
Warm KBO Dust in 11 Corvi 

ABSTRACT 

We have analyzed Spitzer and NASA/IRTF 2 - 35 11m spectra of the warm, ~350 K circumstellar 

dust around the nearby MS star 1] Corvi (F2V, 1.4 ± 0.3 Gyr). The spectra show clear evidence for 

warm, water- and carbon-rich dust at ~3 AU from the central star, in the system's Terrestrial 

Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in 

addition to features due to impact produced silica and high temperature carbonaceous phases. At 

least 9 x 1018 kg of 0.1 - 100 11m warm dust is present in a collisional equilibrium distribution with 

dn/da ~ a-3
.
5

, the equivalent of a 130 km radius KBO of 1.0 g/cm3 density and similar to recent 

estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. 

We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large 

amount of early primitive material in the first Myrs of the system's lifetime and preserved it in 

deep freeze at -150 AU. At ~1.4 Gyr they were prompted by dynamical stirring of their parent 

Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km/sec with a rocky 

planetary body of mass :s MEarth at ~3 AU, delivering large amounts of water (>0.1 % of MEarth's 

Oceans) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the 

Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite 

parent bodies was a KBO. 
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Warm KBO Dust in 11 Corvi 

ABSTRACT 

We have analyzed Spitzer and NASA/IRTF 2 - 35 !lm spectra of the warm, ~350 K circumstellar 

dust around the nearby MS star 1] Corvi (F2V, 1.4 ± 0.3 Gyr). The spectra show clear evidence for 

warm, water- and carbon-rich dust at ~3 AU from the central star, in the system's Terrestrial 

Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in 

addition to features due to impact produced silica and high temperature carbonaceous phases. At 

least 9 x 1018 kg of 0.1- IOO!lm warm dust is present in a collisional equilibrium distribution with 

dnlda ~ a-3
.5, the equivalent of a 130 km radius KBO of 1.0 g/cm3 density and similar to recent 

estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. 

We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large 

amount of early primitive material in the first Myrs of the system's lifetime and preserved it in 

deep freeze at ~150 AU. At ~1.4 Gyr they were prompted by dynamical stirring of their parent 

Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km/sec with a rocky 

planetary body of mass:::: MEarth at ~3 AU, delivering large amounts of water (>0.1 % of MEarth,s 

Oceans) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the 

Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite 

parent bodies was a KBO. 
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1. Introduction 

Solar system chronology and Spitzer studies of debris disks provide a strong motivation for 

investigating the nature of collisions in Gyr-old star systems. The lunar and terrestrial impact 

records suggest a high frequency of collisions, tailing down rapidly thereafter, at 0.6--0.8 Gyr 

after the birth of our solar system (the so-called Late-Heavy Bombardment or LHB; Tera et al. 

1974; Wetherill 1975; Kring & Cohen 2002; Ryder, 2002, 2003; Chapman et al. 2007; Jelfgensen 

et al. 2009). Numerical models show that planetary migration of Jupiter and Saturn through a 2: 1 

orbital resonance at ~ 1 Gyr can force Uranus and Neptune to migrate outwards and destabilize an 

originally massive Kuiper belt planetesimal population, causing more than 99% of the 

planetesimals to dynamically scatter, eventually leaving the system, or, for a minority, colliding 

with another orbiting body (Gomes et al. 2005; Tsiganis et al. 2005). Using sub-mm imaging, 

Wyatt et al. 2005 detected a luminous, massive cold debris belt around 11 Corvi at ~ 1 Gyr, in an 

~300 AU diameter ring tilted at about 45° to the line of sight from Earth, suggesting that the 

system's Kuiper Belt is dynamically active and supplying the cold debris belt through collisions. 

lRAS measurements in 1983 of the same system showed a definite strong excess of emission over 

the stellar photosphere at 12 and 25 /Jm, demonstrating the presence of warm circumstellar dust 

within a few AU of the primary as well, dust which could have been created in an LHB-like 

collision. The timing, high dust luminosity, presence of both warm and cold dust, and structure in 

the cold dust belt thus make 11 Corvi a good candidate for a system that contains massive, 

migrating planets that are in the process of dynamically destabilizing their surrounding icy outer 

planetesimal population, while also causing a KBO inner system object collision. 

Optically-thin, gas-poor debris disks around 5 Myr to 5 Gyr-old stars are important signposts for 

planet formation and evolution, since their sustained emission implies the presence of a reservoir 

of massive, colliding self-gravitating planetesimals (e.g. Backman and Paresce 1993; Wyatt 2008; 

Kenyon and Bromley 2008). The prevalence of debris disks around sun-like stars and more 

massive stars (20 to 60%; Rieke et al. 2005; Su et al. 2006; Currie et at. 2008, Carpenter et al. 

2009a) implies that the formation of these planetesimals is common; our own solar system 

contains debris dust and planetesimals in two small belts - warm dust and rocky, metal-rich bodies 

in the asteroid belt at 2 to 4 AU, cold dust and icy planetesimals in the Kuiper belt at 30 to 60 AU. 
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Therefore, constraining the evolution and composition of debris disks around other stars provides 

a crucial context for the formation and present-day properties of the solar system. 

Large photometric studies of many debris disks and targeted spectroscopic studies of individual 

debris disks conducted with the Spitzer Space Telescope have constrained the typical locations of 

debris-producing collisions, the evolution of the emission from these collisions, and, in some 

cases, the chemical composition of and events identified by the colliding parent bodies. Most 

debris disks have dust temperatures colder than ~ 150-200 K, consistent with debris produced 

from icy colliding planetesimals (e.g. Chen et al. 2006; Carpenter et al. 2009b). The frequency of 

warm (> 200 K) debris dust is low, < 5-10% regardless of age, indicating that planetesimal 

collisions in the terrestrial zone or asteroid belt-like regions are rare or have a small observational 

window, consistent with expectations from theory (e.g. Carpenter et al. 2009b; Morales et al. 

2009; Currie et ai. 2007, 2008b; Kenyon and Bromley 2004; Wyatt et al. 2007; Moor et ai. 2010). 

With the possible exception of the youngest debris disks (~5-20 Myr), mid-to-far IR debris disk 

luminosities define an envelope that decays with time as ~ 1/t, consistent with a low-velocity « 1 

km/sec) collisional grinding of a planetesimal belt that has finished growing larger bodies, 

especially for Gyr-old systems (e.g. Rieke et al. 2005; Su et al. 2006; Wyatt 2008; Lohne et al. 

2008; Currie et al. 2008, 2009; Kenyon and Bromley 2008, 2010; Hernandez et al. 2009). As a 

whole, most debris disk spectra are featureless, consistent with optically-thick grains (> 10 

microns) and thus a lack of copious, small debris from massive collisions (e.g. Chen et al. 2006; 

Carpenter et al. 2009a). The rare debris disks with strong mid-IR spectral features typically have 

young ages (~ 10-20 Myr) and high luminosities, likely due to copious production of warm small 

dust by major processes of solar system formation and evolution, such as terrestrial planet 

formation, catastrophic impacts like the Moon-forming event, and terrestrial zone water delivery 

(e.g. Lisse et al. 2008, 2009; Currie et al. 2010). 

In light of Spitzer photometric and spectroscopic studies, the large majority of debris disks around 

Gyr-old stars seem to almost always (l) have low luminosities consistent with material produced 

slowly by collisional grinding and parent body sublimation, (2) lack strong solid state features 

produced by copious fine, but ephemeral dust and (3) lack warm, inner system dust. Therefore, 

older debris disks with high luminosities, solid states spectral features, and warm dust comprise an 
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exceptionally rare class of objects (frequency ~ 1-2%, Gaspar et at. 2009) that may be diagnostic 

of recent, massive collision events in the inner few AU of a system and may provide a context for 

important dynamical effects that occurred in the solar system well after planet formation finished. 

E.g., BD 20 +307 and HD 106797 are well-studied examples of Gyr-old stars surrounded by 

unusually luminous warm debris disks; spectral modeling reveals solid state spectral features 

produced by transient dust from recent collisional events (e.g. Song et al. 2005; Fujiwara et al. 

2009; Weinberger et al. 2011). 

1] Corvi, a nearby main sequence star with a debris disk, is another rare candidate for study, as it 

contains detectable cold and warm dust reservoirs of high luminosity presenting strong spectral 

features. Of the 59 lRAS excess systems observed by Spitzer and studied by Chen et at. 2006, it is 

the 3rd brightest and exhibits the 3rd highest disk luminosity (L1R/L* 3 x 10-4
). Of 44 stellar 

systems now observed by the Keck Interferometer, it is one of only 3 for which an extended disk 

of warm dust emission at 10 11m was significantly detected (Stark et al. 2009, Millan-Gibet et al. 

2009, 2011), at a level of 1389 ± 273 zodis (10). However, unlike most mid-IR high-luminosity 

debris disks, it is an old main sequence star (~ 1 Gyr), and its excess emission at 24 11m lies well 

outside the range defined by most stars of its age (Figure 1; Wyatt 2008). Furthermore, simple 

modeling of its optical through far-IR spectral energy distribution (SED; Figure 1), shows that 1] 

Corvi's dust emission plausibly originates from 2 greybody sources of temperatures ~35K and 350 

K (Bryden et at. 2009). While the ~35K reservoir matches well with the predicted temperature of 

the cold dust at ~ 150 AU detected in the sub-mm by Wyatt et al. (2005), the temperature of the 

warm component implies the presence of copious dust in terrestrial zone/asteroid belt-like regions. 

Bryden et al. (2009) obtained interferometric measurements demonstrating that the middle regions 

of the system are empty of dust, and the system structure qualitatively consistent with dynamical 

SCUlpting of sub-mm emitting dust by ice/gas-giant planets (Wyatt et al. 2005, Kuchner & Stark 

2010). Analysis of the 1] Corvi debris disk may thus provide an important study of LHB-like 

events which occurred well after a system's planets finished forming. 

In this paper we analyze in detail Spitzer 1] Corvi IRS 5 to 35 11m and IRTF/SPeX 2 to 5 11m 

spectral measurements of the warm dust component, utilizing strong features in the near- and mid­

IR spectrum to allow us to determine the major dust components producing the observed emission. 

We have used a similar methodology to study the amount, kind, and location of the dust and water 
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gas/ice excavated from the comet 9P/Tempel 1 (Lisse et al. 2006), the dust and water ice found in 

comet C/1995 01 (Hale-Bopp) and the comet dominated primordial disk around the Herbig AO 

star HD100546 (Lisse et al. 2007a), in the dense zody cloud around the 2-10 Gyr old KOV star 

HD69830 (Lisse et al. 2007b), in near orbit around the ancient DZ white dwarf GD29-38 (Reach 

et al. 2008), and in the terrestrial planet forming region around the young A/F stars HD113766 

(Lisse et al. 2008) and EF Cha (Currie et ai. 2010). We were able to obtain a good model fit to the 

1] Corvi warm dust spectrum and find that the best remote sensing spectral match is from the very 

primitive material found at 13 AU in the gas-rich, giant planet forming system HD 100546, and the 

best solar systems material match is to the mixed polyglot primitive carbon rich/differentiated 

igneous materials found in the Sudan Almahata Sitta Ureilite meteor fall of 2008. The 1] Corvi 

warm disk material is even more primitive and carbon-rich than the material found in comets, with 

a total amount of mass that is found in large Centaur or medium sized KBO objects in our solar 

system. The best-fit particle size distribution (PSD) for the warm dust is close to that expected for 

a system in collisional equilibrium with the smallest particles removed by radiation pressure. 

These facts coupled together argue for a very primitive icy parent body, formed very early in the 

system's history and large enough to capture and gravitationally bind the most volatile of 

protoplanetary carbon species. Coupled with the ~3x104 times more massive extended cold sub­

mm disk of Wyatt et al., we infer that the Kuiper Belt of the 1] Corvi system at ~ 1 Gyr is indeed in 

an excited state, leading to scattering of large primitive bodies into the inner regions of the system, 

where moderate velocity impacts and subsequent collisional grinding processes release their icy, 

carbon-rich dust, similar to the events predicted to have formed the Ureilite meteor parent body 

and to have occurred at 0.6 - 0.8 Gyr after CAl formation during the Late Heavy Bombardment 

(LHB) in our own Solar System. 

2. Observations 

2.1 Stellar Data for the 11 Corvi system. 1] Corvi (HR4775, HDI09085), the 6th brightest star in 

the northern constellation Corvus, is a solitary F2V main sequence ("dwarf') star located 18.2 pc 

away from Earth, absolute V mag 2.99, of approximately solar metallicity (Casagrande et al. 

2011), and is somewhat bigger (M 1.4 Me) and hotter (T eff ~6800 K) and about 5 times more 

luminous than the Sun (Table 1). To Oth order, the BVRl2MASS/lRAS/Spitzer spectral energy 

distribution (SED; Figure 2) for the circumstellar material orbiting 1] Corvi is well described by a 
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Kurucz F2V photospheric emission model plus the emission from 2 greybody sources at 

temperatures ~350 and 35 K with L1R/L. 3 x 10-4 (Bryden et al. 2009). Based on its stellar type, 

rotation rate, metallicity, and x-ray activity, 17 Corvi's age was estimated by Nordstrom et al. 

(2004) to be 1.4 ± 0.3 Gyr; from its position relative to evolutionary tracks in the HR diagram, 

Mallik, Parthasarathy & Pati (2003) determined a stellar age of 1.3 Gyr. Mamajek (2011, private 

communication), using Bertelli et al. 2009 isochrones and evolutionary tracks and Z=O.017 and 

Y=0.26 for a solar composition star, finds an age of 1380 ± 190 Myr and a mass of 1.44 ± 0.01 

M0 . In this work we adopt a working age of 1.4 Gyr for 17 Corvi in calculations, but noticing the 

range of age estimates and typical age uncertainties on the order of a factor of 2, also write the age 

as ~ 1 Gyr for the sake of argument. 

2.2 Spitzer and IRTF Observations ofT} Corvi. For their IRS observations of11 Corvi conducted 

on 05 Jan 2004, Chen et al. (2006) utilized a combination of the Short-Low (5.2-14.0 !lm, /J!1/v ~ 

90), Short-High (9.9-19.6 !lm, /J!1/v ~ 600), and Long-High (18.7-37.2 !lm, /v/!1/v ~ 600) modules 

in IRS mapping mode. In order to avoid time-consuming peak-up, the observatory was operated in 

IRS spectral mapping mode where a 2 x 3 raster (spatial x dispersion, centered on the nominal star 

position) was performed, with 1 cycle of 6 seconds integration at each position (Watson et al. 

2004). Because of significant off-center pointing alignment in the as-performed raster map, and 

great improvements over the last 5 years in the understanding of IRS pointing effects, individual 

pixel gain, dark current, linearity, and bad pixel behavior, the spectra were re-extracted from the 

Spitzer archive for this work and re-calibrated using SMART Version 17 with optimized, model 

PSF based extraction for the SL order (Lebouteiller et al. 2010) and defringing/tilting of the LH 

orders (Higdon et aI., 2004). Correcting for the off-center pointing was found to be especially 

important, as it could have led to potential changes in response up to 50% in the short wavelength 

orders, which could have potentially been the cause of the interesting and complicated structure in 

the 5 9 urn region of the 11 Corvi spectrum. 

Re-reduction of the SL data was done using the opposite nod position for sky subtraction and 

Optimal Point Source extraction (OPS) in the SMART program. With OPS, the SL spectra is 

extracted by fitting an empirically derived point spread function to the profile of the object that 

optimizes the SNR of the observation in each wavelength bin. This is different from the standard 
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"tapered column" extraction method, which is based on co-adding the flux in the cross-dispersion 

direction within a window large enough to contain (most of) the source flux for a typical point 

source and results in much more stable measurements at the cost of greatly increased time and 

computing power expenditures per spectral extraction. The high resolution SH and LH data 

included no sky data and were extracted with a full slit extraction. The local background was 

determined using the signal level in the wings of the PSF. The LH data also suffered from "order 

tilting" or "bowing" of the spectral orders, seen as mismatches between orders and non-physical 

tilting of the continua as a result ofa time- and position-dependent current on the array. To correct 

this we employed the Spitzer Science Center program DarkSettle (Ref: Spitzer Data Analysis 

Cookbook) which uses a set of BCD data to calculate a time- and position-dependent smoothed 

background and removes this from the data. Data from standard stars a Lac for SL and I; Dra for 

SH and de-tilted LH were prepared identically, and then template spectra were divided by the data 

to produce Relative Spectral Response Functions (RSRFs). Our 11 Corvi data was then multiplied 

by these RSRFs to calibrate the flux. 

