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Abstract— MapReduce is an approach to high-performance ana-
lytics that may be useful to data intensive problems in climate 
research. It offers an analysis paradigm that uses clusters  of 
computers and combines distributed storage of  large data sets 
with parallel computation. We are particularly interested in the 
potential  of MapReduce to speed up basic operations common to 
a wide range of  analyses. In order to evaluate this  potential, we 
are prototyping a series of  canonical MapReduce operations over 
a test suite of  observational and climate simulation datasets. Our 
initial focus has been on averaging operations over arbitrary 
spatial and temporal extents within Modern Era Retrospective-
Analysis for Research and Applications (MERRA)  data. Prelimi-
nary results suggest this approach can improve efficiencies within 
data intensive analytic workflows.
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I.   INTRODUCTION

Our understanding of the Earth’s processes is based on a 
combination of observational data records and mathematical 
models.  The size of NASA’s observational data sets is growing 
dramatically as new missions come online. However a poten-
tially bigger data challenge is posed by the work of climate 
scientists, whose models are regularly producing data sets of 
hundreds of terabytes or more. 

The NASA Center for Climate Simulation (NCCS) pro-
vides state-of-the-art supercomputing and data services specifi-
cally designed for weather and climate research [1]. The NCCS 
maintains advanced data capabilities and facilities that allow 
researchers within and beyond NASA to create and access the 
enormous volume of data generated by weather and climate 
models.  Tackling the problems of data intensive science is an 
inherent part of the NCCS mission.

There are two major challenges posed by the data intensive 
nature of climate science. There is the need to provide com-
plete lifecycle management of large-scale scientific reposito-
ries. This capability is the foundation upon which a variety of 
data services can be provided, from supporting active research 
to large-scale data federation, data publication and distribution, 
and archival storage. In the NCCS, we think of this aspect of 
our mission as climate data services.  

The other data intensive challenge has to do with how these 
large datasets are used: data analytics — the capacity to per-
form useful scientific analyses over enormous quantities of data 
in reasonable amounts of time. In many respects this is the big-
gest challenge; without effective means for transforming large 
scientific data collections into meaningful scientific knowl-
edge, our mission fails.

MapReduce is an approach to high-performance analytics 
that may be useful to data intensive problems in climate re-
search [4]. MapReduce enables distributed computing on large 
data sets using clusters of computers.  It is an analysis paradigm 
that combines distributed storage and retrieval with distributed, 
parallel computation, allocating to the data repository analytical 
operations that yield reduced outputs to applications and inter-
faces that may reside elsewhere. The architecture thus has im-
portant networking and communications implications as well. 
While MapReduce has proven effective for large repositories 
of textual data, its use in data intensive science applications 
has been limited [5,  6], because many scientific data sets are 
inherently complex, have high dimensionality, and use binary 
formats.

To gain a better understanding about the potential of this 
approach, we have been evaluating MapReduce and the Apa-
che open-source Hadoop Distributed File System (HDFS) [7] 
on representative collections of observational and climate data. 
We have focused on a small set of canonical,  early-stage ana-
lytical operations that represent a common starting point in 
many analysis workflows in many domains: for example, aver-
age, minimum, maximum, and standard deviation operations 
over a given temporal and spatial extent.

In this paper,  we describe our evaluation of select MapRe-
duce attributes from these experiments, including an assess-
ment of data preparation, ingest,  and space complexities of 
creating repositories of the test data sets and the time and space 
complexities of server-side processing of canonical operations 
along scaled ranges of their spatiotemporal parameters.

II.   CLASSIC ANALYTIC WORKFLOWS

Data intensive analytic workflows bridge between the 
largely unstructured mass of stored scientific data and the 
highly structured, tailored, reduced,  and refined products used _______________________________________________________________
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by scientists in their research. In general, the initial steps of an 
analysis, those operations that first interact with a data reposi-
tory, tend to be the most general, while data manipulations 
closer to the client tend to be the most specialized to the indi-
vidual, to the domain, or to the science question under study. 
The amount of data being operated on also tends to be larger on 
the repository-side of the workflow, smaller toward the client-
side end products. 

