and F14 were the only two satellites to display lower correlations over MELB 

than KWAJ. Note F14 was the only satellite to collect fewer observations over MELB. 

Over land, F14, F15 and N17 are negative, but F13, AMSR-E N15 and N16 are positive. 

We also observe a significantly larger variance in the both the correlation coefficients and 

slopes over land, which we attribute to sampling coupled to climate variability associated 

with the amplitude and phase of the diurnal cycle for the land and coast cases. 

The benefits of improved sampling are most clearly observed over MELB for the 

TRMM rain estimates. The TMI and PR exhibited generally higher correlations and slope 

values that approach unity for each of the three terrain cases. These improvements are 
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attributed to both a larger number of observations and more representative sampling of 

the diurnal cycle. 

 

2) Retrievals 

Scatter diagrams of S0 and RS are utilized here to examine retrieval error 

characteristics. Since both rain parameters are spatio-temporally matched, it is assumed 

that they observe the same distribution of instantaneous rain rates. Figures 10 and 11 

present scatter diagrams of S0 and RS at KWAJ and MELB, respectively, and Table 5 

lists the corresponding regression parameters. Table 5 clearly shows that S0 and RS are 

more highly correlated than RS and R0. The slopes associated with each regression, 

however, tended to be less than one for both KWAJ and MELB. This observation holds 

for all the oceanic satellite estimates, again suggesting a positive retrieval bias over the 

oceans.  

The oceanic rain retrievals are of special interest for evaluating the accuracy of 

the physical rain retrievals of the TMI, AMSR and SSM/I. The oceans provide a cold 

radiometric surface with a distinguishable polarization signature, allowing for a 

decoupling of surface emissions from those emanating from the atmosphere above. It 

should be noted that AMSU-A and B channels lack polarization information and 

consequently, the lower frequency emission channels on AMSU-A are not used by the 

AMSU rain rate algorithm, which relies on radiometric information from the 89 and 150 

GHz scattering channels on AMSU-B (other lower frequency channels on AMSU-A are 

used to screen the surface, but only play an ancillary role in the determination of the rain 

rate). 
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The correlation coefficients for the rain retrievals over KWAJ and MELB-Ocean 

are restricted to a similar range of values. Correlations for KWAJ range from 0.66 (F15) 

to 0.91 (PR/COM), while for MELB-Ocean they range from 0.64 (F13) to 0.88 (TMI).  

Slope values determined from each regression are also consistently less than one for all of 

the rain sensors, revealing the presence of a negative oceanic retrieval bias. The retrieval 

bias will be considered more quantitatively in the Section 7b.  

For the TMI, AMSR and SSM/I, differences in the error correlation for the ocean 

can be related to differences in the relative size of the FOV in the emission channels. The 

FOV for the TMI and AMSR water vapor channels, for example, are about 450 km2 and 

560 km2, respectively, and cover an area smaller than the area of the grid box (~750 

km2). The SSM/I nominal FOV for the water vapor channel is about 2000 km2 and more 

closely approximates the size of a 0.50 grid box (~3000 km2).  

The larger footprint also introduces additional beam-filling effects that are 

significant when sampling highly convective systems with large rain rate gradients 

embedded in the rain field (Kummerow et al. 1998). Oceanic SSM/I rain retrievals 

showed lower correlations and higher variance than TMI and AMSR for both KWAJ and 

MELB-Ocean. These differences in the error correlations structure to first order are 

attributed to the relative differences in the size of the FOV with respect to the gridding 

scale of the study. 

Rain retrievals over land and coast are evaluated using MELB-Land and MELB-

Coast displayed in Fig. 11. The GPROF land and coast algorithm is constrained by the 

observations in the high frequency channels, corresponding to the two 85.5 GHz channels 

on the TMI and SSM/I and the 89 GHz channels on AMSR. These channels have a 
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smaller FOV than the lower frequency channels, eg., 35 km2 at 85.5 GHz compared to 

400 km2 in the water vapor channel at 21.3GHz. The better resolution provides some 

structural information on the rain rate gradients associated with convective systems, but 

this information must be ascertained from the ice scattering signature that occurs in 

higher regions of the cloud.  

Correlations varied over a larger range and appear related to size differences in 

the relative sensor FOVs. Over land, correlations range from 0.53 (N17) to 0.90 (COM), 

whereas and over coast they range from 0.45 (N17) to 0.92 (COM). Relative differences 

in the slope parameters more closely correspond to differences in the relative land, ocean 

and coast climatology and the overpass times of the polar orbiting satellites.  