For this work we have used SL data from 5.2 to 9.9 um, SH data from 9.9 to 19 um, and LH data 

from 19 to 35 um. Care was taken to verify the robustness of the derived spectra; e.g., the spectra 

were extracted by two different analysts, and the results were found to agree closely, within ±2a, 

for each spectral bin. We have also checked to verify that the spectral features in the SL module 

were found in both nods, and that they disappear in the difference to better than 2a, arguing that 

they are due to real on-sky photoresponse and not detector systematics. Comparison of the 

extracted SL and SH fluxes in the 9.9 - 14.3 um region where they overlap, produced excellent 

agreement, within 2a, verifying that the relative calibration used for the SL and SH orders was 

good; MIPS and IRS photometry at 16, 22, and 24 /lm was used to tie down the longer wavelength 

absolute calibration of the SH and LH orders to within 10%. In the end, a total of 1764 

independent spectral points were obtained over the range 5.2 to 37 /lm. The resulting spectra have 

117 data points taken with the SL orders at R 60 to 120 from 5.2 to 9.9 um, and 1647 data points 

taken with the SH/LH orders at R 600 to 650 from 9.9 to 35 um. The median SNR of the SL 

data is 24, and of the SH/LH data is 37. 

Supporting observations of IJ Corvi at 2.2 to 5.1 /lm were made by our group on 21 Apr 2011 UT 

using the SPeX near infrared spectrometer (Rayner et al. 2003, Vacca et al. 2004) on the 
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NASA/IRTF 3m telescope on Mauna Kea. The data were obtained in LXD 2.1 mode at R ~ 2500 

with the narrow 0.3" slit (5.4 AU at 18 pc) centered on the star using 300 sec integration times and 

on-sky nodding. The airmass = 1.47, SNR > 80 rt Corvi observations were interleaved with 

observations of nearby A-star standards and reduced using the SPeXToois software package 

(Cushing et al. 2003) in a manner identical to that used for the 200 stars of the SPeX Cool Star 

library (Rayner et at. 2009). The resulting stellar spectra, demonstrating good H-atom emission 

lines, compared well to dwarf F-star standards listed in the spectral library and Kurucz models of 

an F2V stellar photosphere. Due to opacity issues, only the high fidelity 2.2 - 2.5, 2.8 - 4.2, and 

4.5 - 5.1 !lm data from the high atmospheric transmission windows were used in this work. 

The rt Corvi disk excess flux was then calculated by removing the stellar photospheric contribution 

from the IRS and SPeX spectra. The photospheric contribution was modeled by assuming that the 

rt Corvi spectrum is represented by an F2V star with an age of 1.4 ± 0.3 Gyr (Norstrom et al. 

2004). The star was assumed to have solar abundance, log g 3.9, and E(B - V) = 0.01 

(determined using the Cardelli et al. 1989 extinction law). The stellar photospheric flux was then 

estimated by minimum X' fitting of the appropriate Kurucz stellar atmosphere model to optical and 

2MASS (0.3 - 3 um) archival photometry (See URL http:// http://nsted.ipac.caltech.eduf). In 

the resulting excess spectrum, measurements in the 5.3 - 6.0 !lm appear to be dominated by a 

strong upturn increasing towards shorter wavelengths (Figs. 1b, 4a-c) that is consistent with our 

team's 2-5 um NASAlIRTF SPeX measurements of scattered light from an icy dust excess, while 

the 34.8 - 35.3 !lm range are very noisy and uncertain, so that for the thermal spectral 

decomposition described in this paper, we have used the more limited spectral range 6.0 34.7!lm 

as the measure of the goodness of fit. We have also masked out 2 very sharp, narrow spectral 

features, at 6.7 and 23.5 um, that are likely artifacts, but are mentioned here for completeness 

unless it is found in the future that they are instead narrow emission lines (e.g., the 6.7 !lm feature 

may be an emission line of water). In any case, we do not model them for the results presented in 

this work. At the other extreme, from the upturn in the low frequency structure in the spectral 

baseline, there do appear to be potential broad, solid state emission features at ~ 12 and ~ 17 !lm 

(Fig 4a,b), but at such low SNR that they do not affect the Xlv calculation used to find allowed 

models (i.e., within the 95% c.L.) significantly, and thus are not considered to be detected or 

detectable. Again, they are mentioned for completeness in case future work or analysis should 

show them to be of importance. 
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2.3 Simple Interpretations. The photosphere-removed flux is presented and compared to other 

significant mid-IR dust spectra (Fig. 1b, Fig. 2), and to the Deep Impact compositional model 

(Fig. 4). From our knowledge of the primary star and the amplitude of the excess spectrum and its 

run vs. wavelength, and our experience with other Spitzer mid-IR dusty disk spectra, we can 

discern a few things quickly: (1) the temperature of the warm dust is in the 300 - 400K range; (2) 

there are multiple fine emission features present; (3) the spectrum of the ~ 1 Gyr old 1] Corvi warm 

dust best matches the spectrum in our inventory that was measured for the ~ 1 0 My dust found 

around the young Herbig star HD I 00546, which we found to be in the process of disk clearing, 

comet aggregation and giant planet formation (Lisse et al. 2007a); (4) the spectrum is very rich in 

5-8 /lm emission, indicative of very primitive, carbon-rich, Ureilite meteorite-like dust (Sandford 

et al. 2010); and (5) the total mass of dust is relatively large, equivalent to the mass of the larger 

Centaurs or smaller icy moons and Kuiper Belt objects in our solar system; (6) the upturn in 

emissivity below 6 /lm is strong, although, as noted, the SNR is low for these points at the edge of 

the SL order. The tum-up slope is much too steep to be due to thermal emission; it can, however, 

be well explained by high albedo, water-ice rich material with size distribution dnJda ~ a-3
.
5 

scattering light from an 11 Corvi primary with ~ 7000 OK color temperature. The strong scattered 

light contribution is consistent with our team's detection of light scattering at 2-5 um from 11 Corvi 

by circumstellar material with Bond Albedo> 90 % using the SPeX instrument at the NASAlIRTF 

(Fig. 1 b). It is also consistent with our analysis of the mid-IR spectra of cold, very ice-rich comets 

17P/Hoimes (Reach et at. 2010) and C/1995 01 Hale-Bopp, and the disk of young Herbig star 

HD100546 (Lisse et al. 2007). 

3. The Deep Impact Tempel! Dust Model 

To further understand the information contained in the Spitzer 1] Cor'Vi IRS spectra, we applied a 

more sophisticated spectral modeling analysis, based on the results of two recent solar system 

spacecraft experiments: Deep Impact and STARDUST. Here we summarize here the relevant 

portions of the Deep Impact experiment, its Spitzer IRS measurement, the Tempel I Dust Model 

created to interpret the measurements, and its predictions vs. the material returned by the 

STARDUST sampling experiment. Further details of the spectral analysis are described in the 

literature in the Supplementary Online material for Lisse et at. 2006, and in the main text of Lisse 

et at. 2007a. 
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3.1 Deep Impact. The recent Deep Impact hypervelocity experiment, one of the few direct 

man-made astrophysical experiments on record, produced a mix of materials - volatilized 

cometary material, silicaceous droplets, and excavated, largely unprocessed bulk material after a 

small bolide of ~370 kg mass impacted the nucleus of comet 9P/Tempeil (hereafter Tempel 1) at 

10.2 km sec-Ion 2005 July 4, when the comet was 1.51 AU from the Sun (A'Heam et al. 2005, 

Melosh 2006, Richardson et al. 2007). Due to the very low bulk modulus « 10 kPa) and escape 

velocity (~ 1 m sec-I) of the nucleus, the ejected material was heavily dominated, by 2-3 orders of 

magnitude in mass, by the excavation of bulk unprocessed material, as were the Spitzer emission 

spectra. This bulk material was excavated from the nucleus from depths as large as 30m and was 

largely unaltered, except for disruption of loosely-held macroscopic fractal particles into the 

individual sub-fractal, micron-sized components, as demonstrated by the presence of significant 

amounts of non-refractory water ice in the ejecta (Lisse et ai. 2006; Sunshine et al. 2006). Spitzer 

IRS 5-35 /lm spectra were taken within minutes of the impact, both before and after. The ejected 

material cooled from effects due to the impact within seconds to minutes, and separation of the 

ejecta emission spectrum from blackbody emission at L TE due to large, optically thick dust 

particles in the ambient coma was easily made. The resulting highly structured spectrum of the 

ejecta showed over 16 distinct spectral features at flux levels of a few Janskys (Lisse et al. 2006) 

that persisted for more than 20 hours after the impact. 

3.2 Thermal Emission. The emission flux at wavelength A from a collection of dust is given by 

where T is the particle temperature for a particle of radius a and composition i at distance r* from 

the central star, L1 is the distance from Spitzer to the dust, BA is the blackbody radiance at 

wavelength A, Emissivity is the emission efficiency of a particle of radius a and composition i at 

wavelength A, dnlda is the differential particle size distribution (PSD) of the emitted dust, and the 

sum is over all species of material and over all particle sizes. Our spectral analysis consists of 

calculating the emission flux for a model collection of dust, and comparing the calculated flux to 

the observed flux. The emitted flux depends on the composition (location of spectral features), 
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particle size (feature to continuum contrast), and the particle temperature (relative strength of short 

versus long wavelength features), and we discuss each of these effects below. N.B. - for ease of 

display, in order to uniformly emphasize the contribution of individual materials to the observed 

emission across the entire 5 to 35 /lm wavelength range, and to facilitate comparison of the 

observations to laboratory emission spectra, the modeling results in this paper are presented in 

terms of emissivity spectra (e.g., a 390 K blackbody temperature dependence has been divided 

into the as-observed flux, best-fit model flux, and individual component fluxes in order to create 

the plotted emissivity spectra of Fig. 4). 

3.3 Composition. To determine the mineral composition the observed IR emission IS 

compared with the linear sum of laboratory thermal infrared emission spectra. As-measured 

emission spectra of randomly oriented, /lm-sized powders were utilized to directly determine 

Emissivity(a,A). The material spectra were selected by their reported presence in interplanetary 

dust particles, meteorites, in situ comet measurements, YSOs, and debris disks (Lisse et al. 2006). 

By building up a spectral library, we tested for the presence of over 80 different species in the Tl 

ejecta, in order to approach the problem in an unbiased fashion. We also expected, given the large 

number of important atomic species in astrophysical dust systems (H, C, 0, Si, Mg, Fe, S, Ca, AI, 

Na, ... ) that the number of important species in the dust would be on the order of ~ 10. 

The list of materials tested included multiple silicates in the olivine and pyroxene class (forsterite, 

fayalite, clino- and ortho-pyroxene, augite, anorthite, bronzite, diopside, and ferrosilite); 

phyllosilicates (such as saponite, serpentine, smectite, montmorillonite, and chlorite); sulfates 

(such as gypsum, ferrosulfate, and magnesium sulfate); oxides (including various aluminas, 

spinels, hibonite, magnetite, and hematite); Mg/F e sulfides (including pyrrohtite, troilite, pyrite, 

and ningerite); carbonate minerals (including calcite, aragonite, dolomite, magnesite, and siderite); 

water-ice, clean and with carbon dioxide, carbon monoxide, methane, and ammonia clathrates; 

carbon dioxide ice; graphitic and amorphous carbon; and the neutral and ionized P AH emission 

models of Draine & Li (2007). 

A model phase space search easily ruled out the presence of a vast majority of our library mineral 

species from the Tl ejecta. Only convincing evidence for the following as the majority species in 

the Tempel 1 ejecta was found (Lisse et al. 2006): crystalline silicates like forsterite, fayalite, 
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ortho-enstatite, diopside, ferrosilite and amorphous silicates with olivine and pyroxene like 

composition; phyllosilicates similar to nonerite smectite, saponite, and talc; sulfides like ningerite 

and pyrrohtite; carbonates like magnesite and siderite; water gas and ice; amorphous carbon (and 

potentially native Fe:Ni; and ionized PAHs. This list of materials compares well by direct 

comparison to numerous in situ and sample return measurements (e.g., the Halley flybys and the 

STARDUST sample return; see Lisse et al. 2007a for a detailed list). These 7 classes of minerals 

(Ca/FelMg-rich silicates, carbonates, phyllosilicates, water-ice, amorphous carbon, ionized PAHs, 

and FelMg sulfides; 15 species in all), plus silicas, have now been successfully used to model 

thermal emission from dust emitted by 6 solar system comets, 4 extra-solar YSOs, and two mature 

exo-debris disks (Lisse et al. 2006, 2007a, 2007b, 2008, 2009). Specific sources for the 

emmisivity data used for the minerals identified in our best-fit model of the 11 Corvi circumstellar 

material include the lena (http://www.astro.uni-jena.de/Laboratory/OCDB). MGS/TES 

(http://tes.asu.edu), and Glaccum (1999) spectral data libraries, as well as emission spectra 

supplied by Koike et al. (2000, 2002) and Chihara et al. (2002) for silicates; Kemper et al. (2002) 

for carbonates; Keller et al. (2002), Kimura et al. (2005), and Nuth et al. (1985) for sulfides; 

Draine & Li (2007) for PAHs; Hanner (1984) and Edoh (1983) for amorphous carbon; and 

Koeberl (1988) for tektite silica. 

3.4 Particle Size Effects. Particles of 0.1-100 )lm are used in fitting the 5-35 )lm data, with 

particle size effects on the emissivity assumed to vary as 

1- Emissivity(a,A) = [1 Emissivity(l um,A)](a/lum) 

The particle size distribution (PSD) is fit at log steps in radius, i.e., at [0.1, 0.2, 0.5, 1, 2, 5, ... 100] 

)lm. Particles of the smallest sizes have emission spectra with very sharp features, and little 

continuum emission; particles of the largest sizes are optically thick, and emit only continuum 

emission. The '7 Corvi spectrum shows relatively strong, moderate contrast features, indicative of 

the presence of small (~I)lm) to medium (~20 )lm) sized grains. A power law spectrum of particle 

sizes of moderate slope with dnlda ~ a-3
.5, dominated by both small & large grains, was found to 

be necessary to fit the Spitzer data. 
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3.5 Particle Temperature. We model the W1fesolved dust excess around '1 Corvi as a 

localized dust torus at a given astrocentric distance, with a unique value of temperature T for a 

particle of radius a and composition i (Eqn. 1). Dust particle temperature is determined at the same 

log steps in radius used to determine the PSD. The highest temperature for the smallest 0.1 /lm 

particle of each species is free to vary, and is determined by the best-fit to the data; the largest, 

optically thick particles (100 /lm) are set to the LTE temperature, and the temperature of 

intermediate sized particles is interpolated between these extremes by radiative energy balance, 

with a run of temperature vs. particle size similar to the calculations of Lien (1990). 

The T1 ejecta were, by experimental design, all highly localized at 1.51 AU from the Sun. We use 

this fact to empirically determine the effective distance of the emitting material from '1 Corvi. To 

do this, a first-cut model temperature for the smallest and hottest (0.1 - 1 /lm) particles for each 

material from our analysis is quickly determined from the strong constraints required to fit the 

high contrast spectral emission features, with a rough guess for the minimum temperatures of the 

largest and coldest dust. These first-cut maximum temperatures are compared to the temperatures 

found for the (0.5 - 2.0 /lm) particles of the Tempel 1 ejecta (Lisse et al. 2006), using the relation 

where Tdust is the temperature of the smalles and hottest dust around '1 Corvi, TTl ejecta are as given 

in Lisse et al. 2006 (~ 340 K), L. = bolometric luminosity of '1 Corvi, = 4.9 LSolar, and r. is the 

distance of the dust particle from '1 Corvi. Once we have r., we can determine T LTE for the 100 /lm 

dust and interpolate using radiative balance to find the intermediate temperatures of the 

intermediate sizes; we then re-run our model to check our result, making minor changes in T dust 

and T LTE via iteration until we converge on an allowed solution fitting within the 95% Confidence 

Limit (C.L.) For this work the hottest particles were tested from 300 to 450 K for all species 

except for amorphous carbon (tested from 300 - 550K), and water ice (tested from 150 - 220K). 

TLTE varied from 200 to 300 K. 