For example, the European Soil Moisture and Ocean Salin-
ity (SMOS) [8] satellite is providing global maps of soil mois-
ture every three days at a spatial resolution of 50km and global 
maps of the sea-surface salinity over an area of 200x200km. 
The NCCS manages a small subset of this data for SMOS sci-
entists working at Goddard. These scientists would like to sub-
set the data and find spatial zones around the Earth that do not 
change significantly over time. These zones can be used to 
calibrate and validate of SMOS instruments.

To do this now, data sets from the SMOS collection are 
downloaded to local work stations where they are organized, 
moved to NCCS computers,  then analyzed using MatLab.  This 
traditional type of workflow for large-scale data analysis se-
verely limits the scientists and hampers their ability to look at 
phenomena over broader spatial extents. Importantly, this ex-
ample shows how a very simple canonical operation such as 
finding the average value over a portion of the Earth and meas-
uring how that value changes over time can be quite cumber-
some to the scientists.

III.   MAPREDUCE ANALYTIC WORKFLOWS

We have used the SMOS example as a foil to design a Map-
Reduce alternative to this classic analysis scenario. MapReduce 
is a framework for processing highly distributable problems 
across huge data sets using a large number of computers 
(nodes).  In a “map” operation the head node takes the input, 
partitions it into smaller sub-problems, and distributes them to 
data nodes.  A data node may do this again in turn, leading to a 
multi-level tree structure. The data node processes the smaller 
problem, and passes the answer back to a reducer node to per-
form the reduction operation. In a “reduce” step, the reducer 
node then collects the answers to all the sub-problems and 
combines them in some way to form the output —  the answer 
to the problem it was originally trying to solve.  The map and 
reduce functions of Map-Reduce are both defined with respect 
to data structured in <key, value> pairs [9]. 

For this work, we used Modern Era Retrospective-Analysis 
for Research and Applications (MERRA) data [10].  MERRA 
uses the newest version of the Goddard Earth Observing Sys-
tem (GEOS) Data Assimilation [11,  12] to create a reanalysis of 
the last 30 years of observation data. The project provides a 
global view of the hydrological cycle across a broad range of 
weather and climate time scales. Retrospective-analyses (or 
reanalyses) have been a critical tool in studying weather and 
climate variability for the last 15 years. Reanalyses blend the 
continuity and breadth of the output data of a numerical model 
with the constraints of vast quantities of observational data. 
The result is a long-term continuous data record.

Fig. 1 shows an snapshot of MERRA data displaying the 
seasonal averages of temperature for the winter of 2000. The 
MERRA products include 2D and 3D data for a large number 

of relevant climate parameters and have the following resolu-
tions:

• Native — 1/2 degree by 2/3 degree using model conven-
tions.

• Reduced — 1 1/4 degree by 1 1/4 degree, dateline-edge, 
pole-edge.

• Reduced FV — 1 degree by 1 1/4 degree, using model 
conventions.

Figure 1. Example of seasonal averages of temperature for the winter of 
2000 taken from MERRA.

The use of MERRA data to compare with observations like 
those provided by SMOS is increasing in the climate commu-
nity. Since MERRA data holdings are about 200 terabytes, tra-
ditional analysis approaches are simply inadequate. 

In this preliminary work, we have focused on the MERRA 
monthly means as a representative data set and computing a 
simple average as our canonical operation. In the remainder of 
this section, we describe our approach to setting up the Apache 
Hadoop implementation of MapReduce, how we built the file 
system to accommodate MERRA data, and our approach to the 
mapping and reducing functions.
A.   Sequence Files

In order to execute MapReduce operations on the MERRA 
data, the data first needs to be ingested into the Hadoop File 
System (HDFS). The MERRA data is stored within a self-
describing NetCDF format [13] that contains both data and 
metadata. We considered several way to ingest the binary 
NetCDF data into the HDFS:

• Ingest the NetCDF Data Unchanged — Hadoop allows 
the flexibility for any data to be stored within the HDFS 
without changes. However,  for binary data, Hadoop 
would have no knowledge of how to split a binary file 
into <key,  value> pairs. In order to map the data, a cus-
tom mapper would have to be written.

• Custom Input Format Reader — If the data was stored 
in HDFS natively, then a custom input format reader 
would need to be created to sequence the data as it was 
read. This would impose a significant overhead when 



reading in the data and would have to be executed each 
time a file is opened.