Although AMSU has an additional high frequency channel at 150 GHz, the 

AMSU group in general exhibited the lowest correlations over land and coast. AMSU 

scatter diagrams suggest problems in observing higher instantaneous rain rates, which 

may explain some of the large negative differences between S0 and RS. The AMSU ice 

scattering algorithm may also have ancillary problems screening out surface anomalies. 

The SSM/I group exhibits the most variability amongst the PMW sensors. The 

TMI/AMSR group exhibits significantly higher correlations over the ocean than over 

land and coast due to the addition of the low frequency rain information.  

The PR/COM retrieval statistics showed the best overall performance relative to 

correlation slope and also reveal a higher range of values. The PR/COM statistical 

indexes also show more relatively consistency in the retrievals over land, ocean and coast 

scenes. The PR has much better vertical resolution than the PMW rain sensors and 

because it has a smaller FOV can better resolve strong gradients in the rain field 
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associated with smaller scale convective rain structures. Still, the surface classification 

can impact the reflectivity measurement of the PR, either due to changes in the drop size 

distribution over land and ocean (assumptions about the DSD assumptions are built into 

the algorithm) or to the surface reference technique applied by the PR algorithm 

(Meneghini et al 2000, Iguchi et al. 2000, Robertson et al. 2003).  

 

b. Geo-spatial Distribution of Errors and Biases 

 1) Sampling errors and biases 

KWAJ and MELB climate-scale rain estimates were analyzed at the 0.25° grid 

spacing using the error model described in Section 3. All mean error statistics were 

computed inside of 100 km to avoid mixing GV rain estimates computed from different 

CAPPI levels.  Mean sampling errors for KWAJ are shown in Table 6 and ranged from 

3.1 to 6.3 mm/day. Oceanic sampling errors for MELB spanned a lower range of values 

from 2.4 to 4.8 mm/day, about 25% less than the range estimated for KWAJ. Table 6 also 

suggests that for MELB sampling and retrieval errors over land are greater than over 

ocean.  

Differences in the oceanic sampling errors determined for KWAJ and MELB are 

correlated with increased satellite sampling rates at higher latitudes. Examining Table 3, 

we see that for the TMI and the PR the sampling rate increases by nearly a factor of 2 due 

to the satellite’s lower angle of inclination (Shin and North 1988).  For the other PMW 

sensors, the number of overpasses does not increase but the grid boxes at higher latitudes 

are smaller due converging line of longitude, resulting in broader coverage of the grid 

box at higher latitudes. 
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The geo-spatial distributions of the sampling errors for KWAJ and MELB are 

shown in Figs. 12 and 14, respectively. Inside of 100 km, the KWAJ sampling errors for 

PMW rain sensors are confined to a relatively small range of variability. Sampling errors 

tend to increase beyond this range, but inside of 100 km we do not see a clear connection 

between the distribution of sampling errors and the timing of the overpass. Comparing 

the six panels for MELB, we observe considerable inter-sensor variability. Differences 

between land, ocean and coast are evident in some of the panels but there is no clear 

pattern that clearly separates the sampling errors associated with the geo-terrain mask.  

The PR’s sampling errors exhibited the greatest range of variability at both sites. 

Table 6 indicates that these errors are about 1/3 greater than the TMI as seen in Table 6. 

Based on the mean sampling statistics listed in Table 3, the PR only collects about half as 

many samples over KWAJ than for MELB. These large sampling errors limit the relative 

accuracy of the PR’s climate-scale rain estimates, even though as we will see, its rain 

retrievals outperform the other sensors. The PR rain estimates also not as sensitive to the 

surface classification.  

Mean sampling biases for KWAJ shown in Table 7a ranged from 0.35 to 1.03 mm 

day-1 and were systematically positive for all the PMW sensors. Ocean biases for MELB 

were also systematically positive overall, ranging from -0.48 to 0.49. For MELB, only 

N16 (-0.48) and F15 (-0.04) exhibited an overall negative sampling bias. F15 and the 

PR/COM exhibited the lowest long-term sampling bias for KWAJ (0.35). PR/COM 

biases shown in Fig. 13 are more randomly distributed, whereas the other PMW sensors 

over KWAJ are systematically positive across the entire GV domain.   