3.6 Model Summary. Our method has limited input assumptions, uses physically plausible 

laboratory emission measures from randomly oriented powders rather than theoretically derived 

values from models of highly idealized dust, and simultaneously minimizes the number of 

adjustable parameters. The free parameters of the model are the relative abundance of each 
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detected mineral species, the temperature of the smallest particle of each mineral species, and the 

value of the particle size distribution at each particle size (Table 2). Best-fits are found by a direct 

search through (composition, temperature, size distribution) phase space. To provide a statistical 

measure of the goodness-of-fit, we determine the 95% confidence limit given the number of 

degrees of freedom for a given reduced X2 (see Lisse et al. 2008,2009). 

The total number of free parameters in the model used to fit the IRS 11 Corvi spectrum 11 

relative compositional abundances + 11 hottest particle temperatures + 10 particle size abundances 

= 32. [Since the results of our modeling show we could describe the dust within the 95% C.L. 

using 8 compositional abundances + 3 different refractory dust temperatures and 1 water ice 

temperature (Table 2) + 5 particle size parameters (3 blow-out + 1 overlap + 1 power law index) in 

actual practice we use only 17 adjustable values. With 1764 total data points, the difference 

between the 2 d.o.f. estimates is not critical for the X2
v 95% c.L. determination.] Based on these 

values, there is a 95% chance a model with reduced X2
v less than 1.06 is a good predictor of the 

Spitzer data. Our best-fit model successfully reproduces the entire IRS spectrum and yields a small 

X2
v= 1.01; the allowed 20 range for the derived parameters was found by determining the change 

from the best-fit value required to increase the chi-squared value to 1.06. The range of abundances 

from any model inside the 95% confidence limit is narrow, typically 10% from the best-fit value. 

There may be some bias for fitting the long wavelength data best, as there are 14 times as many 

SH/LH points at 9.9 - 34.3 11m than SL points at 5.2 - 9.9 11m, although the strongest and most 

highly structured (and thus highly constraining) features lie in the 6 - 12 11m range. 

Our modeling has allowed us to get beyond the classical, well known olivine-pyroxene-amorphous 

carbon· composition to the second-order, less emissive species like water, sulfides, PARs, 

phyllosilicates, and carbonates. We are able to determine the overall amounts of the different 

major classes of dust-forming materials (olivines, pyroxenes, sulfides, water, etc.) and the bulk 

elemental abundances for the most abundant atoms in these materials (H, C, 0, Si, Mg, Fe, S, Ca, 

AI). Applying our analysis, with a series of strong 'ground truth' checks of its validity, is highly 

diagnostic for interpreting mid-IR spectra of distant dusty systems like YSOs, debris disks, and 

PNs. It is important to note, however, that while our spectral modeling techniques can provide 

important new information, they are also complex. While designed to be as minimalist as possible, 
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it took us over a year to analyze 11 Corvi properly and in depth - had Chen et al. 2006 used our 

more involved modeling methods, they would still be writing their 2006 paper today. 

3.7 Required Deviations From the 'Deep Impact Standard Compositional Model'. As for 

our previous work on the unusual HDl72555 spectrum (Lisse et al. 2009; Figures 3 & 4), silicas, 

indicative of the occurrence of high velocity impact, silicate transforming processes were required 

to fit the Yf Corvi spectrum. Even so, a linear sum of laboratory thermal infrared emission spectra 

did not entirely fit the Yf Corvi spectrum completely in the 7 9 /lm region. I.e., no combination of 

emission from the Fe/Mg olivines, CaiFe/Mg pyroxenes, silicas, Fe/Mg sulfides, phyllosilicates, 

amorphous inorganic carbon, water ice/gas, PAHs, and carbonates commonly found in 

circumstellar dust, or from the other ~ 1 00 astrophysically relevant species in our spectral library 

was able to totally reproduce the observed spectrum. A number of new mineral species were 

studied and compared to the Yf Corvi spectrum, focusing on matching unusual emission features 

from 6.7 8.6 um, in the usual range for C-C, C=C, C-H, C-N, C-O, etc. vibrational modes. Lunar 

species such as anorthite and basalt, and all the allotropes of silica available in the literature were 

studied: quartz, cristoblite, tridymite, amorphous silica, protosilicate, obsidian, and various tektite 

compositions. Also examined were mineral sulfates (such as gypsum, ferro sulfate, and magnesium 

sulfate) and oxides (including various aluminas, spinels, hibonite, magnetite, and hematite), 

produced by aqueous alteration of primitive solar system materials, a distinct possibility for dust in 

an ~ 1 Gyr old system. 

We found the high SNR of the Spitzer data in the 7 - 13 /lm region to be highly constraining on the 

possible species present. As mentioned above, a good match to the Spitzer spectrum at the 95% 

confidence level (C.L.; X2
v < 1.06) was found only in the singular case of a model spectrum which 

included very abundant silicates, silica, metal sulfides, and amorphous carbon, and these are the 

baseline "definitely detected" species we list in Table 2 and quote as the result from this paper. An 

even better fit which includes a mix of P AHs, fullerenes, HACs and nano-diamonds is possible, 

but one this is also very non-deterministic due to the very rich, complex, and varied chemistry of 

carbonaceous materials, and we consider modeling these beyond the scope of this paper. We do 

note, however, that the presence of copious HACs and nano-diamonds material, produced on Earth 

as the kinetic detonation product of carbonaceous materials in impact craters and industry (El 
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Goresy et al. 1999, 2003, 2004; Ross et al. 2010) is immediately suggestive of an impact origin 

for the circumstellar 11 Corvi dust, assuming a very carbon-rich starting material. 

4. Modeling Results 

4.1 Dust Composition & Mineralogy. Overall,l1 Corv's circumstellar dust appears to be 

rather crystalline (~50% in the silicates and silica). There are abundant silicates, metal sulfides, 

amorphous carbon, and water ice, typically found in cometary and other primitive icy bodies. New 

features at 6.8 - 7.3 urn, 7.6 - 8um, and 8.5 /-lm and abundant silicas are found, that can be 

explained by moderate shock processing of a portion of the bulk material. The evidence for P AHs 

and water gas, also typically found in comets, is weak, but the SNR of the spectrum in the regions 

containing the characteristic emission features is low. On the other hand, there is no clear evidence 

for the presence of any carbonates, phyllosilicates, metal sulfates, or metal oxides due to aqueous 

alteration, arguing against the presence of warm, reactive water in the system for any great length 

of time, and it has too much C & S atomic content to have been heated and lost its volatiles in an 

equilibrium fashion over large periods of time. 

4.1.1 Silicates. As determined from their 8-13 and 16 - 25 /-lm spectral signatures, 17 Corvi's 

circumstellar silicates appear to be relatively primitive and Mg-rich, consisting of a combination 

of amorphous silicate, crystalline forsterite, and crystalline ortho-pyroxene and diopside, as found 

in comets. The dust is highly crystalline, > 70% by surface area, as seen for comets Hale-Bopp 

and Tempel 1 (Lisse et al. 2007b), and has been annealed vs. ISM material. On the other hand, the 

pyroxene:olivine ratio (Fig. 7) is too large for the silicaceous materials to have been modified by 

aqueous processing after incorporation into the parent body, as in dust derived from a carbon-rich 

C-type asteroid. We find a best-fit model with a spectrum ~45% due to silicates, of which about 

2/3 are Mg-rich olivines and 113 are Fe-Mg-Ca-AI pyroxenes. Unlike our results on cometary 

systems (Lisse et al. 2007a, Reach et al. 2010, Sitko et al. 2011), amorphous olivine-like material 

is conspicuously lacking, and the amorphous pyroxene-like is present only in low abundance. 

Through low velocity impact processing, expected in KBOs (Farinella & Davis 1996, Stern 1996, 

Brown et at. 2010, Brown 2010), and in the larger impact that created the dust concentration at ~3 

AU, it is likely that much of the primordial amorphous glassy silicates (typically in 1: 1 ratio with 
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crystalline materials), has been altered to form the observed crystalline silicates (Lisse et al. 2006) 

and silica. 

4.1.2 Silica. Unlike comets and other primitive collections of dust, 17 Corvi's dust shows 

evidence at 8 - 10 and 19 - 23 /lm for a large fractional amount of silica dust, ~ 30% by relative 

surface area and ~50% by Si atom count, mostly in a high temperature, low pressure quick­

quenched glassy tektite-like phase. Dust in the ~ 12 Myr, A5V HD 172555 system showed an even 

larger preponderance (> 50% by surface area and 70% by Si atom count) of silica, argued by Lisse 

et al. (2009) to be formed during a giant hypervelocity (Vintcraction > 10 km/sec) impact between two 

large planetesimals or planets. Silica is the kinetically favored species produced by intense, rapid 

heating and melting/vaporization of silicate-rich bodies followed by quick quenching - silica-rich 

materials are found in terrestrial lava flows and in the tektites and glasses found at the 

hypervelocity (Vimpact > 10 km/sec) impact craters on the Earth and Moon (Warren 2008). The key 

method of detecting the silicas is that they are the only source of strong, broad IR emission 

features at 8 - 10 /lm and 20 - 22 /lm. The tektite standard used for comparison here, a bediasite 

from Texas (Koeberl 1988), represents one of the 2 major tektite classes found on Earth. The 

Tektite materials also contain minority fractions ofMgO, FeO, CaO, Ah03, Na20, and K20; these 

minor fractions do not affect the spectral signature overly compared to changes seen due to 

condensing the material into the different polymorphs of silica, which can easily shift the emission 

peaks by 0.5 /lm while changing their shape. Because of this effect, we are able to determine that 

crystalline silica phases such as cristobalite and tridymite are not present, consistent with the lack 

of a significant 12.6 /lm feature found for T Tauri systems rich in crystalline silica (Sargent et al. 

2006; W. J. Forrest 2008, private communication). On the other hand, it is possible that a little bit 

of crystalline quartz is present as a minor species, but only just at the 95 % C.L. (Table 2). 

Unlike HD 172555, the 17 Corvi dust does not show the majority of dust to be in the silica form; 

there is about as much olivine and pyroxene in the mix. Models of impacts argue that melting and 

vaporization of 2 bodies will be incomplete and most concentrated near the point of contact for 

relative impact velocities of 1 to 10 km/sec, with the efficiency of melting and conversion to silica 

rising rapidly at higher velocities, and becoming negligible below 1 krnlsec (Grieve & Cintala 

1992, Cintala & Grieve 1998), the relative velocities expected for impact processing in the Kuiper 

Belt (Farinella & Davis 1996, Stem 1996); :'S 5 km/sec are the impact velocities found in our 
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asteroid belt. Finding approximately one-half of all 11 Corvi's dust in silica form argues for higher 

collisional interaction velocities, on the order of 5 to 10 km/sec, marginally possible in an YJ Corvi 

asteroid belt at ~3 AU from the primary, and definitely possible between a KBO and a body at ~3 

AU (See §5.5). As silica is not found in dominant abundance in interplanetary dust particles in our 

own solar system, nor is obvious in the large majority of mature debris disk spectra (e.g., 

HD69830, Lisse et ai. 2007b; E Eridani, Backman et al. 2009) this would appear to be good 

evidence that the 11 Corvi system currently has an unusually dynamically excited debris disk. A 

high velocity impact source for the 11 Corvi dust is also consistent with the detection of shock­

produced nano-diamonds from amorphous carbon and fullerenes from PAHs (see below). 

4.1.3 Phyllosilicates. No phyllosilicate spectral signatures at ~ 10 ~m, usually associated with 

aqueous alteration of silicate species, are detected in the 11 Corvi spectrum, arguing for a very 

primitive parent body source which never came in contact with a source of warm, reactive water. 

This is rather surprising given the large amount of water ice and gas detected in our spectrum, and 

our conclusion of a medium sized KBO or large sized Centaur parent body for the 11 Corvi dust. It 

is consistent with the non-detection of carbonates, sulfates, and metal oxides, also products of 

aqueous alteration. From a meteoritic perspective, a possible answer is that we are observing 

moderately shock heated carbonaceous chondrite material from a C-type asteroid with preferential 

destruction of phyllosilicates and hydrous sulfates in favor of olivines, pyroxenes, and sulfides 

(Tomioka et al. 2007, Morlok et ai. 2008, 2010), but such material contains too little carbon, no 

silica, and abundant magnetite compared to what we find in the YJ Corvi dust. We are driven to 

conclude instead that there was little to no free, warm water for any substantial amount of time in 

the parent body or bodies of the 11 Corvi dust, and that the body was assembled at very low 

temperatures where water was frozen out and unreactive, far from the 11 Corvi primary. This is 

consistent with a Kuiper Belt origin for the parent body of the dust, & inconsistent with a close-in 

asteroidal source (see Fig 2). 

4.1.4 Metal Sulfides. We detect a large abundance of metal sulfides due to strong mission at 25 

- 35 ~m in the Spitzer 11 Corvi IRS excess spectrum, similar to what is found in cometary and 

HD100546 dust and the STARDUST sample return. As for cometary systems, the major source of 

iron is in the Fe-sulfides (pyrrohtite, ningerite, and pentdantalite), and there is some minority iron 

in the iron-bearing olivines. There is not obvious signature of the minority iron bearing carbonate 
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species siderite (FeC03). The main sulfur reservoir in the IJ Corvi dust is the metal sulfides. The 

early solar system was a strongly reducing environment, as expected for a system with 

> 1000 H atoms for every 0 atom, and evidenced by the high abundance of Fe-sulfide (sulfur was 

the major oxidant available in the early solar system, condensing out from S vapor at ~600K and 

attacking any free Fe), but not Fe-sulphate or Fe-oxide species in primitive cometary dust 

(Zolensky et al. 2006, Lisse et al. 2007a). We do not find evidence for Fe-oxides, and only very 

faint (at the few % c.L.) evidence for Fe-or Mg-sulfates, as expected in warmed icy moon-like 

bodies with subsurface water-rich oceans (Postberg et al. 2009). Sulfates and oxides are the 

normal end product of aqueous oxidative attack on sulfide materials on the terrestrial planets, but 

the oxidative attack on native Fe stopped at the sulfide level in the PSN. 

The lack of sulfates and oxides in the IJ Corvi dust, the end-state oxidation products of metal 

sulfides found on the surface of terrestrial planets with copious available water (e.g. Mars or the 

Earth), along with the lack of obvious phyllosilicates and carbonates, argues against substantial 

aqueous alteration in an oxidizing environment of the parent body. We can use the same non­

detections to rule out a plate-tectonic, organics rich, aqueously altered terrestrial planet surface as 

the source of the observed dust, as reasonably suggested by Fujiwara (private comm., 2009). [On 

Gyr timescales, silicates are converted into crystalline silica, phyllosilicates, oxides, sulfates, and 

carbonates on the modem day Earth via plate tectonic subduction mixing hot rock with available 

reactive CO2 and water, while Mars shows extensive evidence of Gyrs of aqueous alteration in its 

layers of oxides, sulfates and phyllosilicates over basaltic olivine & pyroxene (B. Thompson 2010, 

private commun.)] 

4.1.5 Amorphous Carbon, P AHs, and Other Carbon Bearing Species. At 5 - 8 !lm, 

amorphous carbon emission is present in our best fit model at very high relative abundances, akin 

to those found for comets and HD 1 00546, the other carbon-rich systems we have studied to date 

(Lisse et al. 2006, 2007a; Figure 5). As there is currently some uncertainty in the removal of the 

stellar photospheric contribution which is critical to the detection of amorphous carbon, we quote 

here the range for the abundance of amorphous carbon in the debris disk by allowing the 

photospheric model to vary between the extremes of the allowed 20 limit of normalization. We 

conclude that the amount of amorphous carbon in the circumstellar dust to be between 0.14 and 

0.20 (by relative surface area), implying a significant amount, 2.9 to 4.5 moles (relative), or 
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between 43 and 54% by mole fraction of the total circumstellar material. 

Emission lines from carbon-bearing P AHs were detected in the 6 9 Ilm region of the 11 Corvi 

spectrum. Compared to HD 1 00546, they are found at modest relative amplitudes, but compared to 

comets, at typical levels. As described in Lisse et al. (2007a), this may be due to a relative paucity 

of IR-fluorescence exciting UV photons emitted by the 11 Corvi F2V star versus the AOV primary 

of HD100546. There are also new features at 6.8 - 7.3 urn, a potential feature at 7.6 - 8 urn, and a 

very strong 8.6 Ilm peak that cannot be accounted for by emission from silicas or PAHs. (While 

PAH emission typically show strong features at 7.7 and 8.6 Ilm, these emission are coupled, and 

the line ratio for ionized PAHs such that the 7.7 Ilm emission is much stronger than the 8.6 Ilm 

emission.) For 11 Corvi we find much the reverse, a very strong contribution at 8.4 to 8.6 Ilm. 