• File Name as the Key — Another simple method for 
ingesting the data into Hadoop would be to translate the 
name of the file to be the key and the contents of the file 
to be the value. Similar to above, Hadoop would not 
have any insight into the data itself and would not be 
able to intelligently place mappers in relation to the data 
being processed.  This would likely have a large per-
formance impact due to a significant amount of data 
being transferred over the network to the mapping func-
tions.

• Single NetCDF File to Hadoop Sequence File — By 
applying our knowledge of the binary file formats, a 
custom sequence file can be created so that the data is 
logically stored as <key, value> pairs within the result-
ing sequence file. For this case, a custom sequencer 
would have to be written and applied to each data file 
separately prior to ingesting the data into the HDFS. 
There would be a one-to-one mapping of the sequence 
file to the original data file. One benefit of this approach 
is that the NetCDF metadata could be preserved within 
the file even when the file was stored in HDFS.

• Single NetCDF Variable to Hadoop Sequence File — 
Similar to generating new sequence files, the individual 
parameters within the NetCDF file could be separated 
into individual files. For each original NetCDF file, this 
would result in many sequence files (approximately 20) 
that would contain one and only one variable with all 
the values for that variable. However, this poses the 
problem of how to keep the linkage between the data 
within the individual sequence files and the metadata of 
the original NetCDF file.

• Single NetCDF Value to Hadoop Sequence File — In 
some very fine grained analyses, it might be useful to 
break the data up even further.  The MERRA data could 
be broken down into a single value for each parameter 
at each time step and geographic location. This would 
result in a huge number of small files within the HDFS 
and bring up the issue of linkage between the data and 
metadata. In addition, there could be serious perform-
ance issues with this approach, as Hadoop is not de-
signed for high performance on a large number of very 
small files.

We decided to create a single custom sequence file for each 
NetCDF file. This approach seemed to be the easiest and best 
solution for restructuring the data so that Hadoop could per-
form standard MapReduce functions while also maintaining 
provenance of the metadata.

The single NetCDF file to Hadoop sequence file approach 
was selected for this work. The sequencer took each of the ini-
tial gzipped files (~235 MB) and uncompressed the file. The 
files were then converted into Hadoop sequence files (resulting 
in files as large as 500 MB or more). The conversion operation 
partitioned the NetCDF data by time, so that each record in the 
sequence file contained the name of the parameter as the key 
and the value of the parameter (which could have 1 to 3 spatial 
dimensions) at a particular time step. All of the MERRA 
monthly means data files were initially sequenced this way 
prior to ingesting into the HDFS.

B. Mapping Function
The actual mapping routine was a simple filter so that only 

variables that matched certain criteria would be sent to the re-
ducer. It was initially assumed that the mapper would act like a 
distributed search capability and only pull the <key, value> 
pairs out of the file that matched the criteria. This turned out 
not to be the case, and the mapping step took a surprisingly 
long amount of time.

The default Hadoop input file format reader opens the files 
and starts reading through the files for the <key, value> pairs. 
Once it finds a <key, value> pair, it reads both the key and all 
the values to pass that along to the mapper. In the case of the 
MERRA data, the values can be quite large and consume a 
large amount of resources to read and go through all <key, val-
ue> pairs within a single file.

Currently, there is no concept within Hadoop to allow for a 
“lazy” loading of the values. As they are accessed, the entire 
<key, value> must be read.  Initially,  the mapping operator was 
used to try to filter out the <key, value> pairs that did not match 
the criteria. This did not have a significant impact on perform-
ance, since the mapper is not actually the part of Hadoop that is 
reading the data.  The mapper is just accepting data from the 
input file format reader.

Subsequently, we modified the default input file format 
reader that Hadoop uses to read the sequenced files. This rou-
tine basically opens a file and performs a simple loop to read 
every <key, value> within the file. This routine was modified to 
include an accept function in order to filter the keys prior to 
actually reading in the values. If the filter matched the desired 
key, then the values are read into memory and passed to the 
mapper. If the filter did not match, then the values were 
skipped. This dramatically improved our mapping performance 
by about a factor of eight.
C. Reduction Operation

With the sequencing and mapping complete, the resulting 
<key, value> pairs that matched the criteria to be analyzed were 
forwarded to the reducer. While the actual simple averaging 
operation was straightforward and relatively simple to set up, 
the reducer turned out to be more complex than expected.

