
Preliminary Evaluation of MapReduce
for High-Performance Climate Data Analysis

Daniel Q. Duffy1, John L. Schnase2, John H. Thompson1, Shawn M. Freeman3, and Thomas L. Clune3

1 NASA Center for Climate Simulation (NCCS)
2 Office of Computational and Information Science and Technology (CISTO)

3 Software System Support Office (SSSO)
NASA Goddard Space Flight Center

Greenbelt, MD 20771

Abstract— MapReduce is an approach to high-performance ana-
lytics that may be useful to data intensive problems in climate
research. It offers an analysis paradigm that uses clusters of
computers and combines distributed storage of large data sets
with parallel computation. We are particularly interested in the
potential of MapReduce to speed up basic operations common to
a wide range of analyses. In order to evaluate this potential, we
are prototyping a series of canonical MapReduce operations over
a test suite of observational and climate simulation datasets. Our
initial focus has been on averaging operations over arbitrary
spatial and temporal extents within Modern Era Retrospective-
Analysis for Research and Applications (MERRA) data. Prelimi-
nary results suggest this approach can improve efficiencies within
data intensive analytic workflows.

Keywords-MapReduce, Hadoop, high-performance analytics

I. INTRODUCTION

Our understanding of the Earth’s processes is based on a
combination of observational data records and mathematical
models. The size of NASA’s observational data sets is growing
dramatically as new missions come online. However a poten-
tially bigger data challenge is posed by the work of climate
scientists, whose models are regularly producing data sets of
hundreds of terabytes or more.

The NASA Center for Climate Simulation (NCCS) pro-
vides state-of-the-art supercomputing and data services specifi-
cally designed for weather and climate research [1]. The NCCS
maintains advanced data capabilities and facilities that allow
researchers within and beyond NASA to create and access the
enormous volume of data generated by weather and climate
models. Tackling the problems of data intensive science is an
inherent part of the NCCS mission.

There are two major challenges posed by the data intensive
nature of climate science. There is the need to provide com-
plete lifecycle management of large-scale scientific reposito-
ries. This capability is the foundation upon which a variety of
data services can be provided, from supporting active research
to large-scale data federation, data publication and distribution,
and archival storage. In the NCCS, we think of this aspect of
our mission as climate data services.

The other data intensive challenge has to do with how these
large datasets are used: data analytics — the capacity to per-
form useful scientific analyses over enormous quantities of data
in reasonable amounts of time. In many respects this is the big-
gest challenge; without effective means for transforming large
scientific data collections into meaningful scientific knowl-
edge, our mission fails.

MapReduce is an approach to high-performance analytics
that may be useful to data intensive problems in climate re-
search [4]. MapReduce enables distributed computing on large
data sets using clusters of computers. It is an analysis paradigm
that combines distributed storage and retrieval with distributed,
parallel computation, allocating to the data repository analytical
operations that yield reduced outputs to applications and inter-
faces that may reside elsewhere. The architecture thus has im-
portant networking and communications implications as well.
While MapReduce has proven effective for large repositories
of textual data, its use in data intensive science applications
has been limited [5, 6], because many scientific data sets are
inherently complex, have high dimensionality, and use binary
formats.

To gain a better understanding about the potential of this
approach, we have been evaluating MapReduce and the Apa-
che open-source Hadoop Distributed File System (HDFS) [7]
on representative collections of observational and climate data.
We have focused on a small set of canonical, early-stage ana-
lytical operations that represent a common starting point in
many analysis workflows in many domains: for example, aver-
age, minimum, maximum, and standard deviation operations
over a given temporal and spatial extent.

In this paper, we describe our evaluation of select MapRe-
duce attributes from these experiments, including an assess-
ment of data preparation, ingest, and space complexities of
creating repositories of the test data sets and the time and space
complexities of server-side processing of canonical operations
along scaled ranges of their spatiotemporal parameters.

II. CLASSIC ANALYTIC WORKFLOWS

Data intensive analytic workflows bridge between the
largely unstructured mass of stored scientific data and the
highly structured, tailored, reduced, and refined products used ___

This work is funded by the NASA Science Mission Directorate’s High
End Computing Capability (HECC) Project [2, 3].

https://ntrs.nasa.gov/search.jsp?R=20120009187 2019-08-30T20:23:54+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10568085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

by scientists in their research. In general, the initial steps of an
analysis, those operations that first interact with a data reposi-
tory, tend to be the most general, while data manipulations
closer to the client tend to be the most specialized to the indi-
vidual, to the domain, or to the science question under study.
The amount of data being operated on also tends to be larger on
the repository-side of the workflow, smaller toward the client-
side end products.