Sulfates, which have a very strong emission feature at 8.6 urn, have other emission features in the 

9 - 20 Ilm range that are not seen and thus cannot be contributing significantly to the observed 

flux. The 6.8 - 7.3 Ilm feature is in the 6.5 - 7.2 Ilm region typical of carbonate emission, but is 

narrower and weaker than the typical carbonate features seen by us in cometary spectra, and the 

corresponding 11.2 and 14 Ilm features are not found. 

Instead, we note that this region is rich in vibrational emission features from organic carbon 

species potentially seen in our 11 Corvi emissivity spectrum, including hydrogenated amorphous 

carbon (HACs) at 6.8 and 7.25 urn, surface moieties on and impurity modes in nanodiamonds at 7 

-7.4 Ilm and 8.5 9.0 Ilm (Fig 4d), fullerene stretches at 7.1,8.5, 12.7, 14.8, 15.7, 17.2, 18.8 Ilm 

(Fig 4e), and alkane out-of -plane bending modes at 6.8 and 7.4 Ilm. All of these Sp3 and Sp2 

species are consistent with a large relative abundance of carbon-rich species created by shock 

heating of primitive mix of amorphous carbon, nano-graphite, and simple hydrocarbon species 

(Stroud et al. 2011) or alteration of organic ices found on outer solar system bodies (e.g., tholins, 

Emery 2010 priv. comm., Fig 4f). Support for this finding is seen in the rare solar system Ureilite 

meteorites (e.g. Almahata Sitta), which show a very similar mid-IR spectrum (Fig 4) and very 

high abundances of carbon and organics, especially in graphitic and nano-diamond phases and 

complex organics (Sanford et al. 2010, Zolensky et al. 2010), purportedly due to shock and 

heating of an unknown but very primitive C-rich parent body in the very early solar system. The 

Ureilites consist predominantly of ferromagnesian olivine and pyroxene, as well as Ca-rich 

pyroxene (like diopside) in various proportions, in addition to minor elemental carbon - as found 
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for cometary bodies (Lisse et at. 2007a, Hanner & Zolensky 2009). Note, however, that other, less 

carbon rich meteorite samples, like the carbonaceous chondrites Allende, Murchison, Omans, and 

Virgano (Fig 4), do not match the Spitzer 11 Corvi spectrum well. 

Determining exactly which of these carbon species is present, though, can be challenging using 

remote sensing, due to the richness of carbon organic chemistry; for example, a perusal of the 

literature on nano-diamond mid-IR absorptance spectra will return as many different spectra as 

papers. (The main reason for this is that the absorptance behavior of nano-diamond is dominated 

by minority impurities at the ppm level and surface functional groups highly dependent on the 

chemical methods used to isolate the nanodiamonds.) For the purposes of this first results paper, 

because of the current uncertainty in the source of these emissions, we have chosen to leave these 

narrow emission features unfit. Regardless, the critical point is that emission in this region is 

ONLY found in carbon rich, primitive dust dominated Herbig Ae disk and comet dust spectra, 

and not in any of the rocky or asteroidal parent body debris spectra dominated by Si-O bonds 

that we have studied to date (Fig. 2). In fact, the emission lines in this region are stronger than 

those found in comets and most like those found in the most primitive of observed dust 

collections in young Herbig AelBe disks. Reflectance spectra of solar system KBO surfaces 

show that this material is also organics rich (Barucci et al. 2005, Dalla Ore et al. 2009). A large 

Centaur or Kuiper Belt object (r > 100 km), could easily retain abundant primitive carbonaceous 

material by maintaining a combination of low formation temperature and relatively large escape 

velocity. (e.g., the escape velocity for Enceladus, the icy moon of Saturn with roughly cometary 

composition and r 235 km is ~220 m/sec, as opposed to the ~ 1 m/sec escape velocity for the 3 

km radius comet 9P/TempeII). 

4.1.6 Water Ice and Gas. Water ice in considerable amounts is found in our best-fit model. The 

clear presence of water ice at 11 to 15 )lm is somewhat surprising at first look, given that the 

smallest dust particles appear to be as hot as 350K, and the average large dust particle temperature 

(~LTE) is 250 K, somewhat above the ~200K temperature at which water ice freely sublimates at 

o torr. Lisse et al. (2006) found the same dichotomy in refractory vs icy dust temperatures for the 

Tempel 1 ejecta produced by the Deep Impact experiment. Cooling by evaporative sublimation 

can stabilize the ice if it is isolated from the other hot dust, is "clean", and/or is present in large ( > 

1 mm) chunks (Lien 1990). 
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One of the first considerations is whether this water ice is coincidentally in the beam with the 

warm dust at 2 AU, and arises from the same ~150 AU source as the sub-mm dust detected by 

Wyatt et al (2005). Herschel has detected large cold dust at ~100 - 150 AU (Matthews et al. 2010, 

Fig 1c). Water ice at this location would have temperatures ~35K, however, and would be 

undetectable in the 5 - 35 11m wavelength range of the IRS (hard on the Wien law side of a 35 K 

blackbody, Eqn. 1) unless present at extraordinary quantities - a situation which is ruled out by 

measured SEDs (Figure 1; a similar analysis was used to distinguish water ice at different 

temperatures in the HD113766 system (Lisse et at. 2008)). Further, HST has not detected any 

signature of fine water ice in the system's Kuiper Belt (Clampin & Wisniewski 2011, priv. 

commun.), so any fine water ice detectable in the infrared must be located within an HST PSF, or 

inside ~ 10 AU of the primary. 

Instead, we must surmise that the water ice component in our best fit model, at temperatures of 

170 to 210 K, is located in the inner reaches of the Y) Corvi system, likely mixed in with the warm 

dust at ~3 AU, with its T LTE ~250K. While surprising, this explains the strong upturn we find in 

the Spitzer IRS emissivity shortward of 6 11m that cannot be fit by a Kurucz stellar emission model 

(Fig 4a), as well as the strong blue scattered light excess detected at 2 to 5 urn by our team using 

R~1000 spectroscopy from the NASAlIRTF SPeX instrument (Fig Ib). This excess is well fit by a 

water ice scattering model and demonstrates possible absorption features at 3 and 5 urn. These 

findings all appear to be good evidence (after careful examination and maximal possible stellar 

photospheric removal) for abundant high albedo (Pv > 50%) water ice particles close into the star 

(i.e., inside the HST limit of ~ 10 AU; Bryden et al. 's 2009 location of all warm dust within a few 

AU of the primary; and Smith et al. 's 2009 limit of all warm dust within 3.5 AU of the star). 

Creation of stable water ice particulates by an impact mechanism is plausible; the presence and 

survival of ejected water ice from a 10 kmlsec impact on an ice-rich body was demonstrated by 

the Deep Impact experiment at 10.2 km/sec relative onto comet 9P/Tempell in 2005 (Sunshine et 

al. 2006, Gicquel et at. 2011), and creation of actively sublimating large water ice particles from 

an icy primitive body was directly demonstrated during the recent EPOXI flyby of comet 

103P/Hartley 2 (A'Hearn et al. 2011). Survival of water ice over many years is another story­

Bockelee-Morvan et at. (2001) estimate the lifetime for a water ice grain to be given by 
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Lsublimation[sec] 2.4 X 104 sec * a(cm) at rh 1.08 AU from the 1 L0 Sun, assuming p = 0.5 g cm-3 

and "dirty" ice with an ice-to-dust mass ratio K 1. This implies that the fine 0.1 )lm to 1 cm icy 

dust released from a normal comet via outgassing or impact cratering (Lisse et al. 1998, 2004, 

2006, 2007) would dissipate on the order of days or less due to evaporation via stellar radiation 

driven sublimation; it would take a huge piece, ~ 1 0 km radius, of ice (extrapolating hugely across 

6 orders of magnitude in behavior) just to survive on the order of 1000 yrs, the age of the observed 

circumstellar dust that we estimate below. We have some guidance for long-term water ice 

stability from observations of evaporating and fragmenting icy comets (a = 0.3 to 50 km) in our 

solar system; we know that the icy cometary bodies lose material upon close passage through the 

THZ of the Sun, from fine )lm sized dust up to meter-sized boulders, yet survive for thousands to 

millions of years (Lisse et al. 2002) and are covered with dark, low albedo surface material ([i.e., 

like the mantle on the surface of icy comets allowing the 300 - 400 K surface temperatures 

observed on comet Halley (11 km radius, lifetime> 2500 yrs, Krasnopolsky et al. 1987); Borrelly 

(2.4 m radius, lifetime> 300 yrs, Solderblom et at. 2004); and Tempel 1 (3 km radius, lifetime> 

150 yrs, Groussin et al. 2007). 

There is possible evidence for a water gas detection in our model, at the ~5% relative abundance 

level, suggestion gas production by heating and sublimation of the water ice present. However, the 

water gas was only marginally detected in our Spitzer measurement, and we do not consider our 

analysis definitive on this subject, in that the IRS data become very noisy in the 5 - 7 )lm region 

diagnostic of water gas as well as carbonate, P AHs, amorphous carbon, and other carbonaceous 

materials. The presence of a weak water gas feature, if real, would be reassuring, as it suggests 

some active production of water ice and sink of it into water gas, followed by its quick 

dissociation (in ~20 hrs at ~3 AU) by the F2V primary's UV emission into 0 and H atoms 

followed by ionization, pickup, and outsweep by the primary's stellar wind. Further, deeper 

searches for H20 gas, and OH and 01 daughter products are warranted. On the other hand, we can 

clearly rule out the presence of large amounts of free water gas in the 1'} Corvi system. 

Overall, the presence of copious amounts of circumstellar water ice argues that something must be 

storing these grains and releasing them continuously, as would large objects being continually 

ground down, or something must be working to extend the lifetimes of the grains. The former 

scenario is inconsistent with the lack of a strong 6 )lm water gas emission feature in the Spitzer 
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spectrum, and also implies many orders of magnitude more icy dust mass than we detect today, so 

it is probably more likely that the water ice grains are very long lived. Very small grains, « 0.4 

um, can decouple from the local radiation field and last longer; however, these grains would not 

emit well at wavelengths of 2 - 35 J.lm by the same effect, and thus would have to be in huge 

abundance. 

Another possibility is that the observed water ice is very pure, without refractory dust inclusions 

or mixtures, so that the absorption of incident starlight is very low and heating by insolation is 

miniscule. Lien 1990 calculated that this effect can extend the lifetime of water ice particles by 

many orders of magnitude, finding lifetimes of 103 to 107 years for pure grains of radius 10 and 

100 um, respectively. (The lifetime of a grain is a strong function of its purity, and it takes as little 

as 5% by mass of darkish refractory material to maximize the "dirtiness" of a water ice grain and 

shorten its lifetime to its asymptotic minimum.) These pure water ice grain lifetimes are consistent 

with the detection of 0.1 - 1 00 J.lm particles by Spitzer that we report here and the ~ 1 03 yr we 

estimate have elapsed since the formative collision (see Sec. 4.5). The presence of pure water ice 

grains in Comet 9P/Tempeil and 11 Corvi argues strongly for a condensation mechanism for water 

from the gas phase that is independent of the solid refractory phase in an icy primitive body, and 

also greatly extends the amount of time icy grains have available to be incorporated into the body 

during its formation. 

4.2 Elemental Abundances. The major refractory species, with the exception of S and AI, are all 

very depleted vs. solar (Fig. 5), a pattern similar to those found for the young debris disk system 

HDl72555, with silica dominated debris formed as a result of a giant hypervelocity impact, and 

the Herbig disk system, HD 1 00546. The elemental abundance pattern is in distinct contrast to the 

near-solar values for cometary dust in our remote sensing assays (Lisse et al. 2006,2007, Reach et 

al. 2010, Sitko et al. 2011) and from the STARDUST sample return (Brownlee et al. 2006, 

Hanner & Zolensky 2009). The abundance pattern similarity to the hyper-velocity created dust in 

the HDl72555 system argues for significant collisional processing of the 11 Corvi warm dust, with 

concomitant preferential removal of Fe, S, and Ca, and addition of AI. A similar pattern of 

elemental processing is seen between the primitive upper mantle rocks of the Earth and melt­

altered crustal material (e.g., Adam, Baker, & Wiedenbeck 2002, and references therein). 
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4.3 Temperature of the Dust and Dust Location with Respect to the Primary. In previous 

work, long-wave infrared observations were used to reveal an extended disk around 1J Corvi of 

cold dust grains, located in a region intriguingly similar to our Sun's extended "Kuiper Belt," a 

zone of small bodies left over from the formation of our Solar System and the reservoir of short­

period comets. Similar disks are seen around 13 Pictoris (Okamato et al. 2004, Chen et al. 2007), 

Fomahault (Holland et al. 2003, Kalas et al. 2009), and E Eridiani (Greaves et al. 1989, Backman 

et al. 2009). Wyatt et al. 2005 found 11 Corvi to possess a cold dust component with Tdust = 35 ± 5 

oK, as inferred from SED fits to IRAS 12 - 100 /lm and JCMT SCUBA 450 and 850 /lm 

photometry. Their images of the 850 /lm submm dust ring locate it at 150 ± 20 AU, where TLTE = 

35 K. The inner 100 AU appears clear of sub-mm dust emission (c.f. Bryden et al. 2009; Fig. 1). 

The IRAS IR excess for 1J Corvi argues for a warm dust component of 370 ± 60K at ~2 AU from 

the primary. A second component is detected in IRAS photometry; self-consistent modeling of the 

IRAS and submillimeter photometry suggest that this population possesses a grain temperature T gr 

370 ± 60 K (Wyatt et al. 2005). Detailed fits to the Spitzer IRS 5.5 - 35 /lm spectra by Chen et 

al. (2006) suggested that this emission is produced by amorphous olivine, crystalline olivine 

. (forsterite) and crystalline pyroxene (ortho-enstatite) features with T dust = 345 K and a crystalline 

silicate fraction of 31 %, and black body grains with a temperature T dust 120 K. 

In this work we find the hottest small silicate grains, our best "thermometers" from the Deep 

Impact experiment (§3.5) to be at 350 ± 20 K (20), implying a dust location of 3.0 ± 0.3 AU (20) 

from the 11 Corvi F2 primary if we assume L. 4.9 LSolar. This is the equivalent of being - 1.3 

AU from the Sun in our solar system, a bit farther out than the Earth but still within the THZ 

and the realm of liquid surface water on any extant planetesimal. By comparison, Herschel 

observations reported by Matthews et al. (2010) place the 11 Corvi cold dust at 100 - 200 AU and 

the warm dust at 1.4AU (but assumes all dust is at 370 K and at LTE temperatures, ignoring the 

possibility of superheated dust. A similar "moving out" of warm dust detected in the HD69830 

system was found by our group - initial reports of dust at ~0.6 AU from the primary were updated 

to dust at -1 AU from the primary, after allowing for super-LTE heating of small dust grains) 

while Smith, Wyatt, & Dent (2008) and Smith, Wyatt, and Haniff (2009) using VL T/MIDI mid-IR 

interferometry place the warm dust at 0.16 - 3.5 AU (Fig 1; we note that our locating the warm 

dust at 3.0 ± 0.3 AU from this work is consistent with the outer possible extent found by these 
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groups; if correct, this implies that future measurements with larger telescopes or deeper 

integrations may be able to resolve the 11 Corvi warm dust population). We are confident in our 

estimates of the location of the 11 Corvi warm dust, as we placed the dominant warm dust in 

HDI00546 at ~13 AU from the primary (Lisse et al. 2007a), similar to the size of the inner gap 

found by Grady et al. (2005), and since comparison of recent observations of the warm dust 

location in HD 69830 and HD1l3766A using MIDI at the VLT (Smith et al. ref. 2009, 2011) 

show them to be consistent with the estimated locations derived by our group using the same 

method (Lisse et al. 2007b, 2008). 

A third dust reservoir, associated with the 120K blackbody dust at ~12 AU, reported in Chen et al. 