Once a <key, value> object has been created, a comparator 
is also needed to order the keys.  If the data is to be grouped, a 
group comparator is also needed. In addition, a partitioner must 
be created in order to handle the partitioning of the data into 
groups of sorted keys. With all these components in place, Ha-
doop takes the <key, value> pairs generated by the mappers 
and groups and sorts them as specified.

By default, Hadoop assumes that all values that share a key 
will be sent to the same reducer. Hence, a single operation over 
a very large data set will only employ one reducer, i.e., one 
node. By using partitions, sets of keys to group can be created 
to pass these grouped keys to different reducers and parallelize 
the reduction operation. This may result in multiple output files 
so that an additional combination step may be needed to handle 
the consolidation of all results.
D. The MapReduce Process

The following describes the overall general MapReduce 
process that is executed for the averaging operation on the 
MERRA data:



1. The MERRA NetCDF files were processed into Hadoop 
sequence files on the HDFS Head Node. The files were 
read from the local MERRA directory, sequenced, and 
written back out to a local disk.

2. The resulting sequence files were then ingested into the 
Hadoop file system with the default replica factor of 
three and, initially, the default block size of 64 MB.

3. The job containing the actual MapReduce operation was 
submitted to the Head Node to be run.

4. Along with the JobTracker, the Head Node schedules 
and runs the job on the cluster. Hadoop distributes all 
the mappers across all data nodes that contain the data 
to be analyzed.

5. On each data node, the input format reader opens up 
each sequence file for reading and passes all the <key, 
value> pairs to the mapping function.

6. The mapper determines if the key matches the criteria of 
the given query. If so, the mapper saves the <key, val-
ue> pair for delivery back to the reducer.  If not, the 
<key, value> pair is discarded. All keys and values 
within a file are read and analyzed by the mapper.

7. Once the mapper is done, all the <key, value> pairs that 
match the query are sent back to the reducer. The re-
ducer then performs the desired averaging operation on 
the sorted <key, value> pairs to create a final <key, val-
ue> pair result.

8. This final result is then stored as a sequence file within 
the HDFS.

IV.   JAVA APPLICATION

This section describes the JAVA applications that perform 
the sequencing, mapping, and reducing of the MERRA 
NetCDF data.

A. Common Sequence and MapReduce Classes
These classes are the shared classes that would be used by 

any MapReduce application attempting to work with the cus-
tom NetCDF sequence files. The NetCDF sequencer also uses 
the composite key class when constructing the sequence files.

• NetCDFCompositeKey — This is the key object used by 
both the sequencer and the application. The key uses the 
field name and the date-time from the NetCDF file. This 
allows <key, value> pairs to be sorted by time and 
grouped by field.

• NetCDFCompositeKeyComparator — This class is 
used by the MapReduce framework whenever keys are 
compared (sorting). The comparator first compares by 
field name, and then by date-time.

• NetCDFCompositeKeyGroupingComparator — This 
class is used by the MapReduce framework whenever 
grouping operations are performed (sorting). This com-
parator uses field name comparisons to group fields 
together.

• NetCDFCompositeKeyPartitioner — This class is re-
sponsible for partitioning results from the mapper across 

the reducers. This basic class just uses the field name to 
determine the partitions.

• NetCDFRecordWriteable — This class is a customized 
Hadoop writeable object. This makes working with 
<key, value> pairs from the sequence files much easier 
as the details for serializing/de-serializing the data are 
“hidden” from the main application code.

B. NetCDF Sequencing Common Classes
These are the shared classes used by both the sequencing 

application as well as the MapReduce application.  They are 
wrapper classes used to contain the NetCDF data in a form that 
can be read and written to sequence files.

• NetCDFSequenceFileRecord — This is the main data 
class. A record contains the main field variable, along 
with any other variables that were associated with this 
field from the NetCDF file. It also stores the essential 
metadata associated with the variable. It contains meth-
ods that convert NetCDF variable Java objects into this 
record object.

• NetCDFSequenceFileVariable — Contains the data and 
metadata/attributes from a NetCDF variable. This class 
also contains multiple convenience routines for access-
ing the data.

• NetCDFSequenceFileAttribute — Attributes are meta-
data associated with a variable. The sequence variable 
class uses this class to store variable attributes.