29 

A stronger coupling between the sampling times and the land-coast-ocean MELB 

climatology produces a more complex bias pattern for MELB shown in Fig. 15 than what 

was observed for KWAJ in Fig. 13. In Fig. 15 there exists considerable inter and intra-

sensor variability. The inferred biases for the two AMSU sensors in Fig. 15, N15 biases 

are mostly positive while N17 biases are mostly negative. From Fig. 3, it is tempting to 

attribute this striking pattern to differences in the timing of the overpasses. N17, for 

instance, does not sample the convective cycle shown Fig. 3 for MELB, whereas the 

daytime overpass for N15 flies over MELB at about 18 LST.  AMSR-E flies over MELB 

at 1:30 LST during the peak of the convective cycle, resulting in predominantly positive 

sampling biases across the GV sampling domain. The sign of the biases for F13, on the 

other hand, tends to change based on the geo-terrain classification (positive over land, 

negative over ocean). The sampling biases for the two TRMM sensors tended to be lower 

and more randomly distributed than the other PMW sensors, as further evidenced by the 

mean biases for each (0.10 mm/day for the TMI and 0.17 for the PR) .  

 

 2) Retrieval errors and biases 

 Bulk retrieval errors for KWAJ are shown in Table 6 and span a range between 

2.1 and 3.7 mm hr-1. At the low end of this range is the TMI/AMSR group (2.1 mm hr-1), 

whereas the SSM/I group is found at the high end (3.7 mm hr-1). MELB-Ocean exhibited 

a slightly lower trend (1.7 to 3.3 mm hr-1), but we also observe more intra-group 

variability within each sensor class. This section will focus on the sensor characteristics 

and algorithmic differences in the retrievals to explain the observed errors and biases. 
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The geo-spatial distribution of retrieval errors for KWAJ and MELB are 

displayed in Figs. 16 and 18. The COM replaces N17 in the top right panel of each figure. 

The retrievals errors for KWAJ tend to be isotropically distributed, with significantly 

larger errors observed at distances greater than 100 from the radar. Increases in the 

retrieval errors outside of 100 km are attributed to greater uncertainties in the GV radar 

estimates due to the sudden shift from the 1.5 to 3.0 km CAPPI. This shift in CAPPI 

levels was previously described in Section 4. At KWAJ there is no gauge information 

beyond 80 km to calibrate rain rates estimated from the 3.0 km CAPPI. Although there is 

some residual range dependency observed at MELB as well where gauge stations exist 

out to 150 km, range effects probably contribute less to the variability than other factors 

such as differences in surface terrain (Note since there exists no gauge information over 

the Atlantic Ocean east of the GV radar, oceanic rain rates must be calibrated using the 

gauge PDF over land).  

Mean retrieval biases for KWAJ and MELB are shown in Table 7b. All of the 

oceanic rain estimates for KWAJ exhibit large biases ranging from -1.93 to -0.93 

mm/day. The geo-spatial distribution of biases shown in Fig. 17 shows a relatively 

homogenous distribution of negative retrieval biases throughout the GV domain, with 

some tendency for larger biases in the far southern quadrant. Oceanic retrieval biases for 

MELB also tended to be negatively skewed, but occur within a lower range (-0.92 to 

0.08). The geo-spatial distribution of biases for PMW sensors shown in Fig. 19 shows a 

strong dependency on the terrain type and the coupling of the satellite orbit to the 

sampling of the climatology. 
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Negative oceanic retrieval biases for TMI, AMSR and SSM/I are partly attributed 

to beam filling in the low frequency emission channels and partly attributed to saturation 

of the channels at high rain rates (Ha and North 1994, Kummerow 1998). Beam filling 

tends to smear the peak rain rates of the smaller convective cells over the whole FOV. 

Saturation places unphysical constraints on the maximum observable rain rate. AMSU 

oceanic rain rates on the other hand are determined using a pure scattering algorithm that 

only utilizes high frequency rain information and consequently are less correlated with 

the integrated water content at the cloud base. The PR has the smallest FOV of all the 

sensors examined and is better suited for detecting the peak rain rates associated with 

small-scale convective cells, but the PR also has to account for the two-way attenuation 

due to the intervening water and ice in the observed cloud system (Meneghini, 2000). 