For example, the European Soil Moisture and Ocean Salin-
ity (SMOS) [8] satellite is providing global maps of soil mois-
ture every three days at a spatial resolution of 50km and global
maps of the sea-surface salinity over an area of 200x200km.
The NCCS manages a small subset of this data for SMOS sci-
entists working at Goddard. These scientists would like to sub-
set the data and find spatial zones around the Earth that do not
change significantly over time. These zones can be used to
calibrate and validate of SMOS instruments.

To do this now, data sets from the SMOS collection are
downloaded to local work stations where they are organized,
moved to NCCS computers, then analyzed using MatLab. This
traditional type of workflow for large-scale data analysis se-
verely limits the scientists and hampers their ability to look at
phenomena over broader spatial extents. Importantly, this ex-
ample shows how a very simple canonical operation such as
finding the average value over a portion of the Earth and meas-
uring how that value changes over time can be quite cumber-
some to the scientists.

III. MAPREDUCE ANALYTIC WORKFLOWS

We have used the SMOS example as a foil to design a Map-
Reduce alternative to this classic analysis scenario. MapReduce
is a framework for processing highly distributable problems
across huge data sets using a large number of computers
(nodes). In a “map” operation the head node takes the input,
partitions it into smaller sub-problems, and distributes them to
data nodes. A data node may do this again in turn, leading to a
multi-level tree structure. The data node processes the smaller
problem, and passes the answer back to a reducer node to per-
form the reduction operation. In a “reduce” step, the reducer
node then collects the answers to all the sub-problems and
combines them in some way to form the output — the answer
to the problem it was originally trying to solve. The map and
reduce functions of Map-Reduce are both defined with respect
to data structured in <key, value> pairs [9].

For this work, we used Modern Era Retrospective-Analysis
for Research and Applications (MERRA) data [10]. MERRA
uses the newest version of the Goddard Earth Observing Sys-
tem (GEOS) Data Assimilation [11, 12] to create a reanalysis of
the last 30 years of observation data. The project provides a
global view of the hydrological cycle across a broad range of
weather and climate time scales. Retrospective-analyses (or
reanalyses) have been a critical tool in studying weather and
climate variability for the last 15 years. Reanalyses blend the
continuity and breadth of the output data of a numerical model
with the constraints of vast quantities of observational data.
The result is a long-term continuous data record.

Fig. 1 shows an snapshot of MERRA data displaying the
seasonal averages of temperature for the winter of 2000. The
MERRA products include 2D and 3D data for a large number

of relevant climate parameters and have the following resolu-
tions:

• Native — 1/2 degree by 2/3 degree using model conven-
tions.

• Reduced — 1 1/4 degree by 1 1/4 degree, dateline-edge,
pole-edge.

• Reduced FV — 1 degree by 1 1/4 degree, using model
conventions.

Figure 1. Example of seasonal averages of temperature for the winter of
2000 taken from MERRA.

The use of MERRA data to compare with observations like
those provided by SMOS is increasing in the climate commu-
nity. Since MERRA data holdings are about 200 terabytes, tra-
ditional analysis approaches are simply inadequate.

In this preliminary work, we have focused on the MERRA
monthly means as a representative data set and computing a
simple average as our canonical operation. In the remainder of
this section, we describe our approach to setting up the Apache
Hadoop implementation of MapReduce, how we built the file
system to accommodate MERRA data, and our approach to the
mapping and reducing functions.
A. Sequence Files

In order to execute MapReduce operations on the MERRA
data, the data first needs to be ingested into the Hadoop File
System (HDFS). The MERRA data is stored within a self-
describing NetCDF format [13] that contains both data and
metadata. We considered several way to ingest the binary
NetCDF data into the HDFS:

• Ingest the NetCDF Data Unchanged — Hadoop allows
the flexibility for any data to be stored within the HDFS
without changes. However, for binary data, Hadoop
would have no knowledge of how to split a binary file
into <key, value> pairs. In order to map the data, a cus-
tom mapper would have to be written.