C. NetCDF Sequence Application Classes
These are the main sequencing application classes. These 

rely on the common sequence classes to translate NetCDF files 
to sequence files.

• NetCDFSequenceFileGenerator — This class opens, 
reads, and translates input NetCDF files into Hadoop 
Map files (sequence files with indexing). It uses the 
NetCDFCompositeKey class to construct keys, and 
classes from the common sequence directory to con-
struct values. The values are serialized using a library 
called Kryo, which efficiently packs Java objects into 
byte arrays.

• NetCDFToSequenceCommandLine — This class han-
dles parsing command line arguments (as well as config 
file settings) to drive the application. These arguments 
include input and output directory settings. The applica-
tion is capable of using local files as well as files stored 
in HDFS for sequencing.

D. MapReduce Application
The following describes the various parts of the main Map-

Reduce application:
• Driver — The driver is what actually sets up the job, 

submits it, and waits for completion. The driver is 
driven from a configuration file for ease of use for 
things like being able to specify the input/output direc-
tories. It can also accept Groovy script based mappers 
and reducers without recompilation.

• NetCDFAveragerMapper — Perhaps the simplest code 
within the entire Java application, this basically com-
pares the current <key, value> pair to the criteria for 



what fields to process (in this case a simple average). 
Any field that does not match is rejected. Fields that are 
accepted are passed on to the reducer.

• NetCDFAveragerReducer — Upon receiving all the 
<key, value> pairs from the mapper,  this routine goes 
through the grouped and ordered <key, value> pairs and 
performs the averaging operation based on the time 
period specified in the configuration file. When a period 
has been processed,  a new <key, value> pair is created 
and written to the context (which writes the data out to 
disk).

E. General Utility Classes
The following classes provide functionality used through-

out the code base:
• FileUtils — Provides common utility methods for 

working with files and directories, such as recursive 
searches.

• GeneralClassLoader — Provides methods for dynami-
cally loading code and/or scripts.  This is used by the 
driver class to dynamically load mapper and/or reducer 
objects when necessary.

• SectionedProperties/Section — Provides configuration 
file functionality.  Sectioned property files are text-based 
with a simple name-value format.

V.   HADOOP CLUSTER

A. Local Cluster Configuration
A small local cluster was built within the NCCS for test-

ing purposes.  The cluster was built out of older SuperMicro 
nodes, and the table below shows the details for the configura-
tion of the different components of the nodes that made up the 
cluster. 

Component Configuration
Processor 2.4 GHz AMD Opteron 280
Sockets 2

Cores Per Socket 2
Cores Per Node 4
Main Memory 8 GB
Local Storage 5 by 500 GBs
Interconnect Mellanox MT25208 DDR IB

Operating System Ubuntu 11.04 natty
Hadoop Version 1.0

Java Version 1.6.026

The five local hard drives were broken up as follows.  A 
single hard drive was used for the operating system. Following 
the best practices for setting up an HDFS, the data to be stored 
within the file system and the local scratch for each data node 
were stored on different disks. Two disks each were logically 
striped together to make a 1 TB file system for the data (ha-
doop_fs) and another two disks for the local scratch space (ma-
pred). In this way, contention between the reading of data from 
the hadoop_fs file system while writing to the local scratch 
space in mapred was eliminated.

Due to the use of older hardware, the performance of the 
some of the local node components was not ideal. The per-
formance of the local disks were measured with a 16 GB write 
and read of a single file using a 1 MB block size to an ext3 file 
system. The disks were measured to have a performance of 57 
MB/sec write and 108 MB/sec read. There is some concern that 
the local disk performance could be a limiting factor in our 
results.

While the disk performance may not have been ideal,  the 
network performance of the cluster was not a limiting factor. 
The performance of the network interfaces was measured be-
tween two representative nodes over the Single Data Rate 
(SDR) Infiniband connections using nuttcp [14]. The peak 
TCP/IP performance was measured to achieve over 6,500 
Mbps. 

Fig. 2 shows a representative block diagram of the cluster. 
Two nodes were used as Head Nodes for the file system. The 
HDFS node, also known as the Name Node within HDFS, is 
the controlling node for the file system with the metadata of the 
file system stored within the local hadoop_fs directory. At-
tached to this node was a local attached array of disks that held 
the unsequenced MERRA data. This local MERRA repository 
was used to quickly sequence files to put into HDFS.