The mean oceanic sampling and retrieval biases in Table 7a and 7b tend to exhibit 

opposite signs. This same pattern is also observed in Figs. 13, 15, 17 and 19 for both 

KWAJ and MELB, which effectively reduces the overall bias in the rain estimate. As 

noted in Section 4, it is expected that there will be some mixing of sampling and retrieval 

biases due to the fact RS always fills the entire grid box, while S0 does not necessarily fill 

the box, we do not consider this an explanation for the differences observed. Error mixing 

in this case should be a random effect that should lead to increased variability – through 

under and over estimates relative to a correctly weighted S0 – but should not have a large 

effect on the long-term mean statistics. Consequently, we relate differences in the 

sampling and retrieval biases to fundamental differences in the structure of the sampling 

and retrieval distributions characterized in the scatter diagrams shown in Figs. 8-11. 
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MELB retrieval errors characterized in Table 6 tended to increase appreciably 

over land and coast relative to ocean when compared to the results computed for each 

sensor. TMI/AMSR bulk errors for MELB are nearly the same over the ocean, but the 

TMI retrieval errors over land and coast were considerably lower than AMSR. The TMI 

and AMSR have similar instrument characteristics and determine rain rates using the 

GPROF rain algorithm. We subsequently relate the more salient differences over land 

and coast to increased variability in the diurnal rain rate statistics for AMSR due to 

differences in the sampling times of each satellite. AMSR flies over MELB at 

approximately 0130 and 1330 LST each day, where TRMM precesses through the diurnal 

cycle at different times. AMSR is subsequently more likely to observe higher convective 

rain rates during the early afternoon overpass. Similar reasoning can be applied to explain 

intra-group differences observed for SSM/I and AMSU.  

More salient inter- and intra-sensor differences in the satellite retrievals appear in 

the bias fields for MELB shown in Fig. 19.  N15 tends to exhibit positive retrieval biases 

over land and negative biases over the ocean. These two bias “regimes” are partitioned 

according to the location of the Florida coastline. F13, in contrast, displays a large swath 

of positive coastal biases that straddle the Florida coastline. This same pattern was 

observed in F14 and F15 as well (but this data was only available through 2006). We 

attribute this distinguishable feature to factors associated with the instrument 

characteristics and larger FOV of the SSM/I, and not to differences in overpass times.  

7. Conclusions 

Regional sampling and retrieval errors in monthly rainfall were statistically 

estimated for five different microwave sensors on board eight orbiting satellites using six-
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years of instantaneous satellite rain measurements collected over Kwajalein and 

Melbourne, Florida. Instantaneous ground-based radar rain estimates were used to sub-

sample the data during satellite overpasses to decouple the sampling and retrieval errors 

from the total monthly error budget as described in Section 3.  

Satellite and GV climatologies constructed from the data sets showed that the 

satellite rain estimates were highly correlated with GV rain estimates sub-sampled during 

satellite overpasses, and GV sub-sampled rain estimates, moreover, resolved most of the 

fine structure observed in the satellite climatologies. This empirical methodology, 

however, will tend to overestimate the satellite sampling error due to intermittent radar 

downtime at times when the satellite is overhead by reducing the effective number of 

matching overpasses relative to actual number of times the satellite flies over the site. 

Radar downtime, however, should not affect the assessment of the retrieval errors. 

Furthermore, the quantitative assessment of satellite sampling errors still provides a 

relative measure for evaluating the different sampling designs and provides an absolute 

baseline for assessing the impact of sampling errors on the long-term rain estimates.  

Long-term sampling errors, as expected, were closely linked to the swath area of 

the rain sensor and the sampling frequency of the satellite, while sampling biases were 

more closely associated with the coupling of the sampling times to the diurnal 

climatology associated with each GV site. The TRMM satellite orbit collected more 

samples over MELB than KWAJ, which resulted in a significant reduction in the TMI 

and PR sampling errors over MELB Ocean relative to KWAJ. The polar orbiting 

satellites also showed some reduction in the sampling errors over MELB Ocean due in 

part to a ~13% reduction in the area of the 0.25° grid box at the higher latitude. For 
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evaluating oceanic rainfall trends, the relative benefits of the TRMM orbit in reducing 

random sampling errors and biases were marginal compared to the polar orbiting 

satellites.  

 The TRMM sensors, however, did show lower sampling biases over MELB Land 

and Coast where the diurnal cycle exhibits a large amplitude during the afternoon hours. 

For these two cases, the two TRMM sensors provided significantly less biased rainfall 

estimates due to TRMM’s asynchronous orbit. For the polar orbiting sensors, the 

sampling biases over Land and Coast were mixed and were sensitive to the overpass 

times relative to the phase of the diurnal cycle. The benefits of the TRMM sampling 

design were much less clear over oceanic surfaces, where a low amplitude diurnal cycle 

prevailed. Overall, positive long-term sampling biases were observed at KWAJ for all of 

the sensors, and similarly, positive oceanic sampling biases were observed for most of the 

sensors at MELB.  