2006, has not been reproduced here. From our work, we do not consider the case for this dust to be 

conclusive, and finding a different modeling outcome to be reasonable given that (I) the re­

extracted and re-calibrated IRS mid-IR spectrum for 11 Corvi has changed substantially (see §2.2); 

(2) here we have improved over the first-order spectral models of Chen et al. (2006) with a 

focused in-depth model of each spectral feature, applying 5 more years of study of primitive body 

compositional mineralogy derived from analysis of the STARDUST sample return, remote 

sensing measurements made during the Deep Impact experiment, and thermal emission and 

transmission measurements of the emissivity of laboratory analogue powders; and (3) Bryden et 

al. (2009) find no evidence from interferometric imaging for an appreciable warm dust population 

outside a few AU in the 11 Corvi system, while Smith et al. (2009) localize the dust inside the 

Kuiper Belt to within 3.5 AU of the primary. 

The model of Wyatt et al. (2010), invoking an eccentric ring of dust with pericentre at 0.75 AU 

(TLTE = 500 K) and apocentre at 150 AU does not fit the warm dust temperatures and Spitzer mid­

IR spectrum we examine here, unless the dust is spread out along the orbit so as to appear to have 

a weighted color temperature in the 250 350 K range of our best fit model. 

4.4 Particle Size Distribution and Mass of Dust. From the modeling performed in this work, 

we find that the best-fit model particle size distribution is dnJda - a-3
.
5 

± 0.01 above 1 Jlm, as 

expected for dust in collisional equilibrium, and falls off faster than this below ~ 1 Jlm, as expected 

for dust particles smaller than the few micron blowout cutoff of the system (Figure 6). (Note that 
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our empirical blowout size is slightly smaller than Wyatt et al.'s 1999 blackbody value of 4 !lm, 

but here we utilize the opacities for real dust materials.) Both of these findings argue for dust that 

has had time to come to a steady state equilibrium by balancing radiation forces with collisional 

grinding of impact fragments. i.e. dust that is more than afew lO's of orbits old (~lrf yrs at 5.8 

AU around an l.4M@star). 

Integrating this PSD across particle sizes from 0.1 to 100 !lm, and normalizing to the total absolute 

fluxes measured for the circumstellar excess around II Corvi, we find a total minimum warm dust 

mass of > 8.6 x lOIS kg. This is an interesting amount of mass -larger by far than any comet ever 

observed in the solar system, but quite close to the mass estimated for a small to medium sized icy 

moon of the giant planets, a larger Centaur body, or a small to medium sized KBO (Table 3). It is 

also > 250 times the mass of dust in our current zodiacal cloud, assuming the cloud is the 

equivalent of one 15 km radius asteroid of 2.5 g cm-3 density. We note that there is nothing special 

about a largest particle size of 100 !lm, other than it is the largest particle easily measured by 

Spitzer; it is highly plausible that fragments upwards of 100 m exist, which would imply 1000 

times more total mass, or ~9 x 1021 kg of warm dust, equivalent to the mass found in the largest 

KBOs of the solar system. 

These results can be usefully compared to estimates derived for the extended cold dust component 

of the II Corvi disk. This component is well fit by emission at T = 35 ± 5 K, b = 0.5 and 10 20 

!lm. The fractional luminosity of this component isf= L/RIL* = 3 x 10-5 and the inferred dust mass 

assuming an opacity of kS50llm = 0.17 m2 kg- 1 (Wyatt, Dent & Greaves 2003 and references therein) 

is 0.04 MEarth for particles of 0.1 - 1000 !lm size. This is roughly 2.4 x 1023 kg, or a factor of 3 x 

104 more mass than we find here for the 11 Corvi warm dust; it is about the amount we would 

expect, though, from a simple scaling of the two dust SEDs for II Corvi that we see in Figure 1 -

each of roughly the same amplitude in flux but varying by a factor of 10 in color temperature. 

(Assuming Flux ~ aT3
, we would expect there to be about 103 times more emitting surface area 

and 3 x 104 times more mass in the cold dust reservoir than in the warm). It is compelling to note 

that it would take only ~ 1130000 of the mass of the observed II Corvi Kuiper Belt to produce the 

warm dust detected - dynamical stirring of the system's Kuiper Belt should perturb icy 

planetesimals onto many different orbits, and it would take only a very small fraction, or even just 
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one, of the scattered planetesimals to provide the observed warm dust. 

Using a simple model (with collisional lifetimes of planetesimals computed using a model for the 

outcome of different sized collisions, and assuming a size distribution appropriate for material in a 

collisional cascade scaled to the surface area of dust in that distribution through a fit to the SED of 

the disk emission), Wyatt et al. 2005 inferred from the age of 1 Gyr that the collisional cascade in 

this system starts with planetesimals a few km in size, implying an total mass of 20MEarth in 

planetesimals in the ring at 150 AU. This is similar to their inferred mass for the collisional 

cascade of the disk around the star Fomalhaut at age ~200 Myr (Wyatt & Dent 2002). 

In a related study using a more detailed SED model using realistic grain properties, Sheret et al. 

2004 found that the cold dust SED could be fit with a dust ring at 150 AU and a collisional 

cascade dust size distribution, but one with an additional imposed cut-off for grains smaller than 

amin = 30 flm rather than at the amin = 4 pm expected from a simple blackbody radiation pressure 

blow-out calculation (Wyatt et al. 1999). Grains in the size range of 4-30 flm must be absent 

because they are too hot (» 35 K) at this distance from the star to explain the shape of the SED, 

which would have stronger emission at 25 and 60 flm if these grains were present. Possible 

reasons for the absence of small grains, also seen in the spectrum of f Eridani, were discussed in 

She ret et al. (2004). These include the possibility that the 4-30 flm grains in the outer disk of '7 

Corvi are destroyed in collisions with < 4 flm grains which are in the process of being blown out 

of the inner regions by radiation pressure (Krivov et at. 2000, Grigorieva et al. 2007, Czechowski 

& Mann 2007). We also note that a dearth of small grains is expected in the model in which 

clumpy structure is formed by planet migration (Wyatt 2003, 2006; Figure 3). Both of these 

results are consistent with the PSD we find here for the warm dust in fJ Corvi (Figure 6). 

4.5 Timescale for the fJ Corvi Dust. The best-fit PSD for the YJ Corvi dust has structure in it due 

to the interplay of stellar radiation, stellar gravity, and dust-dust collisions. This structure can be 

used to estimate the dust's minimum age. E.g., the timescale for dust to be removed via radiation 

pressure and P-R drag (the so-called "blow-out time") at 3 AU is essentially the time it takes for 

dust to complete an orbit i.e., the dynamical time. For the warm dust, this is on the order of few 

years at 3 AU around an F2V star, and warm dust less than a few flm in radius is quickly removed 

from the system within 3 to 6 yrs after its formation - so that any sub-micron dust we see today 
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has been re-supplied via collisional grinding of the initial impact fragments (see below). We can 

also use the radiative timescale line of reasoning to "date" the cold dust in the Kuiper belt. 

Clampin & Wisniewski (2011, priv. commun.) report that extended emission around 11 Corvi was 

not seen in the optical by HST, implying that the extant Kuiper Belt dust detected by SCUBA and 

Herschel (Fig. 1c) must be large and also old, in that young fresh dust would have a detectable 

small particle component. Thus the Kuiper Belt collisions are not very recent, i.e. they have to 

have occurred at least more than a blowout dynamical time ago, > 1000 yrs at 150 AU. 

The timescale for dust to reach the collisional steady state found for 11 Corvi (whereby large 

particles grind down by collisions to create small ones) is their collisional lifetime. The time to 

reach a collisional steady-state depends on the local optical depth but also on the maximum 

particle size of the population. Collisional steady-state is reached first at the smallest sizes 

(because they contain most of the geometrical cross section) and then works its way up the size 

distribution (Wyatt et al. 2011). If we make the fiducial assumption that all the 3xlO19 kg of dust 

is distributed in an annulus 1 AU wide centered around 3 AU, and distributed from 1 /lm to 1 mm 

particles following the best-fit a-3
.5 power law, we find a corresponding vertical optical depth of 

a ~ 0.0015 and an approximate collisional timescale of Lorb/(l2a) ~ 6OLorb. Conservatively then, 

~ 1 00 orbital timescales or ~ 1000 yrs is needed to reach a collisional steady state for the detected 

micron size grains surviving blowout. This timescale is consistent with the radiative lifetime 

estimate for the cold Kuiper Belt dust formation derived above, implying that whatever formed the 

two dust belts in 11 Corvi happened over 1000 years before the Spitzer observations of the system. 

5. Discussion 

5.1 Nature of the Warm Dust. As stated in §4, the best-fit model for the 11 Corvi warm dust 

contains materials typical of primitive cometary dust, i.e., Fe/Mg olivines, Ca/Fe/Mg pyroxenes, 

silicas, Fe/Mg sulfides, amorphous inorganic carbon, water ice, and PAHs. Abundant silica and 

features suggesting the presence of carbon-rich material similar to nano-diamonds, fullerenes, and 

HACs, produced in collisions with V > 5 kmlsec, are also present. The dust appears to be very 

crystalline, as seen for many comets, and especially crystalline in the silicates. The temperature of 

the hottest non-carbon dust particles, < 1 /lm in size, is ~350 K, placing the dust at 3.0 ± 0.3 AU in 

the 11 Corvi system, or at the equivalent of ~ 1.3 AU in our solar system, near the outer edge of the 
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solar system's THZ. The size distribution for the dust trends as dn/da - a-3
.
5 above 1 !lm, as 

expected for dust in collisional equilibrium, and falls off faster than this below 1 !lm, as expectcd 

for dust smaller than the blowout cutoff of the system, implying dust in steady state equilibrium 

and older than 1 Kyr. The dust has been in its present location for over 1000 yrs. The total mass of 

dust is at least 9 x 1018 kg, equivalent to a 126 km radius, 1.0 g cm-3 non-porous icy body (medium 

to large Centaur, medium sized KBO) or 172 km radius, 0.4 g cm-3 porous icy (gigantic & 

unknown in the solar system) comet-like body. 

Important constraints on the nature of the 11 Corvi warm dust can also be obtained using the basic 

debris disk model of Wyatt et al. (2007). When applied to the 11 Corvi system, the results show 

that there is much too much warm circumstellar dust for a ~ 1 Gyr old system, and we can rule out 

a self-stirred or massive disk. This result is in qualitative agreement with the statistical argument 

presented in § 1, where we noted that the 11 Corvi excess (over the photosphere) flux is ~ 1 OOOx 

brighter at 24 urn than any other known system at ~ 1 Gyr. We must then invoke a stochastic 

collision scenario to explain the observed warm dust. Wyatt et al. 's 2002, 2005, 2007 studies of 

the 11 Corvi's cold dust came to a similar conclusion, with the exception that it is not one, but 

many collisions that are occurring, and that there is likely something dynamically perturbing the 

system's Kuiper Belt. From the lack of small cold Kuiper Belt dust Clampin & Wisniewski (2011, 

priv. commun.), we can infer that the dynamical time for collisions in the active and stirred up 

Kuiper Belt is longer than 1000 yrs (Sec 4.5), consistent with the dynamical age of ~ 103 yrs for 

the warm dust at ~3 AU inferred from its PSD. 

5.2 Comparison to Spectral Studies of Other Bright Dusty Disk Systems. With respect to 

other relatively mature systems of similar (~1 Gyr) age, 11 Corvi is approximately 1000 times too 

bright at 24 urn. Why? Our recent spectral modeling studies of other bright, dust-rich circumstellar 

systems can help guide our reasoning and narrow the possibilities. 

Observations of the HD 113766 high IR excess system (Lisse et al. 2008) found a huge amount of 

dust, at least a Mars' mass worth, closely resembling the inferred makeup of the common S-type 

asteroids, and composed of a "normal" mix of olivine and pyroxene and metal sulfides. The dust 

appears to be created by impact and collisional processes at low velocities in a dense primordial 

asteroid belt most likely undergoing planetary accretion - there is < 1 % abundance of silica in the 
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dust. While the compositional mix of11 Corvi and HOl13766 do have some general similarities in 

the silicate components (Fig. 2), the warm 11 Corvi circumstellar dust has much, much more 

amorphous carbon and strong features in the 6-8 /lm range indicative of C-rich species, silica, 

water ice, and possibly even ferrous sulphate to be derived from S-type asteroidal material. A 

similar contrast is found between the 11 Corvi and circumstellar material and the hyper-dusty 

debris disk found in the solar aged system BO+20-307 (Weinberger et al. 2011). 

Study of the HOl72555 circumstellar material (Lisse et al. 2009) finds a high preponderance of 

fine amorphous silica species (> 45% by surface area, 67% by Si atom count), SiO gas, and large 

pieces of blackbody dust (impact rubble), at least a Pluto's worth of dust mass, and a very non­

solar composition, indicative of a hypervelocity impact between rocky bodies. 4 more young 

"silica systems" (HO 23514, HO 145263, HO 15407 A, and HD 131488; Rhee et al. 2008, Lisse et 

al. 2010, Melis et al. 2010) have been identified by our group via spectral modeling as containing 

appreciable silica, confirming their importance. While 11 Corvi 's dust does have amorphous silica 

in its makeup, it is not the single most dominant species, nor is there any evidence for SiO gas due 

to volatilized rock. There are clear silicate emission features at 20 - 35 /lm, so that large blackbody 

grains are not very abundant. We do have to explain the presence of abundant, but not dominant, 

amorphous silica in the compositional mix. An impact at moderate velocity, at 5 - 10 kmlsec, of a 

primitive Kuiper Belt object, containing a dispersed mixture of silicate dust in an icy matrix, onto 

a rocky body would provide enough specific energy per kg near the point of impact to melt and 

vaporize silicates, but would not efficiently convert all silicates in either body; higher relative 

impact speeds of >10 km/sec are required to do this (Lisse et al. 2009 and references therein). A 

moderate 5 10 km/sec range of relative impact velocities would rule out direct transmission of a 

body on a highly eccentric, non-aligned orbit from the Y) Corvi Kuiper Belt to ~3 AU in the THZ 

(Vimpact - 50 kmlsec; Wyatt et at. 2010). It also rules out any impacts onto a body larger than the 

Earth (vcscapc = 11 km/sec). We note, however, that the upper velocity bound for this interaction 

might increase for very high relative abundances of water and water ice in the Kuiper Belt object, 

as they can act as thermal buffers absorbing the impact energy (1. Melosh, private comm., 2010). 

Examination of the 12 pc distant, 2 - 5 Gyr old H069830 system shows a high preponderance of 

olivine rich dust, and no evidence for volatile material of any type, a moderate amount of total 

mass, and a decidedly non-solar elemental abundance, implying a rocky, processed asteroidal 
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source for the material (Lisse et al. 2007b, Beichman et al. 2005, 2011). 11 Corvi 's circumstellar 

matter has about equal proportions olivine, pyroxene, and silica, abundant carbon-rich material, at 

least a 200 km radius asteroid's mass, and roughly solar composition refractories, implying a very 

different, much larger parent body than for the HD69830 system. Similar to the measurements of 

the HD69830 system, observations of the distant, ~100 Myr old ID8 and Pl121 systems (Gorlova 

et al. 2011) find a large amount of dust, about the same as detected around 11 Corvi, but composed 

of a mix of olivine and pyroxene, amorphous carbon, phyllosilicates and metal oxide species, 

again as expected for debris created by disrupting a C-type asteroid (30-40% of all asteroids in the 

solar system main belt) or shock heating carbonaceous chondrite meteoritic material (Tomioka et 

al. 2007). C-type asteroid material, while relatively primitive vs. S-type asteroid matter, has still 

undergone volatile depletion and extensive aqueous alteration compared to cometary or primordial 

nebula material. The ID8/P1121 material is silica-poor, < 1% abundance, indicating dust release 

by impact and collisional processes at low velocities. 11 Corvi does not have the amorphous 

pyroxene, phyllosilicates, or iron oxides of these debris disk systems, while evincing much more 

amorphous carbon, water ice, and silica, and strong features in the 6-8 /lm range indicative of 

carbon-rich species. 