The second head node, called the JobTracker node, is the 
node that schedules and keeps account of all running jobs. In 
our case, only a few jobs were run simultaneously, so the job 
tracker was never stressed.  One could image a situation where 
many simultaneous jobs were running, and the JobTracker 
would be responsible for scheduling those jobs appropriately 
throughout the cluster.

Eight data nodes were configured with the two local 1 TB 
file systems and connected to all other nodes through the In-
finiband network. The data was stored within the cluster using 
the default replication factor of three.

Figure 2. Representative block diagram of the local NCCS Hadoop 
Cluster.

B. Word Count Example
Once the cluster was installed, a simple word count was 

used to test the configuration. We ingested a classic text docu-
ment into Hadoop 8K times resulting in a total of 34 GB of 
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data stored within the file system. The default replication num-
ber of 3 along with the default 64 MB block size were used for 
these tests.

A simple word count was executed on the cluster using 2,  4, 
and 8 data nodes. The following table shows the results across 
the three different tests.

Number of 
Nodes

Timing
(seconds)

Speedup

2 6,336.3 1.0
4 3.227.0 1.96
8 1.642.3 3.86

It can be seen from the table that the Hadoop cluster is 
working as expected. As the number of data nodes used is in-
creased from 2 to 8, an almost perfect speed up of the word 
count was achieved.

VI.   ANALYZING MERRA DATA

As described above, the entire set of MERRA monthly 
means was sequenced and ingested into the HDFS. The initial 
zipped monthly means encompassed approximately 181 giga-
bytes of data. Once uncompressed, the data volume grew to 
over 300 gigabytes. Upon sequencing and ingesting the data 
into the HDFS, this translated into about 1 TB of total data 
stored within the HDFS when accounting for the triplication of 
the data.

Initially,  the default block size of HDFS was used to ingest 
the data. After subsequent discussions about the potential per-
formance impact occurred when data has to be passed between 
data nodes in the mapping step of the MapReduce application, 
the performance of different sized data blocks was explored.

The following table shows the timing in seconds for a sin-
gle MapReduce operation to average the a single parameter 
(surface pressure) on the NPANA 3D subset of the MERRA 
data. The block sizes were chosen to start from the default 
block size of 64 MB and roughly double each time to a point 
where the block size at 640 MB was larger than the biggest 
monthly means file.

Years 64 MB
(secs)

128 MB
(secs)

320 MB
(secs)

640 MB
(secs)

1 131 85 53 37
10 969 510 200 80
20 1,897 985 360 128
32 3,053 1,570 553 187

It is clear from the table that the different block sizes have a 
dramatic affect on the performance of the application. In the 
640 MB configuration, every sequence file is guaranteed NOT 
to be split between data nodes. Therefore, all the data within a 
file that a mapper needs is contained on that node and no data 
is being sent across the network between nodes.

Even with the very high speed network connection of the 
single data rate Infiniband, there is a 20x speedup when analyz-

ing all 32 years of MERRA data using the 640 MB block size 
as compared to the default HDFS block size of 64 MB. Care 
must be taken when analyzing the best way to not only se-
quence but to layout the data within the HDFS for good per-
formance.

Often times, a simple operation is performed on a subset of 
the entire MERRA data, such as only looking at the time aver-
age of a parameter over a single year. Fig. 3 shows just such an 
example.

Using the NPANA 3D data set, one to eight years of data 
were analyzed to produce a global average of surface tempera-
ture for each year. When running a single year of data, only a 
single job is being run across the HDFS and only a single re-
ducer is used.  As we scale up from one to eight years of data 
begin analyzed concurrently, then additional reducers equal to 
the number of years being processed are utilized.

Figure 3. Timings for reducing 1 to 8 years of data simultaneously 
showing the concurrent or parallel processing time and the serial times.

The figure shows an increase in the time of analysis of one 
year of data which takes ~35 seconds to eight years of data 
taking ~87 seconds to complete.  The timing for computing all 
eight years of data serially is ~542 seconds. While this is not 
perfect speedup, it definitely shows the power of the distributed 
computing capability within a Hadoop file system using Ma-
pReduce.