All of the rain estimates tended to exhibit negative retrieval errors over ocean 

surfaces by between 10 and 30% relative to the two GV radars. This important result was 

observed over both KWAJ (all ocean) and MELB Ocean and appears to be a significant 

issue for the algorithm developers.  Inter-sensor differences in the retrieval biases were 

most prominent for MELB where there exists a strong coupling between the diurnal cycle 

and the satellite sampling times. This study did not attempt to quantify seasonal 

variations in the error characteristics, but direct comparisons of satellite and GV annual 

climatologies, along with previous studies by McCollum et al. (2002) and Fisher (2007), 

suggest that the PMW rain algorithms may not be adequately handling seasonal changes 

in the microphysical properties of rainfall.  
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The SSM/I, TMI and AMSR-E monthly rain retrievals utilize both emission and 

scattering channels over ocean surfaces, whereas AMSU only utilizes high frequency 

scattering channels, which are less correlated with surface rainfall. Based on satellite 

comparisons with the GV oceanic estimates, SSMI/I, TMI and AMSR-E, tended to yield 

higher correlations with ground estimates relative to AMSU. Results from the error 

analysis were somewhat mixed but the TMI/AMSR-E group did tend to exhibit smaller 

retrieval errors over ocean.     

The PR/COM group exhibited the highest correlations with the ground-based 

radars and the rain retrievals were less dependent on the characteristics of the surface 

classification. Although the PR outperformed most of the PMW rain sensors, its poor 

sampling statistics limits its potential for monitoring long-term rainfall trends. However, 

as can be seen from an examination of the error and bias characteristics of the COM, he 

PR provides important rain information for improving the rainfall estimates associated 

with the microwave retrievals and for diagnosing the internal structure of individual rain 

systems.  
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FIGURE CAPTIONS 

Fig. 1. The top half the figure a) illustrates the process of discrete temporal sampling. The 

left side of 1a) represents the entire spatio-temporal domain of the sampled region A. The 

right side of 1a) shows the sequence of discrete snapshots collected at overpasses 

separated by time intervals, Δt. The lower half of the figure 1b) illustrates the retrieval 

process for the TRMM satellite. The TMI and PR retrieve rainfall information from area 

A for the region defined by the swath of each sensor. The footprint of each sensor 

subsequently determines the resolution of the measurement. Although the TMI and PR 

both obtain snapshots of A at Δt, the PR incurs larger sampling errors due to differences 

in the area of the swath.  

 

Fig. 2 Top two panels display site maps for KWAJ (top left) and MELB (top right). 

Range rings are shown out to 200 km. Rain gauge locations are also shown. The lower 

two panels display the GPROF surface terrain mask for KWAJ (lower left) and MELB 

(lower right) 

 

Fig 3 Mean diurnal cycle for KWAJ (top) and MELB (bottom) computed during the 

study period as a function of the hour. Each polar orbiting satellite is represented by a 

unique symbol shown in the legend showing the two times when the satellite flies over 

the GV site.  
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FIG. 4 Equator crossing times during the lifetime of the satellites analyzed in the study. 

The dotted vertical lines enclose the study period from 2003 to 2008. The row of times 

shown at the bottom of the figure represents the total temporal drift during the study 

period. 

 

Fig 5 Diurnal rain climatology for KWAJ and MELB estimated for the six-year study 

period using the TRMM rain products (TMI, PR and COM). The four panels compare 

rain profiles for S0, RS and R0. Each profile has been normalized based on the total 

rainfall over the 24-hour period. 

 

FIG. 6 Annual rain climatology for KWAJ inferred from six-year study period for (a) 

TMI, (b) PR, (c) COM, (d) F13, (e) F14, (f) F15, (e) AMSR, (i) N15 and (j) N17. Each 

panel provides profiles for S0, RS and R0. 

 

FIG. 7 Annual rain climatology for MELB inferred from six-year study period for for (a) 

TMI, (b) PR, (c) COM, (d) F13, (e) F14, (f) F15, (e) AMSR, (i) N15 and (j) R0. The 

lower right panel (j) represents the true rain climatology based on R0 as stratified by land, 

ocean and coast. The other panels represent the inferred climatology based on the S0 and 

RS, which have been further stratified based on the surface criteria. 

 

FIG. 8 Scatter plots for KWAJ computed at 0.25° inter-comparing RS and R0 monthly 

estimates. 
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FIG. 9 Scatter plots for MELB computed at 0.25° inter-comparing RS and R0 monthly 

estimates land (solid line, open circles), ocean (dash-dot line, triangles) and coast (dashed 

line, plus sign) cases. 

 

FIG. 10 Scatter plots for KWAJ computed at 0.25° inter-comparing S0 and RS monthly 

estimates. 