As mentioned above, the flux of the 11 Corvi excess most closely matches the spectra of primitive 

water and carbon-rich material found in solar system KBOs and the ~1O Myr old HDI00546 

circumstellar disk material (Fig. 2b). The 11 Corvi warm dust also shows evidence for much more 

silica, another tracer of impact processing, with ~50% of all Si atoms in silicas. While somewhat 

similar in spectral signature to the primitive material seen released from comets by ISO and 

Spitzer (Lisse et al. 2006, 2007b, Reach et al. 2010, Sitko et al. 2011), including features in the 6 

to 8 /lm range due to water, P AHs, and organics, these features are much stronger in 11 Corvi and 

HD 1 00546 than in comets; comets also do not show evidence for silica, down to the < 5% 

abundance level (Lisse et al. 2007b, Sargent et al. 2009). Solar system KBO material is carbon­

rich (Barucci et ai. 2005, Dalla Ore et al. 2009) and impact processed (Farinella & Davis 1996, 

Stem 1996, Brown et al. 2010, Brown 2010). On the other hand, 11 Corvi's flux is somewhat 

weaker in the P AH lines than HD 1 00546' s (although this is most likely an excitation effect; see 

Lisse et al. 2007a) and the 11 Corvi dust shows evidence for less amorphous silicate and 

phyllosilicate material, suggesting a drier, and potentially collisionally dominated, processing 
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history for the KBOs forming at ~150 AU from the F2V primary than the HD100546 circumstellar 

dust at ~ 13 AU from its AOV primary. 

5.3.1 Parent Body Candidates. The parent body of the dust detected around 11 Corvi is a bit of a 

puzzle, but we have some clues. Without any other evidence, the age of the system alone would 

lend us to infer from analogous events in our own solar system that the production mechanism for 

the new dust is either a stochastic random collision between asteroidal bodies, a massive comet 

outburst, or impacts during an LHB event. From the presence of strong 5 to 8 Jlm emission 

features, the near-solar elemental abundance, and the approximately 1: 1 ratio of olivine to 

pyroxene dust, we can quickly rule out an asteroidal parent body (Fig. 2, 7); the observed dust is 

too primitive and carbon- and ice-rich to have been differentiated and processed much, as the 

material in most asteroids has been. 

We can also rule out the case of small parent cometary bodies. Ruling out a cometary parent body 

is somewhat harder to do than for asteroids; while the spectral match is relatively poor (Fig. 2), the 

11 Corvi dust is similarly primitive (Fig. 5) in the majority silicates, which tend to dominate the 

mid-IR emission spectra. But in fact it is too primitive for cometary dust, in that it is super 

organics and carbonaceous species rich, having retained many species that small cometary bodies 

cannot gravitationally bind [e.g., the deviation of HCNO species from solar abundance in comets 

(Lisse et al. 2007a) and CI chondrites like Orgueil (Lodders 2003).] The mass of warm dust 

observed, at least 9 x 1018 kg, is 3 to 4 orders of magnitude more than found in even the largest 

solar system comet presently known, CI1995 01 Hale-Bopp. 

The most likely storage mechanisms we know for large amounts of such primitive material in 

the solar system would be inside a large (?:. 100 km radius) icy body kept at low temperature 

throughout its lifetime in the outer solar system i.e., a KBO. The similarity between the 

HDI00546 and the KBO-derived 11 Corvi spectra (Fig. 2) are then no accident - both contain large 

amounts of primitive material found in primordial stellar disks near the end of the disk lifetimes at 

5 - 10 Myr age. The mass of warm dust observed, at least 9 x 1018 kg, is very comfortably about 

the same amount of mass as found in the larger Centaur bodies, smaller Kuiper Belt objects, or the 

smaller sized moons of the outer giant planets. 
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More clues are available from the cold dust disk present in the 11 Corvi system and current models 

of Kuiper Belt evolution. Assuming a collisional cascade in this system starting with planetesimals 

a few km in size, Wyatt et al. 2005 infer from the system age of -1 Gyr a total mass of 20MEarth in 

planetesimals in the belt at 150 AU. This is similar to the mass inferred for the collisional cascade 

of the disk around the young Herbig Ae star HD100546 of age -10 Myr (van Den Acker et al. 

1997, Weinberger et al. 2003), and for Fomalhaut at age -200 Myr (Wyatt & Dent 2002; Table 3). 

If we compare to our own solar system, this is also similar to the estimated primordial mass of the 

Kuiper Belt, but on the order of 2 magnitudes larger than inferred for its present day mass. The 

presence of vast amounts of cold Kuiper Belt dust in 11 Corvi at -1 Gyr, corresponding to -0.04 

MEarth, argues for recent collisional formation of the dust at -150 AU. Such eontinuous dust 

production will be more efficient in a dynamieally excited and perturbed Kuiper Belt, where 

collisions will be both more frequent and more violent (i.e., dust producing). In such a perturbed 

belt, the scattering of objects into the inner regions of the system would also be frequent. To 

produce the observed warm dust in the 11 Corvi system, all that is required is one object on the 

order of 10-6 MEarth be scattered into the inner few AU of the system _103 yrs ago where it was 

disrupted by a collision with a planetary sized object. The same collision, if it occurred at 

moderate velocities, would transform a partial fraction of silicates into silicas (Fig 4), create a non­

solar elemental abundance pattern (Fig. 5), and an olivine:pyroxene ratio off the normal trend line 

found for dusty disk systems (Fig. 7). (We should point out, however, that while we favor 1 large 

impact event as the simplest possible explanation and have written this paper as such, the impact 

of multiple smaller KBO bodies, of total equivalent mass greater than or equal to a 170 km radius, 

0.4 g cm-3 density body, could also have caused what we observe, as long as the bodies are large 

enough (2: 10 km) to produce long-lived km-sized ice-rich fragments and abundant Ilm- to mm­

sized silica dust.) 

5.3.2 Ureilites - Local Evidence for KBO Impacts. The closest spectral match we have found 

for solar system material to the Spitzer rJ Corvi dust excess spectrum is the rare Ureilite 

meteorite type - and the match is quite good (Fig. 4f, where we compare the silica and water ice 

removed Spitzer spectrum to the average transmission spectrum measured for the Ureilite 

meteorite fall of 2008 at Almahata Sitta in the Sudan (Sandford et al. 2010; Fig. 4). Ureilites 

contain the Mg-rich olivine, Ca-poor pyroxene, metal sulfides, carbon-rich matrix, nano-diamonds 

(in fact, we were led to look at the Ureilites as a match because of their high nano-diamond 
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content), and a little of the silica we find in the YJ Corvi dust. These meteorites are thought to be 

derived from an ultra-primitive, carbon rich precursor that has undergone a complex history of 

shock, disruption, collisional grinding, and re-accretion: "The textures, mineralogy, and depleted 

trace element composition of Ureilites suggest an origin in a partially melted (basalt-depleted) asteroidal 

mantle of a carbon-rich proto planet, the size of which is debated (Wilson et al. 2008). At the end of the 

igneous period, when some melt was still present, the UPB /Ureilite Parent Body] experienced a giant 

collision that shattered the mantle into 10-100 m-sized pieces (Herrin et al. 2010) and extracted the rest 

of the melt rapidly ... Most workers agree that after the giant collision, the fragments of the UPB 

reassembled into a jumbled state, possibly around the remnant of the original body. That body was 

subsequently hit to produce a family of daughter asteroids, a process that was repeated more than once 

over the history of the solar system, given the collisional evolution needed to get from approximately 10 

m-sized UPB fragments to some of the finer grained clasts found ... Based on the presence of nonureilitic 

material in Almahata Sitta, material originating from different parent bodies must have become mixed 

in." (After lenniskens et al. 2010; Fig. 8.) Studies of Ureilite meteorites consistently show 

evidence for both a primitive silicate mineral phase rich in carbonaceous materials mixed with 

differentiated and dry igneous phases (Goodrich 1992 and references therein) as well as formation 

under significant CO/C02 partial pressure, exactly what we would expect for a moderate to high 

(5-10 km/sec) impact between an icy, carbon-rich outer solar system primitive body and a rocky, 

dry inner planetesimal/planet. 

Thus there is good evidence in our solar system for material like we observe orbiting around YJ 

Corvi, likely produced by the collision between two bodies, a KBO and an inner system rocky 

body. As such, it should be sourced by inputs from each of these bodies. The ~60% of dust in the 

silicate and organics-rich portion is derived from original fragments and post-impact re-accretion 

of relatively unaltered material from each of these bodies. The similarity between the 11 Corvi and 

the ~ 1 0 Myr old HD 1 00546 excess emissivity spectra argues that the bulk of this unaltered portion 

of the 11 Corvi dust (> 75%) is derived from the incoming KBO. Whether this material was shed 

prior, during, or as a result of the collision is not clear, although its localization near 3 AU implies 

that it could not have been shed much outside of this distance. Ureilite studies argue, though, that 

some (the minority, we estimate :S 20%; see Fig. 4f) of the meteoritic silicates & carbonaceous 

material, and thus by inference, :S 20% of the YJ Corvi silicates & carbonaceous dust, comes from 

the impactee. 
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By contrast, the -30% (by surface area; 50% by molar weight of Si) of the 11 Corvi dust which is 

in the form of silica material must be formed in an impact at high temperatures and velocities. 

Silica is not found in abundance in comets, primitive HD 100546 disk material (Fig. 4f and Lisse et 

al. 2007b), Ureilite meteorites, or even in other early solar system materials. Since it is not 

primordial but is instead produced in high velocity impacts, we believe it is scarce because silica is 

not easily incorporated into any re-accreted post-impact bodies; formed at high velocity it escapes 

re-accretion into the local gravity wells and is instead blown out of the system by radiation 

pressure or absorbed into the star as fine dust after orbital P-R drag decay (see §4.5). Does it come 

from the impactor or impactee? Preliminary modeling of the many possible impact scenarios and 

outcomes suggests that the large majority of material ejected in a 2-body collision at km/sec 

interaction velocities derives from the impactor if the masses of the two bodies are in the ratio 

MimpactcclMimpactor> 100 or more. Thus the silicates and silica should be impactor-derived in the 

most likely cases, i.e., for an impact between a medium sized KBO on the order of 200 km in 

radius (or many, many smaller KBOs of equivalent total mass) and a planetesimal or planet of 

radius 1000 km or greater (O'Keefe & Ahrens 1982, 1985; Melosh & Tonks 1993; Benz et ai. 

2007; Marinova et al. 2011, given the> 9 x 1018 kg of dust mass present found in this work, and 

assuming:s 20% efficiency of ejecting material from the impacts between 2 large bodies (O'Keefe 

& Ahrens 1982; Benz et al. 2007; Marinova et al. 2011). 

In the more improbable other limiting case of an -200 km radius KBO impacting a roughly 

equivalent -200 km radius asteroid orbiting 11 Corvi, it is possible that more, up to 50%, of the 

warm, -3 AU circumstellar material was sourced by the impactee. This fraction should be 

considered a very conservative upper limit as it is based on models of impacts assuming both 

bodies were of equal size and strength, no impactee atmosphere was involved, and we ignore the 

role of water ice buffering. [As the impactor becomes weaker, the impactee atmosphere more 

dense, or the impactor more ice-rich, the fraction of ejecta from the impactor rises.] E.g., a 

typically water rich KBO impactor (Water Ice/Silicates - 1) will lose much of its collisional 

excitation energy via water evaporation, rather than silicate transformation, essentially buffering 

and protecting its silicates. It will also be more prone to fragmentation, breakup, and emission of 

silicate and water-ice rich ejecta. The water-poor impactee would still absorb and channel the 

received impact energy via silica production, so that the observed silica in the equal sized body 
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impact case would derive mainly from the impactee. (N.B., extensive water ice thermal buffering 

could also mean that the relative velocity of interaction of the two bodies could be higher, up to 

30% greater than the 5-10 k:mIsec quoted for the partial conversion of dry silicates to silicas, while 

still allowing impactor silicate survival and making the creation of silicas from the impactee even 

more efficient.) 

We can thus argue from simple impact models and first principles that the 11 Corvi 

silicate/carbonaceous debris is likely impactor composition dominated in all scenarios, and we 

recover the close match between the 11 Corvi and HD 1 00546 silicates; the main source of the 

silicas, however, could be from either body and is ill determined. However, caution suggests that 

that detailed thermo-physical and compositional impact modeling, beyond the scope of this paper, 

is required to properly address these issues and study all possible impact scenarios. 

5.4 Eliminated Model Scenarios. In our study of the 11 Corvi system, we have considered a 

number of non-large impact means of creation and dispersal of the observed material, but we can 

rule out each in turn on simple physical grounds. Three other main mechanisms come to mind: 

cometary sublimation, volcanic/geyser emission, and P-R drag of Kuiper Belt dust. Sublimation 

from a cometary body can produce primitive circumstellar material, but of somewhat dissimilar 

composition (Figure 2, §2.3) and even the largest observed solar system comet would produce 

orders of magnitude less dust than the observed YJ Corvi excess. 

Volcanic or geyser emission from a primitive composition icy moon (e.g., Enceladus (Waite et at. 

2009) or Phoebe (Clark et al. 2006)) driven by gravitational tides or an orbital resonance as it 

orbits around a gas giant parent could possibly produce the right mix of material, as suggested by 

recent in situ Cassini measurements of water and silica rich dust emanating from the interior of 

Saturn's moon Enceladus (Postberg et al. 2009). However, there are no known volcanoes on any 

of the solar system planets or moons, even 10, that could erupt material into interplanetary space. 

The same strong gravitational tidal heating that drives these sources also binds the material 

released from the small source moons into giant planet system orbits. Further complicating this 

scenario is that such a moon would be the equivalent of an active 10 or Enceladus-like body 

around a warm Jupiter at l.5 AU in the solar system, with LTE ~ 250K, and would most likely 

consist of highly processed and differentiated material. 
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Another possible creation mechanism for the warm dust seen in the 11 Corvi systems is the forced 

in-spiraling, via P-R drag, of dust produced in the system's Kuiper Belt at ~ 150 AU, in a 

continuous disk of material extending down to the inner reaches of the system. In order to be 

consistent with our finding of the hottest, smallest dust grains at 350 K, this in-spiraling must stop 

at ~3 AU from the primary (§4.3). Secession of the in-spiraling could be caused by sublimative 

losses of the icy component of Kuiper Belt dust, leading to a "sublimation barrier" (Kobayashi et 

al. 2008, 2009) and eventual repulsion and out-sweeping of the dust by radiation pressure. [In our 

own solar system, with an ice line at ~2.5 AU, the first bodies with notably stable surface ice 

reside at 5.2 AU and beyond, and HDlO0546 has an extensive disk of cold dust massing> 1022 kg 

reaching from its Kuiper Belt to its ice line at ~13 AU (Grady et al. 2005, Lisse et al. 2007a).] The 

expected minimum distance for this effect to operate, though, is significantly outside the system's 

ice-line, which for 11 Corvi at L* ~ 4.9 L~; is at ~5.5 AU. 

Another potential method of terminating the dust in-spiraling at ~3 AU would be the presence of a 

large Jupiter-sized body at this distance, much as models of the solar system's Kuiper Belt 

material (Liou and Zook 1999, Stark and Kuchner 2009) show a huge drop in the inflowing 

material at the orbit of Saturn. As in the collisionally produced case, this argues for a planet-sized 

object at 3 AU and a large production rate of Kuiper Belt dust, perhaps produced by a giant planet 

at 94 to 115 AU (i.e. in a 2:1 or 3:2 resonance with 150 AU KBOs). Arguing strongly against the 

in-spiraling scenario, however, is the new work of Smith et al. (2009) who used VLT 

interferometry to localize the 11 Corvi warm dust to locations within 0.16 2.98 AU, and that of 

Bryden et al. (2009), who used Spitzer MIPS 70 !lm photometry, CSO/SHARCII 350 !lm 

photometric imagery, and 8-13 !lm Keck Interferometer Nuller visibility measurements to 

demonstrate that there is no significant amount of dust in the regions between the cold outer 

submm disk and the inner warm dust reservoir, and that the two dust populations are distinctly 

separated in space. Further, no large Jupiter-mass planet at ~3 AU has been reported for the 11 

Corvi system (Lagrange et at. 2009). We thus conclude that P-R drag is not the dominant 

mechanism at work in this system's outer disk; collisions and blowout will dominate if the dust 

density is high. 
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5.5 Collisional Implications, Planet Detections, & LHB Delivery. Combined with the 

independent sub-mm observation of a large amount of cold icy KBO material located at ~ 150 AU 

in'YJ Corvi (Wyatt et al. 2005, Matthews et al. 2010), indicating a massive, excited Kuiper Belt 

producing ~0.04 MEarth of dust by collisions (the LTE ~ 35K dust is much too cold to be a 

sublimation product), our spectral and mineralogical analysis argues strongly for warm dust at ~3 

AU that is not only derived from a KBO or KBOs, but from bodies scattered into the inner regions 

of the 11 Corvi system within the last few thousand years by the same mechanism that caused the 

large sub-mm excess at ~ 150 AU (Wyatt et al. 2005, 2009; Moor et al. 2010; Fig. 8). (Note that 

the observed collisional debris was created via gradual in-spiraling of a scattered KBO due to 

multiple scattering and collisional grinding events (Bonsor & Wyatt 2012), and not direct 

scattering into a collision (Fig. 8) - with perihelion velocities with respect to the 11 Corvi primary 

star on the order of 50 km/sec, any body scattered onto an orbit with aphelion at 150 AU & 

perihelion at 3 AU would have so much specific kinetic energy relative to the ~20 km/sec of a 

planetesimal in an approximately circular orbit at 3 AU to melt, vaporize, & transform all the 

usual olivine & pyroxene constituents into silica hypervelocity impact products.) A planetary 

migration scenario (Gomes et al. 2005, Wyatt et al. 2005) would provide the Kuiper Belt 

excitation and scattering required to produce all the observed phenomena in the 11 Corvi system 

as Neptune migrated outward in our solar system, it swept mean motion resonances across the 

inner KB objects, pumping up their eccentricities scattering objects throughout the solar system, 

forcing eventual collisions. Raymond et al. (2011) argue instead that the simple presence of a 

large outer planet, coupled with a massive Kuiper Belt, can lead to LHB-instabilities and 

scattering on Gyr timescales. In either case, the estimated "transfer time" for such a gradual in­

scattering in our solar system is on the order of 103 to 105 yrs (Morbidelli 2011, priv. commun.), 

of the same order as the estimated age of the 'YJ Corvi dust belts. It is exciting to consider that the 

same series of circumstances could have led to the formation of the polyglot, compound, primitive 

and carbon-rich parent body for the Ureilite meteorites (Jenniskens et at. 2010 and references 

therein) from a KBO. 