• Custom Input Format Reader — If the data was stored
in HDFS natively, then a custom input format reader
would need to be created to sequence the data as it was
read. This would impose a significant overhead when

reading in the data and would have to be executed each
time a file is opened.

• File Name as the Key — Another simple method for
ingesting the data into Hadoop would be to translate the
name of the file to be the key and the contents of the file
to be the value. Similar to above, Hadoop would not
have any insight into the data itself and would not be
able to intelligently place mappers in relation to the data
being processed. This would likely have a large per-
formance impact due to a significant amount of data
being transferred over the network to the mapping func-
tions.

• Single NetCDF File to Hadoop Sequence File — By
applying our knowledge of the binary file formats, a
custom sequence file can be created so that the data is
logically stored as <key, value> pairs within the result-
ing sequence file. For this case, a custom sequencer
would have to be written and applied to each data file
separately prior to ingesting the data into the HDFS.
There would be a one-to-one mapping of the sequence
file to the original data file. One benefit of this approach
is that the NetCDF metadata could be preserved within
the file even when the file was stored in HDFS.

• Single NetCDF Variable to Hadoop Sequence File —
Similar to generating new sequence files, the individual
parameters within the NetCDF file could be separated
into individual files. For each original NetCDF file, this
would result in many sequence files (approximately 20)
that would contain one and only one variable with all
the values for that variable. However, this poses the
problem of how to keep the linkage between the data
within the individual sequence files and the metadata of
the original NetCDF file.

• Single NetCDF Value to Hadoop Sequence File — In
some very fine grained analyses, it might be useful to
break the data up even further. The MERRA data could
be broken down into a single value for each parameter
at each time step and geographic location. This would
result in a huge number of small files within the HDFS
and bring up the issue of linkage between the data and
metadata. In addition, there could be serious perform-
ance issues with this approach, as Hadoop is not de-
signed for high performance on a large number of very
small files.

We decided to create a single custom sequence file for each
NetCDF file. This approach seemed to be the easiest and best
solution for restructuring the data so that Hadoop could per-
form standard MapReduce functions while also maintaining
provenance of the metadata.

The single NetCDF file to Hadoop sequence file approach
was selected for this work. The sequencer took each of the ini-
tial gzipped files (~235 MB) and uncompressed the file. The
files were then converted into Hadoop sequence files (resulting
in files as large as 500 MB or more). The conversion operation
partitioned the NetCDF data by time, so that each record in the
sequence file contained the name of the parameter as the key
and the value of the parameter (which could have 1 to 3 spatial
dimensions) at a particular time step. All of the MERRA
monthly means data files were initially sequenced this way
prior to ingesting into the HDFS.

B. Mapping Function
The actual mapping routine was a simple filter so that only

variables that matched certain criteria would be sent to the re-
ducer. It was initially assumed that the mapper would act like a
distributed search capability and only pull the <key, value>
pairs out of the file that matched the criteria. This turned out
not to be the case, and the mapping step took a surprisingly
long amount of time.

The default Hadoop input file format reader opens the files
and starts reading through the files for the <key, value> pairs.
Once it finds a <key, value> pair, it reads both the key and all
the values to pass that along to the mapper. In the case of the
MERRA data, the values can be quite large and consume a
large amount of resources to read and go through all <key, val-
ue> pairs within a single file.

Currently, there is no concept within Hadoop to allow for a
“lazy” loading of the values. As they are accessed, the entire
<key, value> must be read. Initially, the mapping operator was
used to try to filter out the <key, value> pairs that did not match
the criteria. This did not have a significant impact on perform-
ance, since the mapper is not actually the part of Hadoop that is
reading the data. The mapper is just accepting data from the
input file format reader.

Subsequently, we modified the default input file format
reader that Hadoop uses to read the sequenced files. This rou-
tine basically opens a file and performs a simple loop to read
every <key, value> within the file. This routine was modified to
include an accept function in order to filter the keys prior to
actually reading in the values. If the filter matched the desired
key, then the values are read into memory and passed to the
mapper. If the filter did not match, then the values were
skipped. This dramatically improved our mapping performance
by about a factor of eight.
C. Reduction Operation

With the sequencing and mapping complete, the resulting
<key, value> pairs that matched the criteria to be analyzed were
forwarded to the reducer. While the actual simple averaging
operation was straightforward and relatively simple to set up,
the reducer turned out to be more complex than expected.