 

FIG. 11 Scatter plots for MELB computed at 0.25° inter-comparing S0 and RS monthly 

estimates for the land (solid line, open circles), ocean (dash-dot line, triangles) and coast 

(dashed line, plus sign) cases. 

 

FIG. 12 Geographical distribution of sampling errors in mm day-1 for KWAJ considered 

for the entire study period (2003-2008). 

 

FIG. 13 Geographical distribution of sampling biases for KWAJ considered for the entire 

study period (2003-2008). 

 

 

FIG. 14 Geographical distribution of sampling errors for MELB in mm day-1 considered 

for the entire study period (2003-2008). 
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FIG. 15 Geographical distribution of sampling biases for MELB considered for the entire 

study period (2003-2008). 

 

FIG. 16 Geographical distribution of retrieval errors for KWAJ in mm day-1 considered 

for the entire study period (2003-2008). 

 

 

FIG. 17 Geographical distribution of retrieval biases for KWAJ considered for the entire 

study period (2003-2008). 

 

FIG. 18 Geographical distribution of retrieval errors for MELB in mm day-1 considered 

for the entire study period (2003-2008). 

 

FIG. 19 Geographical distribution of retrieval biases for MELB considered for the entire 

study period (2003-2008). 
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TABLE 1. Instrument and orbital characteristics for the eight satellites and five rain 
sensors used in the study. 
Satellite Agency 

Sponsor 
Sensor 
Type 

Launch  
(Yr/Mon) 

No. 
Chan. 

 

Freq. 
Range 
(GHz) 

Swath 
Width 
(Km) 

Altitude 
(Km) 

F13 DMPS SSM/I 1997/03 7 19-85.5 1400 830 
F14 DMPS SSM/I 1997/05 7 19-85.5 1400 830 
F15 DMPS SSM/I 1999/12 7 19-85.5 1400 830 
N15 NOAA AMSU-B 1998/05 5 89 – 183 1600 830 
N16 NOAA AMSU-B 2000/09 5 89 – 183 1600 830 
N17 NOAA AMSU-B 2002/06 5 89 – 183 1600 830 
Aqua NASA AMSR-E 2002/05 12 6.9 – 89 1445 705 

TRMM NASA TMI 1997/11 9 10 – 85.5 759 402 
TRMM NASA PR 1997/11 N/A 13.8*  215 402 
TRMM NASA  COM 1997/11 N/A TMI/PR^ 215 402 

* Active precipitation radar 
^Hybrid rain product that combines the rain information from the TMI and PR. 
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TABLE 2. Radar Downtime  
 KWAJ MELB 

Year Radar down for 
more than 4 
hours in day 
(days/year) 

Mean Radar 
down time 

(days/month) 

Radar down for 
more than 4 
hours in day 
(days/year) 

Mean Radar 
down time 

(days/month) 

2003 32 2.7 12 1.0 
2004 36 3.0 56 4.7 
2005 19 1.6 34 5.7* 
2006 26 2.2 48 4.0* 
2007 18 1.5 42 3.5 
2008 11 0.9 11 1.2* 

• averages computed based on fewer than 12 months 
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TABLE 3. Mean Sampling Frequency per Month.  
 Mean Sampling Frequency 

(Samples/Month) 
Satellite KWAJ MELB 
F13 30.5 32 
F14 28 24 
F15 29 32 
N15 45 49 
N16 49 53 
N17 45 49 
AMSR 31 35 
TMI 34 62 
PR 10.5 19 
COM 10.5 19 
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TABLE 4. Correlations coefficients and slopes of linear regressions characterizing the 
relationship between RS and R0  

 KWAJ MELB 
Satellite Ocean Land Ocean Coast 
 Cor. Slope Cor. Slope Cor. Slope Cor. Slope 
F13 0.49 0.98 0.55 1.14 0.36 0.56 0.44 0.97 
F14 0.48 1.07 0.29 0.47 0.45 0.69 0.33 0.62 
F15 0.47 1.00 0.31 0.51 0.71 1.10 0.51 0.88 
N15 0.60 1.03 0.69 1.40 0.74 1.05 0.67 1.11 
N16 0.67 1.15 0.76 1.53 0.77 1.03 0.70 1.29 
N17 0.60 1.00 0.53 0.55 0.76 1.14 0.62 0.70 
AMSR 0.55 1.03 0.52 1.35 0.58 1.12 0.60 1.37 
TMI 0.52 0.98 0.63 1.01 0.78 1.12 0.67 1.06 
PR/COM 0.30 0.88 0.39 0.98 0.48 1.08 0.44 0.97 
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TABLE 5. Correlations coefficients and slopes of linear regressions characterizing the 
relationship between S0 and RS  