Once we accept the KBO collisional hypothesis, another intriguing possibility occurs that 

dynamical stirring of the 11 Corvi Kuiper Belts is ongoing, small icy planetesimals are flying every 

which way as they are strongly scattered, and that LHB-like collisions are happening - collisions 

with a small, rocky planet at ~3 AU from the 11 Corvi F2V primary that is spraying large amounts 
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of free-flying primitive dust and debris into interplanetary space on Kyr to Myr timescales. It is 

important to remember that the detection of collisional products implies not only an impactor, 

but also an impactee, and are thus an indirect method of planet detection. As stated in §4, the 

mineralogical and size distribution evidence indicates that the impactor and impactee collided 

more than 103 years ago, at a velocity of interaction between 5 and 10 kmlsec. Since the final 

impact velocity will be the objects' relative velocity, increased by the gravitational acceleration of 

the impactee (adding roughly an amount Vcscape to the total), and decreased by any drag forces 

from the impactee's atmosphere (vanishingly small for an ~ 100 km radius body, relatively small 

for a 1 km impactor), the 10 kmls upper limit on the velocity of interaction sets constraints on both 

the size of the impactee and the orbit of the impactor. Specifically, as relative velocities are likely 

to be non-negligible, the impactee must have an escape velocity, Vcscape< 10 km/s, and thus a mass 

significantly below 1 MEarth. Deep searches for a terrestrial sized planet at ~3 AU, near the 

middle of the THZ of the 11 Corvi system, should thus be conducted (current searches place 

relatively weak upper limits of a 2 MJup sized planet in a 100 day orbit, Lagrange et al. 2009). 

Direct searches will likely be challenging, however, given current capabilities for detection, even 

for the relatively nearby 11 Corvi system at 18 pc distance. 

Recent work by Greaves & Wyatt (2010) has suggested that the solar system is a very dust-poor 

place, when compared to other Sun-like star systems, in the bottom 2-3%, and potentially very 

planet rich. Both our asteroid and Kuiper belts are thought to be highly depleted, by factors of 100 

1000, versus their original mass densities (Chambers 2004 and references therein). The natural 

inference is that the presence of an unusually large number of massive planetary bodies in our 

solar system has caused the removal of the majority of the potential parent bodies for dust 

production through planetary migration. The same unusually dust-free solar system we see today 

underwent an unusual period of small body scattering in the 0.5 1.0 Gyr timeframe. 11 Corvi 

would seem to be doing the same. (NB. - We estimate that alternative reasons for Kuiper Belt 

destabilization in 11 Corvi, like Galactic tides or passing stars, are unlikely to be causing 11 Corvi's 

Kuiper Belt excitation. 11 Corvi is currently at Galactic coordinates 1 296.1792, b +46.4217 

(J2000); farther off the galactic plane than the Solar System by ~Y2* 18.2 pc, in a relatively low 

stellar density region, and its Kuiper Belt is unlikely to be affected by galactic or stellar tidal 

interactions any more than our own solar system is currently.) 
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This line of reasoning has naturally led us to consider the probable nature of the planet-sized 

perturbing body at ~100 AU in the 11 Corvi system. (We note here that Bonsor and Wyatt 2012 

argue that a minimum of not 1, but 3 large planetary perturbers, with orbital semi-major axes at 

approximately 100, 58 and 23 AU, are required to transfer a KBO from 150 AU into 3 AU. 

Unfortunately from the present set of observations, the dynamical model constraints on the 

perturbing bodies are not very strong without making some assumptions.) The main constraints 

on the putative outermost major orbital perturber are the location of the warm dust, the 

upper limit of 5 - 10 km/sec on Vimpach and the location of the perturber. Strictly speaking, any 

eccentricity from e = 0 up to e 1 for the perturber is possible, because the latter would give a 

collision velocity of 8 kmlsec for a KBO and impactee on aligned (Mnclination = 0°) orbits. We 

thus end up with a constraint on the location of the outer planet that depends on the assumed mass 

(or rather escape velocity) of the impactee. We can constrain the eccentricity further !f the 

impacted object at 3 AU is a planet with an escape velocity of ~5 kmlsec in a co-planar orbit, since 

then the relative velocity of the impactor would have to be less than 5 krnlsec, requiring the 

eccentricity of the impactor and the perturber(s) to be e « I in order for the total impact velocity 

to fall in the range 5-10 km/sec. In this latter case the initial perturber is likely to be an ice giant or 

Jovian planet in 2:1 or 3:2 resonance with the system's Kuiper Belt objects, i.e., at a distance 94 to 

114 AU from the Eta Corvi primary, assuming the Kuiper Belt is centered at 150 AU. Future 

searches for migrating planetary bodies in this system at 100 - 150 AU from the 11 Corvi primary 

are thus highly warranted. They may be difficult, however - as any planet-sized body located in 

this region will be relatively "cold", within 10-20% ofLTE, unlike the hot young Jupiters imaged 

in the HR 8799 (Marois et al. 2009) and Beta Pic systems (Lagrage et al. 2009). 

Finally, it is interesting to speculate on the effect of the LHB on the Earth and other Earth-like 

bodies. Timing evidence for an LHB at 4.1 3.8 Gya has been found in Apollo samples returned 

from the Moon (Turner et al. 1973, Tera et al. 1974) and lunar meteorite isotopic studies (e.g. 

Cohen et at. 2000), and in iridium abundance measurements of impact craters in 3.8 Gyr old 

Greenland strata (J0rgensen et al. 2009). It has frequently been noted that the end of the LHB 

appears to roughly coincide with the first records of life on Earth (Westall 2008 and references 

therein). It is not clear, however, if the causal connection is due to the delivery of important water 

and organics-rich material to the Earth by LHB impactors, or due to the clearing out of most of the 

planet crossing small bodies in the solar system, and the cessation of frequent life-destroying 
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major impacts. We can say from this work that the contents of our purported medium-sized 

Kuiper Belt impactor(s) in the 11 Corvi system appear to be very water and organics rich, even 

after impact disruption and fragmentation in the inner system, and appear to have been an 

important source for delivery of astrobiologically important materials to a rocky planetesimal in 

the system's THZ, at -3 AU distance from the F2V 11 Corvi primary. The iridium abundance 

values found by 10rgensen et al. (2009) argue for similarly primitive icy impactors as the cause of 

the terrestrial Greenland impact craters during the LHB ; the recent fall in 2008 of the Almahata 

Sitta Ureilite meteorite (Jenniskens et al. 2010) provided a direct contemporary example of 

abundant organics delivery (Sandford et al. 2010, Zolensky et al. 2010) to the Earth. 

Literature estimates of the total amount of mass delivered to THZ objects during the solar 

system's LHB range from 2xlO17 to the Moon and 4 x 1018 to the Earth (Nesvomy et al. 2010, 

assuming multiple comets); 2 x 1018 kg to the Moon and 4 x 1019 kg to the Earth (H. Levison 

private comm. 2010, for large KBO deliverers); and 2 - 7 x 1020 kg to the Earth of asteroidal 

meteoritic material (Court & Sephton 2009). These amounts are close to the total amount of warm 

dust mass we find delivered to -3 AU in the 'Y) Corvi system, 2: 9 x 1018 kg. With respect to water 

delivery, the mass of circum stellar water ice & gas we detect in the 11 Corvi system, between 5 x 

1017 kg (for 5% relative mass of H20 in 9 x 1018 kg total of 0.1 - 100 ~m particles) and 5 x 1020 kg 

(for 5% relative mass of H20 in 9 x 1021 kg total in 0.1 - 100 m particles), is on the order of 0.03 

to 30% of the mass of the Earth's oceans. 

6. Conclusions 

The circumstellar excess spectrum in the -1 Gyr old 11 Corvi system most closely resembles the 

~ 10 Myr old dust found around young Herbig stars with late-stage primordial disks like 

HDI00546, material of near-solar composition that is primitive and still in the process of 

assembling planetary bodies, accreting onto the central star, and dissipating into the ISM, rather 

than the material found around HDl13766 (S-type asteroid debris) or around the older stars 

HD69830, ID8, and Pl121 (C-type asteroid debris). We interpret this as demonstrating that the 

parent body for the 11 Corvi warm circumstellar dust was a large object created early in the 

system's history, that it formed outside the ice line of the 11 Corvi system, and that it retained much 

of its icy volatiles and primitive material. The amount of debris is large, much more than the 
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largest comet ever seen in the solar system (C11995 01 Hale-Bopp) and much more like the size 

of a large Centaur or Kuiper Belt object (r > 130 km), massing enough that if collected into one 

body, it would mass at least 9 x 1018 kg (and possibly as much as 1022 kg if 100m debris fragments 

exist) and could easily retain abundant primitive carbonaceous material by maintaining a relatively 

large escape velocity. The ~30% abundance of silica by surface area is also not seen in any of the 

other cometary systems studied to date by our group, nor is the large amount of 6-8 Jlm emission 

due to carbonaceous dusty materials. The dust is in steady state equilibrium with the stellar 

radiation field and collisional grinding. We conclude that the silica was created at moderate 

relative velocities (5 to 10 km/sec) in an impact event at ~3 AU created after multiple scatterings 

and perturbations of a KBO's orbit, an event that occurred between a primitive, water & carbon­

rich Kuiper Belt like-object and a small « 1 MEarth) massed planet/planetesimal at ~3 AU over 103 

yrs ago. The driver for the infalling KBO as likely a perturbing ice giant or Jovian planet at ~ 1 00 

AU. Thus, we have good evidence at 1.1 - 1. 7 Gyr in the 11 Corvi system for the impact by a wet 

planetesimal (or planetesimals of equivalent mass) with radius ~ 200 km onto a larger body at 

-3 AU at moderate relative velocities, delivering significant amounts of water & organic 

materials to the system's THZ. The timing & relative location of the impact are similar to the 

predicted events occurring at the Earth and Moon in the solar system's THZ, during the era of 

the LHB at 0.6 - 0.8 Gyr. There are many similarities between this picture and the inferred origin 

of the organics-rich Ureilite meteorite parent body (Herrin et al. 2010), and a Ureilite meteorite 

fell to the Earth in Sudan in 2008, delivering carbon-rich material. There is also a very good 

spectral match between the YJ Corvi Spitzer spectrum and the 2008 Sudan Ureilite meteorite 

spectrum. 
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9. Tables 

Table 1. Pro(!erties of Star!l Corvi ~HR 4775; HD 109085) 
Name Spectral Type T* M* R* L* d Age fllJfbol rdust Tdust Vdusl 

(OK) (M0) (R0) (L0) (pc) (Gyr) (AU) (K) (km sec-I) 

HDI0958 F2V 6830 1.4 l.6 4.9 18.2 1.1 3 to 4 150 35 3 
6950 -5.0 to l.7 x 10-4 3.0 350 20 

Data from Nordstrom et al. 2004, Chen et al. 2006, Matthews et al. 2010 
For dust @ 3.0 AU and M*= lAMey=,tCGM*/r)=,tCG* IAMe/3.0AU)=,t (GMe/2.IAU) 

Table 2. Composition of the Best-Fit Modela to the Spitzer IRS fl Corvi Spectrum 
Species Weightedb M.W. Nmolesc Model Tmaxd Model X2

v 

Surface Area if not included 
Detections 

Olivines 
Forsterite (Mg2Si04) 0.30 3.2 140 0.69 350 II.! 

Pyroxenes 
AmorphSillPyroxene Composition 0.08 3.5 232 0.12 350 2.52 
(MgFeSiz0 6) 

Ortho-Pyroxene (Mg2Si20 6) 0.07 3.2 200 OJI 350 1.62 
Diopside (CaMgSi20 6) 0.05 3.3 216 0.08 350 1.32 

Metal Sulfides 
Ningerite (as MglOFegoS) 0.16 4.5 84 0.86 350 3.21 

Organics 
Amorph Carbon (C) 0.14 - 0.20 2.5 12 2.9 - 4.5 500 3.44 

Water 
Water Ice (H2O) 0.15 1.0 18 0.83 210 2.97 

Silicas 
Tektite 0.35 2.6 62 1.5 350 33.2 
(Bediasite, 66% Si02, 14%AI20 3, 7% MgO, 6% CaO, 4% FeO, 2% K20, 1.5% NazO, Koeberll988) 

Marginal Detections and U(1(1er Limitse 

Silicas & Silicates 
Quartz (SiOz) 0.06 2.6 60 0.26 350 1.07 
Fayalite (FezSi04) 0.02 4.3 204 0.04 350 1.04 

Water 
Water Gas (H2O) 0.04 1.0 18 0.22 210 1.03 

PAHs 
PAH (C IGH I4) 0.02 1.0 <178> 0.011 N/A 1.03 

Metal Sulfates 
FeS04 0.02 2.9 152 0.038 350 1.05 

Metal Oxides 
Magnetite (Fe304) 0.02 5.2 232 0.022 350 1.03 

Silicates 
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AmorphSil/Olivine Composition :s 0.005 3.6 172 :s 0.01 350 1.01 
(MgFeSi04) 
FerroSilite (FezSi20 6) :s 0.005 4.0 264 :s 0.01 350 1.01 

Silicas, SiD 
Obsidian :s 0.005 2.6 66 :s 0.02 350 1.01 
(75% Si02, 18% MgO, 6% Fe304) 
SiO Gas (100% SiO) :s 0.005 N/A 44 ::;0.01 350 1.01 

Carbonates 
Magnesite (MgC03) ::;0.005 3.1 84 :s 0.02 350 1.01 
Siderite 0.005 3.9 116 0.02 350 1.01 

v = 1.01 with power law particle size distribution dn/da - a"', 6.3 34.7;tm range of fit. 95% c.L. has v 1.06 
(b) - Weight of the emissivity spectrum ofeaeh dust species required to match the '1 Corvi emissivity spectrum. No BB fit has been added. 
(cl - Nmo!c,(i) - Dcnsity(i)/Molccular Weight(i) * Normalized Surface Area (il. Errors arc ± 10% (10). 
(d) - All temperatures are ±IOK (10). Best fit blackbody function to 6.3 - 34.7 ;tm IRS spectrum has Tbb 390 K. LTE @ rh = 3.0 AU from the 4.9 L,o!,. 
11 Corvi primary = 250 K. The best-fit temperature for the largest water icc grains was found to be 17gK. 
(c) - Marginal Detections: species which appear to improve the fit by ~ye, but do not improve the X v value above the 95% c.L. limit. We call these out 
in a separate section as while they are not dctected by the strict X v criterion they may be worth pursuing with higher sensitivity and resolution 
measurements in the future, as are fullercncs, nana-diamonds. and HACs in this system. 

