Geophysical Research Abstracts Vol. 14, EGU2012-**PREVIEW**, 2012 EGU General Assembly 2012 © Author(s) 2012

Using Satellite Remote Sensing and Modelling for Insights into NO_2 Air Pollution and NO_x Emissions.

L.N. Lamsal (1), R.V. Martin (2), N.A. Krotkov (3), E.J. Bucsela (4), E.A. Celarier (1), A. van Donkelaar (2), and D. Parrish (5)

USRA/NASA Goddard Space Flight Center, Atmospheric Chemistry and Dynamics, United States (lok.lamsal@nasa.gov),
Dalhousie University, Halifax, Canada, (3) NASA Goddard Space Flight Center, United States, (4) SRI International,
Menlo Park, CA, United States, (5) NOAA Earth System Research Laboratory, CO, United States

Nitrogen oxides (NO_x) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO_2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO_2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO_2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO_2 in the boundary layer. We infer ground-level NO_2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO_2 columns measured by satellite, ground-level NO_2 derived from satellite, and NO_x emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO_2 measurements from OMI to estimate "top-down" surface NO_x emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO_2 column observations from OMI and the relationship between NO_2 columns and NO_x emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO_x emissions. The emission updates offer an improved estimate of NO_x that are critical to our understanding of air quality, acid deposition, and climate change.