 KWAJ MELB 
Satellite Ocean Land Ocean Coast 
 Cor. Slope Cor. Slope Cor. Slope Cor. Slope 
F13 0.71 0.71 0.66 0.86 0.68 0.68 0.90 0.90 
F14 0.70 0.70 0.66 0.89 0.70 0.81 0.74 1.42 
F15 0.66 0.69 0.63 0.60 0.73 0.80 0.69 0.93 
N15 0.74 0.66 0.69 0.86 0.68 0.67 0.56 0.68 
N16 0.75 0.64 0.56 0.68 0.74 0.70 0.66 0.61 
N17 0.71 0.56 0.53 0.68 0.53 0.68 0.45 0.63 
AMSR 0.87 0.71 0.74 0.72 0.88 0.72 0.78 0.79 
TMI 0.87 0.77 0.81 1.04 0.88 0.72 0.78 0.75 
PR 0.91 0.75 0.88 0.72 0.86 0.88 0.90 0.78 
COM 0.91 0.69 0.90 1.06 0.83 0.95 0.92 0.96 
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TABLE  6. Summary sampling and retrieval error statistics for KWAJ and MELB 
stratified by the GPROF surface terrain classification (land, ocean or coast). 
 

Sampling Errors (mm/day) Retrieval Errors (mm/day) 
KWAJ MELB KWAJ MELB 

 
Satellite 

Ocean Land Ocean Coast Ocean Land Ocean Coast 
F13 4.1 3.9 3.6 3.5 3.5 4.0 2.9 4.4 
F14 4.4 3.4 3.4 4.1 3.7 3.5 3.0 4.7 
F15 4.3 2.9 2.8 3.2 3.7 2.6 2.6 3.0 
N15 3.4 3.4 2.4 2.7 2.8 4.0 2.7 3.4 
N16 3.1 3.3 2.5 3.1 2.8 2.9 2.6 3.0 
N17 3.2 2.0 2.6 2.2 2.8 3.4 3.3 2.4 
AMSR 3.9 4.2 3.3 3.8 2.1 3.6 2.0 3.2 
TMI 4.0 2.9 2.4 2.7 2.1 2.6 1.7 2.3 
PR 6.3 5.0 4.8 4.3 2.7 2.4 2.8 2.0 
COM 6.3 5.0 4.8 4.3 2.7 2.7 3.2 2.0 
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TABLE 7a: Sampling bias statistics for KWAJ and MELB.  
Sampling Biases 

KWAJ MELB 
Ocean Land Ocean Coast 

 
Satellite 

rsb msb  rsb msb  rsb msb  rsb msb  
F13 0.10 0.49 0.22 0.68 0.05 0.17 0.02 0.05 
F14 0.15 0.71 -0.25 -0.81 0.04 0.12 -0.15 -0.45 
F15 0.07 0.35 -0.22 -0.69 -0.01 -0.04 -0.12 -0.35 
N15 0.21 0.97 0.42 1.31 0.12 0.38 0.18 0.54 
N16 0.22 1.03 0.17 0.51 -0.15 -0.48 0.09 0.25 
N17 0.12 0.56 -0.35 -1.09 0.00 0.01 -0.26 -0.77 
AMSR 0.17 0.79 0.20 0.61 0.09 0.28 0.25 0.73 
TMI 0.17 0.77 0.03 0.10 0.07 0.24 0.06 0.18 
PR 0.08 0.35 0.06 0.18 0.15 0.49 -0.05 -0.15 
COM 0.08 0.35 0.06 0.18 0.15 0.49 -0.05 -0.15 
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TABLE 7b: Retrieval bias statistics for KWAJ and MELB 
Retrieval Biases 