Once a <key, value> object has been created, a comparator
is also needed to order the keys. If the data is to be grouped, a
group comparator is also needed. In addition, a partitioner must
be created in order to handle the partitioning of the data into
groups of sorted keys. With all these components in place, Ha-
doop takes the <key, value> pairs generated by the mappers
and groups and sorts them as specified.

By default, Hadoop assumes that all values that share a key
will be sent to the same reducer. Hence, a single operation over
a very large data set will only employ one reducer, i.e., one
node. By using partitions, sets of keys to group can be created
to pass these grouped keys to different reducers and parallelize
the reduction operation. This may result in multiple output files
so that an additional combination step may be needed to handle
the consolidation of all results.
D. The MapReduce Process

The following describes the overall general MapReduce
process that is executed for the averaging operation on the
MERRA data:

1. The MERRA NetCDF files were processed into Hadoop
sequence files on the HDFS Head Node. The files were
read from the local MERRA directory, sequenced, and
written back out to a local disk.

2. The resulting sequence files were then ingested into the
Hadoop file system with the default replica factor of
three and, initially, the default block size of 64 MB.

3. The job containing the actual MapReduce operation was
submitted to the Head Node to be run.

4. Along with the JobTracker, the Head Node schedules
and runs the job on the cluster. Hadoop distributes all
the mappers across all data nodes that contain the data
to be analyzed.

5. On each data node, the input format reader opens up
each sequence file for reading and passes all the <key,
value> pairs to the mapping function.

6. The mapper determines if the key matches the criteria of
the given query. If so, the mapper saves the <key, val-
ue> pair for delivery back to the reducer. If not, the
<key, value> pair is discarded. All keys and values
within a file are read and analyzed by the mapper.

7. Once the mapper is done, all the <key, value> pairs that
match the query are sent back to the reducer. The re-
ducer then performs the desired averaging operation on
the sorted <key, value> pairs to create a final <key, val-
ue> pair result.

8. This final result is then stored as a sequence file within
the HDFS.

IV. JAVA APPLICATION

This section describes the JAVA applications that perform
the sequencing, mapping, and reducing of the MERRA
NetCDF data.

A. Common Sequence and MapReduce Classes
These classes are the shared classes that would be used by

any MapReduce application attempting to work with the cus-
tom NetCDF sequence files. The NetCDF sequencer also uses
the composite key class when constructing the sequence files.

• NetCDFCompositeKey — This is the key object used by
both the sequencer and the application. The key uses the
field name and the date-time from the NetCDF file. This
allows <key, value> pairs to be sorted by time and
grouped by field.

• NetCDFCompositeKeyComparator — This class is
used by the MapReduce framework whenever keys are
compared (sorting). The comparator first compares by
field name, and then by date-time.

• NetCDFCompositeKeyGroupingComparator — This
class is used by the MapReduce framework whenever
grouping operations are performed (sorting). This com-
parator uses field name comparisons to group fields
together.

• NetCDFCompositeKeyPartitioner — This class is re-
sponsible for partitioning results from the mapper across

the reducers. This basic class just uses the field name to
determine the partitions.

• NetCDFRecordWriteable — This class is a customized
Hadoop writeable object. This makes working with
<key, value> pairs from the sequence files much easier
as the details for serializing/de-serializing the data are
“hidden” from the main application code.

B. NetCDF Sequencing Common Classes
These are the shared classes used by both the sequencing

application as well as the MapReduce application. They are
wrapper classes used to contain the NetCDF data in a form that
can be read and written to sequence files.

• NetCDFSequenceFileRecord — This is the main data
class. A record contains the main field variable, along
with any other variables that were associated with this
field from the NetCDF file. It also stores the essential
metadata associated with the variable. It contains meth-
ods that convert NetCDF variable Java objects into this
record object.

• NetCDFSequenceFileVariable — Contains the data and
metadata/attributes from a NetCDF variable. This class
also contains multiple convenience routines for access-
ing the data.

• NetCDFSequenceFileAttribute — Attributes are meta-
data associated with a variable. The sequence variable
class uses this class to store variable attributes.

C. NetCDF Sequence Application Classes
These are the main sequencing application classes. These

rely on the common sequence classes to translate NetCDF files
to sequence files.