Table 3. Derived Total Masses (in beam) for Dusty Disk Objects Observed by ISO/Spitzer and 
Selected Relevant Solar S~stem Objects 

Object Observer Mean Equivalent 19 urn Approximate 
Distance I Temp2 Radius3 Flux4 Mass5 

(pc/AU) (K) (km) (Jy) (kg) 
Earth 282 6380 6 x 1024 

Mars 1.5 AU 228 3400 6 x 1023 
HDl13766 (F3!F5) 130.9 pc 440 2:3000 (300) 1.85 2: 3 x 1023 (7 x 1020) 
ID8 (G8) 600.8 pc 900 2:3000 (670) O.oll 2: 3 x 1023 (3 X 1021 ) 
Moon 0.0026 AU 282 1740 7 x 1022 

HDl72555 (A5) 29 pc 335 2:830 (440) 0.90 1022 _1023 

-35 > {) 

Pluto 40 AU I! 80 1 x 
HDI00546 (Be9V) 103.4 pc 2501135 2: 910 203 2: 1 x 1022 

Asteroid Belt 0.1 - 5.0 AU Variable 3 Xl021 
30 - 300 (\ 

1] Corv; (F2) Warm Dust 18.2 pc 400 2: 140 2:9x1021 (9 X 1018
) 

41- J 
9 I 

HD69830 (KO) 12.6 pc 340 2: 60 (30) 0.11 2: 2 x 10 18 (3x 1017
) 

Zody Cloud 0.1 - 4.0 AU 260 4 x 10 16 

Asteroid 0.1 - 5.0 AU Variable 1 - 500 10 13 _ 1011 

Comet nucleus O.I-lOAU Variable 0.1-50 1012 10 15 

Hale-Bopp coma 3.0 AU 200 144 2 x 109 

1 340 3.8 1 x 106 

(2) - Mean temperature 
(3) - Equivalent radius of solid 
(4) - System or disk averaged flux. 
(5) - Lower limits arc conservative, assuming dust particles of size of 0.1 - 100 ~im (as detected by Spitzer, in parentheses), or O.ljlm 100m 
(extrapolated using the best-fit power law PSD), ignoring optical thickness effects. For HDl72555, we have included the mass ofSiO gas & large particle 
rubble in the estimate. For '1 Corvi, we quote the directly observed (by remote sensing) 0.1 100 jllTI mass in the abstract aud usc this quantity for 
determination of the minimum mass delivered. 
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10. Figures 
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Figure 1 (a) SED for l} Corvi showing the 0.4 2.2 
11m BVRl2MASS system photometry dominated by 
stellar photospheric emission, the 12 - 100 11m 
stellar/circumstellar dust MIR flux measurements of 
IRAS and Spitzer, & the 100 1000 11m cold FIR excess 
measured by Herschel and JCMT/SCUBA [2]. Solid 
grey line: combined fit to the YJ Corvi SED using a 2-
blackbody model (red) with warm (350K) & cold (35K) 
dust reservoirs + emission from a Kurucz F2V 
photosphere normalized to the BVR/2MASS 
photometry (dashed line). 

(b) Detail of the l} Corvi circumstellar excess flux 
(blue), as compared to blackbody emission (red) and the 
rocky circumstellar dust of HD 1137 66A (orange; Lisse et 
al. 2008). The Kurucz model shown in (a) has been 
subtracted from the Spitzer 5-35 11m total spectrum (light 
blue) and the total SPeX 2-5 11m spectrum (dark blue) in 
order to determine the excess. The SPeX data corroborate 
the steep upturn in Spitzer flux shortward of 6 11m, and the 
combined spectrum is consistent with scattering of 
starlight by high-albedo icy dust (light green). The 11 Corvi 
scattered light exccss must be from dust inside ~1O AU 
since the SPeX beam radius is ~6 AU, and since HST did 
not detect any extension at optical wavelengths beyond 
~10 AU (Clampin & Wisniewski 2011, priv. commun.). 
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(c) 100 11m (top) and 160 11m (bottom) Herschel PACS 
FIR images of YJ Corvi, after Matthews et al. (2010). 
Contours are shown at 0, 10, 30, 50, 60, 70, 80, 90 and 
99% of the peak in the map. Circles in the upper left 
corner of each panel mark the nominal beam sizes. 
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(d) JCMT/SCUBA submm images ofl] Corvi at 8S0 11m (1S.8" resolution), 4S0 11m (at 13.7" resolution) and 4S0 
11m with an effective resolution of 9.S" (after Wyatt et al. 200S). In all images, the observed sub-mm emission is from 
cold KB dust at a distance of ~ ISO AU (L TE ~ 3SK) from the primary; the star itself is not visible. Biolabate structure 
due to a tilted ring system is evident in the 160 11m and high-resolution 4S0 11m images. The second source toward the 
top in the sub-mm images is in the background and not relevant. 

(e) GEMINI and VL T profiles of 11 Corvi Nand Q emission compared to point stellar sources, showing the lack of 
resolved extension for the warm dust flux outside 3.S AU. (After Smith et aZ. 2008). 

54 



Warm KBO Dust in 'Y} Corvi 

Oilv 

o 

5 10 

Oliy 

Pyrox 

HD 100546 Disk, ISO-SWS 

Tempe! 1 Ejecta. SSi -;RS 

/" OIlY 
OIN + Pyrox FeS 

HD 113766 Disk. SST -IRS 

HD 69830 Disi<:, SST - iRS 

HD 172555 Disk. SST-IRS 

15 20 
Wovelength(um) 

25 

onv 

30 35 10 15 

Eto Corvi/HO 113766 

Eto Ca.vi/Hole-Bopp 

Eta Co,vi/HD 1 00546 

20 
Wavelength( um) 

25 30 35 

Figure 2 - (a) Comparison of the mid-IR emissivity spectrum of 11 Corvi with the spectra of dust from: a young, 
organic rich Herbig AO star building a giant planet (HDI00546); two comets (Hale-Bopp and Tempel 1); a young F5 
star building a terrestrial planet (HDIl3766); a mature main sequence star with a dense zodiacal cloud (HD69830); 
and the silica-rich debris created by a hypervelocity impact in the HDI72555 system. Spectra are ordered, starting 
from the top, by increasing rocky content and processing of the dust. The similarity between the t] Corvi and 
HDI00546 spectra is readily apparent. (b) Simple ratio comparison of the emissivity spectra oft] Corvi, HDlO0456 (a 
young Herbig with comets building giant planets), Comet Hale-Bopp, HD 113766 (a young F star building a terrestrial 
planet from S-type asteroidal dust) and HD69830 (a mature MS K-star with a dense zody from the recent breakup of a 
C-type asteroid). AI13 of the comparison systems contain young dust, formed in less than 15 Myr. The most primitive 
dust, found in the disk of HD 100546, produces the best match to the 11 Corvi dust, as can be seen from the relatively 
small excursions « ±25%) from the norm in the ratio, predominantly at A < 16 um. Most of the differences between 
the 11 Corvi and HD 1 00546 emissivity can be attributed to differences in the relative abundances of water ice and 
carbon-rich components (see Fig. 4). 

1l F5-K7 stars 
h FG-F4 starn 

Figure 3 - Dusty disk IR excess flux vs. system age. 11 Corvi is the 3rd brightest of Chen et at. 2006's 59 lRAS­
excess systems, and the only one which is a "mature" MS system of ~ 1.4 Gyr age, or about 113 of its total MS 
lifetime. The lit and Ue trend lines fit most of the sources in the current sample except outliers like 11 Corvi, which 
clearly has a high LIR/L. 3 xl 0-4 for its age, suggesting something unusual has occurred in this system. 
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Figure 4 - Spitzer IRS emissivity spectrum of the 11 Corvi 
circumstellar excess (black), and best-fit compositional model 
(orange dashed line). (a) Best fit model components using small, 
solid, optically thin dust grains with ferromagnesian silicates 
(olivines in dark blue, pyroxenes in purple and light blue) and 
silica (bright green), amorphous carbon (red), metal sulfide (olive 
green), water ice (dark orange) & gas (light orange), PAHs 
(yellow), and amorphous carbon (red). The relative contribution 
of each species to the total observed flux (Table 2) is given by the 
amplitude of each emissivity spectrum; for presentation purposes, 
the large fractions of forsterite and Fe-sulfide have been divided 
by 2 before plotting. 

(b) Residuals of the best-fit model to the Spitzer IRS emissivity 
spectrum. All of the usual silicate species have been accounted 
for and subtracted, as well as the water ice contribution to the 
emissivity. The contributions of the unusual amorphous, glassy 
silica ('Tektite', broad green and 'Quartz', narrow green spike at 
8.5 and 21 urn) species ean clearly be seen, as can the emissivity 
contributions of the more typical species amorphous carbon (red), 
water gas (orange) & metal sulfides (olive green). 

(c) Same residual plot, with the 5-15 ).lm region emphasized to 
present details of the poorly fit emission features due to C-rich 
species at 6-8 ).lm (likely due to additional nanodiamonds, 
fullerenes, & volatile Tholins; see Figs. 4d-f). 
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(d) Typical IR absorption spectra of "pink" nanodiamonds from the 2010 study of GaiIlou et at. The mid-IR behavior 
is dominated by the main diamond C-C stretch at 1331 cm - I, by ppm C-N impurity vibrational features at 1430 cm - I, 

by platelets at 1362 cm I, & by C-H stretches at 1405,2785,3107,3236, and 4496 cm- i
. 
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(e) Continuum subtracted and forbidden emission line removed Spitzer-IRS spectrum of PN Tel from 5 - 23 11m, 
compared to fullerene emission lines (after Cami et at. 2010). Red arrows mark the wavelengths of all IR active 
modes for C60; blue arrows those of the four strongest, isolated C70 bands. The red and blue curves below the data are 
thermal emission models for all infrared active bands of C60 and C70 at temperatures of 330 K and 180 K, respectively. 
The broad plateau from 11 - l3 11m is attributed to emission from SiC dust. Apparent weak emission bumps near 14.4, 
16.2, 20.5 & 20.9 11m are artifacts. The nature of the weak feature near 22.3 11m is unclear since it appears differently 
in both nods. 
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(f) Comparison of the 11 Corvi carbon/silicate dust emissivity spectrum (i.e., with the altered silica and ephemeral water 
ice components removed) vs. the transmission spectra of a Ureilite meteorite, four C-rich carbonaceous chondritic 
meteorites, & three Tholin spectra. Above Top: Versus the Almahata Sitta meteorite fall of Oct 2008. The agreement 
with the Almahata Sitta spectrum, a Ureilite, is very good, with the exception of small differences in the continuum at 
12-15 urn (most likely due to uncertainties in our water ice modeling and/or Spitzer order matching; a similar problem 
is seen in the 11 Corvi/HD I 00546 spectral ratios, Fig 2), & narrow features at 6-8 !lm likely due to additional 
nanodiamonds, fullerenes, & volatile Tholins. Above Middle: 11 Corvi dust emissivity spectrum versus transmission 
spectra from the main primitive, carbon-rich carbonaceous chondrite classes, CI, CM, and CV. The meteorite spectra 
are poor matches. Above Bottom: Transmission spectra of carbon and ice-rich "Tholins", laboratory materials 
fabricated from mixes of icy protoplanetary disk materials exposed to UV, x-ray, ionizing radiation, and/or electrical 
discharges at temperatures and pressures expected for outer solar system small bodies and moons. The absorption 
features of the Tholins lie in the 6-8 urn range, and can account for many of the unexplained features seen in the 11 
Corvi spectrum above the continuum and the Almahata Sitta spectrum; they would also likely be relatively volatile, and 
thus destroyed easily, before being incorporated into the Almahata-Sitta parent body. (g) Below: Same as above, except 
comparison of the solar system materials to the ISO HD I 00546 circum stellar excess spectrum. As for 11 Corvi, the 
similarity to Almahata-Sitta is also strong, but mismatches exist, mainly due to the presence of strong P AH features in 
HD 100546 at 6 - 8 !lm. 
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Figure 5 - Derived elemental abundances for the'll Corvi dust excess, relative to solar abundances, and as compared 
to other Spitzer dust spectra (Figure 2). (Left) High photospheric subtraction, low amorphous carbon model 
abundances. (Right) Low photospheric subtraction, high amorphous carbon model abundances. The Si relative 
abundance has been set 1.0. The major refractory species, with the exception of S and AI, are all very depleted vs. 
solar, quite different than what is found cometary dust, which trends near solar. A similar pattern was found for the 
young debris disk system HDI72555, with silica dominated debris formed as a result of a giant hypervelocity impact, 
and the Herbig disk system, HD 1 00546. 
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Figure 6 Derived particle size distribution for the l1 Corvi dust excess producing the strong silica and silicate 
emission features. The derived PSD is close to one in collisional equilibrium with small « 1 ~m) particles removed 
preferentially by radiation pressure and P-R drag. Error bars are estimated at 50% of the relative abundance at a given 
size. 

59 



Q) 
c: 
Q) 
X 
o .... 

4 

ct'3 
o 
(5 
I-

~2 
c: 
:~ 
5 
o ....-

o 
HOI72~5 

Eto~_ 

HoIe-BoppO 

~UNG 0 WIk32 0 Tempel! 

o 
I-

() HOl00546 

$
0163296 <:)0 
.h.. Eto Cotv' 
vnolmes 

10 20 30 40 

o 

80+20-307 1080 
. OG29-58 
FlE-HEttfiNG" 

OGO.362 P'fPOLYSi
OH089830 

VOLATILE lOSS, 
DIFFERENTIATION PI! 21 0 

H0113766 

Warm KBO Dust in 'l1 Corvi 

Figure 7 - Silicate mineralogy for 11 Corvi 
versus that found in 5 comet systems (SW3B/C, 
Sitko et al. 2011; Hale-Bopp, Lisse et at. 2007a; 
Holmes, Reach et al. 2010; Tempel 1, Lisse et al. 
2006; and Wild 2, Zolensky et af. 2007, 2008), the 
primitive YSO disk systems HD 1 00546 (Lisse et 
af. 2007a) and HD163296; the primitive dust found 
around HD98800B; the crystalline, S-type asteroid 
material in the ~10 Myr old F5V terrestrial planet 
forming system HD113766 (Lisse et al. 2008); the 
hypervelocity impact debris created in the 12 Myr 
HD 172555 system; the mature asteroidal debris 
belt system HD69830 (dominated by P/D outer 
asteroid dust; Lisse et al. 2007b) and the similarly 
rocky material found in the hyper-dusty, solar aged 
F-star system BD+20-307 (Weinberger et al. 

50 60 70 80 2011); and the ancient debris disk of white dwarfs 

% Totol Olivine G29-38 (Reach et al. 2008) and GD362 (Jura et al. 
2007). The general trend observed is that the 

relative pyroxene content is high for the most primitive material (i.e., YSOs), and low for the most processed (i.e., white 
dwarfs). Young systems with material altered by high velocity impact processing, like HDI72555 and 11 Corvi, lie above 
and to the left of the trend line. Note, however, that the 11 Corvi point is roughly half-way between the aggregate trend line 
and the location of the strongly altered HD 17255 material, consistent with partial transformation of roughly 50% of the 11 
Corvi silicates into silica (see text). Another point (11 Corvi') has been included, to demonstrate where the 11 Corvi material 
would map to if all the observed silica were derived from the more fragile pyroxene silicate - right next to the location of 
the best spectral match system HD100546 (Fig. 2), a 10-15 Myr Herbig star with an evaporating and aggregating thick 
proto-planetary disk of gas and dust. This suggests that the 11 Corvi parent body must have formed very early, and remained 
unaltered until a recent high velocity collision released its material. 

Figure 8 - Left. Schematic representation of the best-fit scenario for producing the observed warm dust in the 11 Corvi 
system: Over many YIyrs, a medium sized (l00 - 200 km radius) KBO was scattered onto an in-spiraling orbit crossing 
into the inner reaches of the system, where it intersected the orbit of a planetary-sized rocky body located in the THZ, at ~3 
AU. Much of the resulting debris was left in near-primary orbit at ~3 AU, where it continues to grind down. The dynamical 
process causing the KBO scattering continues to stir up collisions in the system's Kuiper Belt, producing cold dust there as 
well. Right. Cartoon depicting the estimated history for the Ureilite parent body in the solar system, which is also consistent 
with the 11 Corvi KBO rocky planetesimal impact subsequent reassembly + fragment collisional grinding scenario. 
(After Jenniskens et af. (2010).) 
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