KWAJ MELB 
Ocean Land Ocean Coast 

 
Satellite 

rrb mrb  rrb mrb  rrb mrb  rrb mrb  
F13 -0.29 -1.47 0.18 0.68 -0.11 -0.40 0.48 1.48 
F14 -0.33 -1.83 0.14 0.34 -0.18 -0.61 0.67 1.73 
F15 -0.37 -1.93 0.12 0.29 -0.05 -0.17 0.48 1.27 
N15 -0.24 -1.34 0.15 0.68 -0.10 -0.38 0.00 0.01 
N16 -0.32 -1.82 -0.09 -0.35 -0.21 -0.58 -0.19 -0.63 
N17 -0.31 -1.61 -0.20 -0.41 -0.28 -0.92 -0.42 -0.93 
AMSR -0.24 -1.32 -0.02 -0.07 -0.08 -0.27 -0.07 -0.25 
TMI -0.23 -1.24 0.13 0.43 -0.13 -0.45 -0.13 -0.41 
PR -0.29 -1.46 -0.08 -0.26 -0.10 -0.36 -0.07 -0.26 
COM -0.18 -0.93 0.23 0.75 0.02 0.08 0.17 0.48 
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Fig. 1. The top half the figure a) illustrates the process of discrete temporal sampling. The 
left side of 1a) represents the entire spatio-temporal domain of the sampled region A. The 
right side of 1a) shows the sequence of discrete snapshots collected at overpasses 
separated by time intervals, Δt. The lower half of the figure 1b) illustrates the retrieval 
process for the TRMM satellite. The TMI and PR retrieve rainfall information from area 
A for the region defined by the swath of each sensor. The footprint of each sensor 
subsequently determines the resolution of the measurement. Although the TMI and PR 
both obtain snapshots of A at Δt, the PR incurs larger sampling errors due to differences 
in the area of the swath.  
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Fig. 2 Top two panels display site maps for KWAJ (top left) and MELB (top right). 
Range rings are shown out to 200 km. Rain gauge locations are also shown. The lower 
two panels display the GPROF surface terrain mask for KWAJ (lower left) and MELB 
(lower right) 
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Fig 3 Mean diurnal cycle for KWAJ (top) and MELB (bottom) computed during the 
study period as a function of the hour. Each polar orbiting satellite is represented by a 
unique symbol shown in the legend showing the two times when the satellite flies over 
the GV site.  
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Fig 4 Equator crossing times during the lifetime of the satellites analyzed in the study. 
The dotted vertical lines enclose the study period from 2003 to 2008. The row of times 
displayed at the bottom of the figure represents the total temporal drift during the study 
period. 
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Fig 5 Diurnal rain climatology for KWAJ and MELB estimated for the six-year study 
period using the TRMM rain products (TMI, PR and COM). The four panels compare 
rain profiles for S0, RS and R0. Each profile has been normalized based on the total 
rainfall over the 24-hour period. 
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Fig 6 Annual rain climatology for KWAJ inferred from six-year study period for (a) TMI, 
(b) PR, (c) COM, (d) F13, (e) F14, (f) F15, (e) AMSR, (i) N15 and (j) N17. Each panel 
provides profiles for S0, RS and R0. 
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Fig 7 Annual rain climatology for MELB inferred from six-year study period for for (a) 
TMI, (b) PR, (c) COM, (d) F13, (e) F14, (f) F15, (e) AMSR, (i) N15 and (j) R0. The 
lower right panel (j) represents the true rain climatology based on R0 as stratified by land, 
ocean and coast. The other panels represent the inferred climatology based on the S0 and 
RS, which have been further stratified based on the surface criteria. 
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Fig 8 Scatter plots for KWAJ computed at 0.25° inter-comparing RS and R0 monthly 
estimates. 
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Fig 9 Scatter plots for MELB computed at 0.25° inter-comparing RS and R0 monthly 
estimates land (solid line, open circles), ocean (dash-dot line, triangles) and coast (dashed 
line, plus sign) cases.  
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Fig 10 Scatter plots for KWAJ computed at 0.25° inter-comparing S0 and RS monthly 
estimates. 



63 

 
Fig 11 Scatter plots for MELB computed at 0.25° inter-comparing S0 and RS monthly 
estimates for the land (solid line, open circles), ocean (dash-dot line, triangles) and coast 
(dashed line, plus sign) cases. 
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Fig 12 Geographical distribution of sampling errors in mm day-1 for KWAJ considered 
for the entire study period (2003-2008). 
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Fig 13 Geographical distribution of sampling biases for KWAJ considered for the entire 
study period (2003-2008). 
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Fig 14 Geographical distribution of sampling errors for MELB in mm day-1 considered 
for the entire study period (2003-2008). 
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Fig 15 Geographical distribution of sampling biases for MELB considered for the entire 
study period (2003-2008). 
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Fig 16 Geographical distribution of retrieval errors for KWAJ in mm day-1  considered 
for the entire study period (2003-2008). 
 



69 

 
Fig 17 Geographical distribution of retrieval biases for KWAJ considered for the entire 
study period (2003-2008). 
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Fig 18 Geographical distribution of retrieval errors for MELB in mm day-1 considered for 
the entire study period (2003-2008). 
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Fig 19 Geographical distribution of retrieval biases for MELB considered for the entire 
study period (2003-2008). 
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