• NetCDFSequenceFileGenerator — This class opens,
reads, and translates input NetCDF files into Hadoop
Map files (sequence files with indexing). It uses the
NetCDFCompositeKey class to construct keys, and
classes from the common sequence directory to con-
struct values. The values are serialized using a library
called Kryo, which efficiently packs Java objects into
byte arrays.

• NetCDFToSequenceCommandLine — This class han-
dles parsing command line arguments (as well as config
file settings) to drive the application. These arguments
include input and output directory settings. The applica-
tion is capable of using local files as well as files stored
in HDFS for sequencing.

D. MapReduce Application
The following describes the various parts of the main Map-

Reduce application:
• Driver — The driver is what actually sets up the job,

submits it, and waits for completion. The driver is
driven from a configuration file for ease of use for
things like being able to specify the input/output direc-
tories. It can also accept Groovy script based mappers
and reducers without recompilation.

• NetCDFAveragerMapper — Perhaps the simplest code
within the entire Java application, this basically com-
pares the current <key, value> pair to the criteria for

what fields to process (in this case a simple average).
Any field that does not match is rejected. Fields that are
accepted are passed on to the reducer.

• NetCDFAveragerReducer — Upon receiving all the
<key, value> pairs from the mapper, this routine goes
through the grouped and ordered <key, value> pairs and
performs the averaging operation based on the time
period specified in the configuration file. When a period
has been processed, a new <key, value> pair is created
and written to the context (which writes the data out to
disk).

E. General Utility Classes
The following classes provide functionality used through-

out the code base:
• FileUtils — Provides common utility methods for

working with files and directories, such as recursive
searches.

• GeneralClassLoader — Provides methods for dynami-
cally loading code and/or scripts. This is used by the
driver class to dynamically load mapper and/or reducer
objects when necessary.

• SectionedProperties/Section — Provides configuration
file functionality. Sectioned property files are text-based
with a simple name-value format.

V. HADOOP CLUSTER

A. Local Cluster Configuration
A small local cluster was built within the NCCS for test-

ing purposes. The cluster was built out of older SuperMicro
nodes, and the table below shows the details for the configura-
tion of the different components of the nodes that made up the
cluster.

Component Configuration
Processor 2.4 GHz AMD Opteron 280
Sockets 2

Cores Per Socket 2
Cores Per Node 4
Main Memory 8 GB
Local Storage 5 by 500 GBs
Interconnect Mellanox MT25208 DDR IB

Operating System Ubuntu 11.04 natty
Hadoop Version 1.0

Java Version 1.6.026

The five local hard drives were broken up as follows. A
single hard drive was used for the operating system. Following
the best practices for setting up an HDFS, the data to be stored
within the file system and the local scratch for each data node
were stored on different disks. Two disks each were logically
striped together to make a 1 TB file system for the data (ha-
doop_fs) and another two disks for the local scratch space (ma-
pred). In this way, contention between the reading of data from
the hadoop_fs file system while writing to the local scratch
space in mapred was eliminated.

Due to the use of older hardware, the performance of the
some of the local node components was not ideal. The per-
formance of the local disks were measured with a 16 GB write
and read of a single file using a 1 MB block size to an ext3 file
system. The disks were measured to have a performance of 57
MB/sec write and 108 MB/sec read. There is some concern that
the local disk performance could be a limiting factor in our
results.

While the disk performance may not have been ideal, the
network performance of the cluster was not a limiting factor.
The performance of the network interfaces was measured be-
tween two representative nodes over the Single Data Rate
(SDR) Infiniband connections using nuttcp [14]. The peak
TCP/IP performance was measured to achieve over 6,500
Mbps.

Fig. 2 shows a representative block diagram of the cluster.
Two nodes were used as Head Nodes for the file system. The
HDFS node, also known as the Name Node within HDFS, is
the controlling node for the file system with the metadata of the
file system stored within the local hadoop_fs directory. At-
tached to this node was a local attached array of disks that held
the unsequenced MERRA data. This local MERRA repository
was used to quickly sequence files to put into HDFS.

The second head node, called the JobTracker node, is the
node that schedules and keeps account of all running jobs. In
our case, only a few jobs were run simultaneously, so the job
tracker was never stressed. One could image a situation where
many simultaneous jobs were running, and the JobTracker
would be responsible for scheduling those jobs appropriately
throughout the cluster.

