

to practice in such an experiment, where a hot rocket nozzle was cooled using a two-phase fluid (where the fluid temperature may thus be verified, using the saturation pressure). The measured temperature in the cooling annulus

showed good agreement with the method, and the thermocouple became essentially insulated from the wall by setting the hot junction at a distance corresponding to the parameter value of 4.60.

This work was done by Patrick Lemieux, William Murray, Terry Cooke, and James Gerhardt of California Polytechnic State University for Dryden Flight Research Center. Further information is contained in a TSP (see page 1). DRC-010-030

∞ On-Wafer Measurement of a Multi-Stage MMIC Amplifier With 10 dB of Gain at 475 GHz

Imaging applications include hidden weapons detection, troop protection, and airport security.

NASA's Jet Propulsion Laboratory, Pasadena, California

JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325–500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz.

The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC's 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 µm in width. The circuits use grounded coplanar waveguide topology on a 50-µm-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide trans-

mission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445–490 GHz.

Low-noise amplifiers in the 400–500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400–500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends.

Present receiver technology typically employs mixers for frequency down-conversion in the 400–500 GHz band. Commercially available mixers have typical conversion loss in the range of 7–10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.

This work was done by Lorene A. Samoska, King Man Fung, David M. Pukala, and Pekka P. Kangaslahti of Caltech; and Richard Lai and Linda Ferreira of Northrup Grumman Corp. for NASA's Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1). NPO-47541

Software to Control and Monitor Gas Streams

John F. Kennedy Space Center, Florida

This software package interfaces with various gas stream devices such as pressure transducers, flow meters, flow controllers, valves, and analyzers such as a mass spectrometer. The software provides excellent user interfacing with various windows that provide time-domain graphs, valve state buttons, priority-colored messages, and warning icons. The user can configure the software to save as much or as little data as needed to a comma-delimited file. The software also includes an intuitive scripting language for automated processing. The configuration allows for the assignment of measured values or calibration so that raw signals can be viewed as usable pressures, flows, or concentrations in real time. The software is based on those used in two safety systems for shuttle processing

and one volcanic gas analysis system.

Mass analyzers typically have very unique applications and vary from job to job. As such, software available on the market is usually inadequate or targeted on a specific application (such as EPA methods). The goal was to develop powerful software that could be used with prototype systems. The key problem was to generalize the software to be easily and quickly reconfigurable.

At Kennedy Space Center (KSC), the prior art consists of two primary methods. The first method was to utilize Lab-VIEW and a commercial data acquisition system. This method required rewriting code for each different application and only provided raw data. To obtain data in engineering units, manual calculations were required. The second method was to utilize one of the

embedded computer systems developed for another system. This second method had the benefit of providing data in engineering units, but was limited in the number of control parameters.

Other products allow the same end effect, except multiple computers would be required along with multiple software packages. This is compounded by the difficulty in timing the various software products. The software package described here is a combination of gas stream monitoring software products. It combines pressure monitoring and control, fluid flow monitoring and control, and many chemical analysis products, including, but not limited to, mass analyzers, turbo pumps, dew point sensors, oxygen sensors, temperature sensors, and the like. It allows for real-time display of raw data as well as reassigned cal-