VII.   CONCLUSION

Our use of MapReduce on a representative set of climate 
data has shown potential. While MapReduce and Hadoop ap-
pear to be deceptively simple at first glance, our work has also 
shown that care needs to be taken with ingesting data within 
HDFS and understanding how the data should be laid out. Sig-
nificant performance improvements can be made through a 
better understanding of the data layout and how the MapRe-
duce application interacts with the data.

In addition to continuing to work on the local cluster,  the 
NCCS is exploring the use of MapReduce as a service within 
clouds like Amazon, looking at additional capabilities like 
Twister from the University of Indiana [15],  and even integrat-
ing HDFS with a virtualized climate data service [16].
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With the wide spread employment of these technologies 
throughout the commercial industry and the interests within the 
open-source communities, the capabilities of MapReduce and 
Hadoop will continue to grow and mature. The use of these 
types of technologies for large scale data analyses has the po-
tential to greatly enhance our understanding of the Earth’s cli-
mate.

ACKNOWLEDGEMENTS

We thank Tsengdar Lee, Mike Little, and Phil Webster for 
their encouragement and contributions to this effort. Ed Kim 
and Mike Theriot provided crucial advice about the SMOS 
mission. Kirk Hunter provided invaluable technical support 
building the Hadoop clusters.

REFERENCES

[1] NASA Center for Climate Simulation (NCCS), http://www.nccs.nasa.
[2] NASA Science Mission Directorate (SMD), http://science.nasa.gov/. 
[3] NASA High End Computing Capability (HECC) Project, 

http://www.nasa.nasa.gov/hecc/. 
[4] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on 

Large Clusters, Google, Inc., 
http://research.google.com/archive/mapreduce.html. 

[5] J. Buck, et al., SciHadoop: Array-based Query Processing in Hadoop, 
UC Santa Cruz, https://systems.soe.ucsc.edu/node/439. 

[6] C. Ranger, et al., Evaluating MapReduce for Multi-core and Multiproc-
essor Systems, Computer Systems Laboratory, Stanford University.

[7] Apache Hadoop Distributed File System (HDFS), 
http://hadoop.apache.org/.

[8] Soil Moisture and Ocean Salinity (SMOS) Satellite, 
http://www.esa.int/SPECIALS/smos/index.html.

[9] MapReduce, http://en.wikipedia.org/wiki/MapReduce.
[10] Modern Era Retrospective-Analysis for Research and Applications 

(MERRA), http://gmao/gsfc.nasa.gov/merra. 
[11] Goddard Earth Observing System (GEOS), 

http://gmao.gsfc.nasa.gov/systems/geso5. 
[12] Global Modeling and Assimilation Office (GMAO), 

http://gmao.gsfc.nasa.gov/. 
[13] Network Common Data Form (NetCDF), 

http://www.unidata.ucar.edu/software/netcdf. 
[14] Network testing benchmark created by Bill Fink at NASA Goddard 

Space Flight Center, http://lcp.nr.navy.mil/nuttcp.
[15] Iterative MapReduce from the University of Indiana, 

http://www.iterativemapreduce.org. 
[16] J. Schnase, et al., The Virtual Climate Data Server (vCDS): An iRODS-

Based Data Management Software Appliance Supporting Climate Data 
Services and Virtualization-as-a-Service in the NASA Center for Climate 
Simulation, 2012 iRODS Users Group Meeting, in review.

http://www.nccs.nasa
http://www.nccs.nasa
http://science.nasa.gov
http://science.nasa.gov
http://www.nasa.nasa.gov/hecc/
http://www.nasa.nasa.gov/hecc/
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
https://systems.soe.ucsc.edu/node/439
https://systems.soe.ucsc.edu/node/439
http://hadoop.apache.org
http://hadoop.apache.org
http://www.esa.int/SPECIALS/smos/index.html
http://www.esa.int/SPECIALS/smos/index.html
http://gmao/gsfc.nasa.gov/merra
http://gmao/gsfc.nasa.gov/merra
http://gmao.gsfc.nasa.gov/systems/geso5
http://gmao.gsfc.nasa.gov/systems/geso5
http://gmao.gsfc.nasa.gov
http://gmao.gsfc.nasa.gov
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://lcp.nr.navy.mil/nuttcp
http://lcp.nr.navy.mil/nuttcp
http://www.iterativemapreduce.org
http://www.iterativemapreduce.org