Eight data nodes were configured with the two local 1 TB
file systems and connected to all other nodes through the In-
finiband network. The data was stored within the cluster using
the default replication factor of three.

Figure 2. Representative block diagram of the local NCCS Hadoop
Cluster.

B. Word Count Example
Once the cluster was installed, a simple word count was

used to test the configuration. We ingested a classic text docu-
ment into Hadoop 8K times resulting in a total of 34 GB of

HDFS JobTracker

/merra
5TB

/hadoop_fs
1TB

/mapred
1TB

Data
Node 1

/hadoop_fs
1TB

/mapred
1TB

Data
Node 2

/hadoop_fs
1TB

/mapred
1TB

Data
Node 8

/hadoop_fs
1TB

/mapred
1TB

…

Head Nodes

Data
Nodes

SDR
IB

Shared /home
and /other via
NFS across all

nodes

data stored within the file system. The default replication num-
ber of 3 along with the default 64 MB block size were used for
these tests.

A simple word count was executed on the cluster using 2, 4,
and 8 data nodes. The following table shows the results across
the three different tests.

Number of
Nodes

Timing
(seconds)

Speedup

2 6,336.3 1.0
4 3.227.0 1.96
8 1.642.3 3.86

It can be seen from the table that the Hadoop cluster is
working as expected. As the number of data nodes used is in-
creased from 2 to 8, an almost perfect speed up of the word
count was achieved.

VI. ANALYZING MERRA DATA

As described above, the entire set of MERRA monthly
means was sequenced and ingested into the HDFS. The initial
zipped monthly means encompassed approximately 181 giga-
bytes of data. Once uncompressed, the data volume grew to
over 300 gigabytes. Upon sequencing and ingesting the data
into the HDFS, this translated into about 1 TB of total data
stored within the HDFS when accounting for the triplication of
the data.

Initially, the default block size of HDFS was used to ingest
the data. After subsequent discussions about the potential per-
formance impact occurred when data has to be passed between
data nodes in the mapping step of the MapReduce application,
the performance of different sized data blocks was explored.

The following table shows the timing in seconds for a sin-
gle MapReduce operation to average the a single parameter
(surface pressure) on the NPANA 3D subset of the MERRA
data. The block sizes were chosen to start from the default
block size of 64 MB and roughly double each time to a point
where the block size at 640 MB was larger than the biggest
monthly means file.

Years 64 MB
(secs)

128 MB
(secs)

320 MB
(secs)

640 MB
(secs)

1 131 85 53 37
10 969 510 200 80
20 1,897 985 360 128
32 3,053 1,570 553 187

It is clear from the table that the different block sizes have a
dramatic affect on the performance of the application. In the
640 MB configuration, every sequence file is guaranteed NOT
to be split between data nodes. Therefore, all the data within a
file that a mapper needs is contained on that node and no data
is being sent across the network between nodes.

Even with the very high speed network connection of the
single data rate Infiniband, there is a 20x speedup when analyz-

ing all 32 years of MERRA data using the 640 MB block size
as compared to the default HDFS block size of 64 MB. Care
must be taken when analyzing the best way to not only se-
quence but to layout the data within the HDFS for good per-
formance.

Often times, a simple operation is performed on a subset of
the entire MERRA data, such as only looking at the time aver-
age of a parameter over a single year. Fig. 3 shows just such an
example.

Using the NPANA 3D data set, one to eight years of data
were analyzed to produce a global average of surface tempera-
ture for each year. When running a single year of data, only a
single job is being run across the HDFS and only a single re-
ducer is used. As we scale up from one to eight years of data
begin analyzed concurrently, then additional reducers equal to
the number of years being processed are utilized.

Figure 3. Timings for reducing 1 to 8 years of data simultaneously
showing the concurrent or parallel processing time and the serial times.

The figure shows an increase in the time of analysis of one
year of data which takes ~35 seconds to eight years of data
taking ~87 seconds to complete. The timing for computing all
eight years of data serially is ~542 seconds. While this is not
perfect speedup, it definitely shows the power of the distributed
computing capability within a Hadoop file system using Ma-
pReduce.

VII. CONCLUSION

Our use of MapReduce on a representative set of climate
data has shown potential. While MapReduce and Hadoop ap-
pear to be deceptively simple at first glance, our work has also
shown that care needs to be taken with ingesting data within
HDFS and understanding how the data should be laid out. Sig-
nificant performance improvements can be made through a
better understanding of the data layout and how the MapRe-
duce application interacts with the data.

In addition to continuing to work on the local cluster, the
NCCS is exploring the use of MapReduce as a service within
clouds like Amazon, looking at additional capabilities like
Twister from the University of Indiana [15], and even integrat-
ing HDFS with a virtualized climate data service [16].

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Ti
m

e
(s

ec
on

ds
)

Number of Years Processed

Average of Individual Years - NPANA
Concurrent Serial

With the wide spread employment of these technologies
throughout the commercial industry and the interests within the
open-source communities, the capabilities of MapReduce and
Hadoop will continue to grow and mature. The use of these
types of technologies for large scale data analyses has the po-
tential to greatly enhance our understanding of the Earth’s cli-
mate.

ACKNOWLEDGEMENTS

We thank Tsengdar Lee, Mike Little, and Phil Webster for
their encouragement and contributions to this effort. Ed Kim
and Mike Theriot provided crucial advice about the SMOS
mission. Kirk Hunter provided invaluable technical support
building the Hadoop clusters.

REFERENCES

[1] NASA Center for Climate Simulation (NCCS), http://www.nccs.nasa.
[2] NASA Science Mission Directorate (SMD), http://science.nasa.gov/.
[3] NASA High End Computing Capability (HECC) Project,

http://www.nasa.nasa.gov/hecc/.
[4] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on

Large Clusters, Google, Inc.,
http://research.google.com/archive/mapreduce.html.

[5] J. Buck, et al., SciHadoop: Array-based Query Processing in Hadoop,
UC Santa Cruz, https://systems.soe.ucsc.edu/node/439.

[6] C. Ranger, et al., Evaluating MapReduce for Multi-core and Multiproc-
essor Systems, Computer Systems Laboratory, Stanford University.

[7] Apache Hadoop Distributed File System (HDFS),
http://hadoop.apache.org/.

[8] Soil Moisture and Ocean Salinity (SMOS) Satellite,
http://www.esa.int/SPECIALS/smos/index.html.

[9] MapReduce, http://en.wikipedia.org/wiki/MapReduce.
[10] Modern Era Retrospective-Analysis for Research and Applications

(MERRA), http://gmao/gsfc.nasa.gov/merra.
[11] Goddard Earth Observing System (GEOS),

http://gmao.gsfc.nasa.gov/systems/geso5.
[12] Global Modeling and Assimilation Office (GMAO),

http://gmao.gsfc.nasa.gov/.
[13] Network Common Data Form (NetCDF),

http://www.unidata.ucar.edu/software/netcdf.
[14] Network testing benchmark created by Bill Fink at NASA Goddard

Space Flight Center, http://lcp.nr.navy.mil/nuttcp.
[15] Iterative MapReduce from the University of Indiana,

http://www.iterativemapreduce.org.
[16] J. Schnase, et al., The Virtual Climate Data Server (vCDS): An iRODS-

Based Data Management Software Appliance Supporting Climate Data
Services and Virtualization-as-a-Service in the NASA Center for Climate
Simulation, 2012 iRODS Users Group Meeting, in review.

http://www.nccs.nasa
http://www.nccs.nasa
http://science.nasa.gov
http://science.nasa.gov
http://www.nasa.nasa.gov/hecc/
http://www.nasa.nasa.gov/hecc/
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
https://systems.soe.ucsc.edu/node/439
https://systems.soe.ucsc.edu/node/439
http://hadoop.apache.org
http://hadoop.apache.org
http://www.esa.int/SPECIALS/smos/index.html
http://www.esa.int/SPECIALS/smos/index.html
http://gmao/gsfc.nasa.gov/merra
http://gmao/gsfc.nasa.gov/merra
http://gmao.gsfc.nasa.gov/systems/geso5
http://gmao.gsfc.nasa.gov/systems/geso5
http://gmao.gsfc.nasa.gov
http://gmao.gsfc.nasa.gov
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://lcp.nr.navy.mil/nuttcp
http://lcp.nr.navy.mil/nuttcp
http://www.iterativemapreduce.org
http://www.iterativemapreduce.org

