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1 Introduction 

\Iapping of terrestrial vegetation fluorescence from space is of interest because it can potentially pro

vide global information on the functional status of vegetation including light use efficiency and global 

primary productivity that can be used for global carbon cycle modeling. Space-based measurement 

of solar-induced chlorophyll fluorescence is challenging, because its signal is small as compared with 

the much larger reflectance signal. Ground- and aircraft-based approaches have made use of the 

dark and spectrally-wide 02-A (",,760 nm) and 02-B (",,690 nm) atmospheric features to detect the 

weak fluorescence signal [1]. lVlore recently, Joiner et a1. [2] and Frankenberg et a1. [3] focused on 

longer-wavelength solar Fraunhofer lines that can be observed with space-based instruments such as 

the currently operational GOSAT. They showed that fluorescence can be detected using Fraunhofer 

lines away from the far-red chlorophyll-a fluorescence peak even when the surface is relatively bright. 

Here, we build on that work by developing methodology to correct for instrumental artifacts that 

produce false filling-in signals that can bias fluorescence retrievals. We also examine other potential 

sources of filling-in at far-red and NIR wavelengths. Another objective is to explore the possibility of 

making fluorescence measurements from space with lower spectral resolution instrumentation than 

the GOSAT interferometer. 

vVe focus on the 866 nm Ca II solar Fraunhofer line. Very few laboratory and ground-based mea

surements of vegetation fluorescence have been reported at wavelengths longer than 800 mn. Some 

results of fluorescence measurements of corn leaves acquired in the laboratory using polychromatic 

excitation at wavelengths shorter than 665 nm show that at 866 nm, the measured signal is of the 

order of 0.1-0.2 m vV 

In this we use the satellite observations: vVe use SCIAMACHY channel 5 in nadir 
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mode that covers wavelengths between 773 and 1063 nm at a spectral resolution of 0.54 nm. GOSAT 

has two instrument packages: the Thermal And Near-infrared Sensor for carbon Observation-Fourier 

Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (CAl). We use TANSO

FTS band 1, which extends from approximately 758 to 775 mn and we use cloud fraction derived 

from the CAL We compare satellite-derived fluorescence with the Enhanced Vegetation Index (EVI), 

an Aqua/MODIS-derived vegetation reflectance-based index that indicates relative greenness and is 

used to infer photosynthetic function. 

2 Simulated filling-in at 866 nm 

We simulated the effects of additive signals such as fluorescence, fire, and volcanoes as well as 

effects of rotational- and vibration-Raman scattering on space-based observations of the Ca II line 

near 866 nm with several different spectral resolutions. The filling-in due to an additive signal of 

0.2 mW m-2 sr-1 mn- 1 at SCIAMACHY resolution is small «1 %), but observable if systematic 

effects can be accounted for. 

We computed the filling-in of the 866 nm Ca II line due to rotational-Raman scattering (RRS) 

using the LIDORT-RRS code of [5]. The filling-in owing to RRS is about a factor of 6 less than 

that due to an additive signal of 0.2mWm-2 sr- 1 nm- 1. vVe also assessed the vibrational Raman 

scattering (VRS) contribution using the single scattering approximation and found that for typical 

values of surface albedo over land (>0.2), the filling-in is negligible. 

3 Retrieval methodology 

We use the same GOSAT fitting window as [2] (769.90-770.25 nm). We have a second fitting window 

between 758.45 and 758.85 nm, similar to that used by [3]. We scale the results from the 758 nm 

window by 0.696 and add them those from the 770 nm window to increase the signal-to-noise ratio 

(SNR) of the combined additive signal. We also derive an additive signal using the 866 nm Ca II 

solar line from SCIAMACHY with the spectral band 863.5-868.5 nm. 

We use the following simplified model for the observed Earth spectral radiance l(),,) that assumes 

negligible atmospheric absorption and scattering: 

l(),,) KE()") + (1) 

where is a reference spectrum ideally containing no filling-in from the source of interest (flu-

. The main difference between our IJIJJLVQ.\oH and that of is that we use Qn<,,>~,e., 



radiance measurements made over the cloudy ocean as a reference rather than a measured or com

puted solar irradiance spectrum. There are several advantages of using cloudy Earth radiance spectra 

as a reference to derive a terrestrial additive signal as opposed to solar irradiance spectra (measured 

or computed) as detailed in 

'Vhen comparing the derived additive signals with vegetation indices, we use a quantity called 

"scaled-F" defined as the retrieved divided by cos(SZA). This scaling roughly accounts for 

variations in due to the incoming (clear-sky) PAR. 

4 Results and discussion 

Figure 1 shows retrieved gridded monthly mean scaled-F for July and December 2009 derived from 

GOSAT and SCIAMACHY. The values from SCIAMACHY at 866 nm are significantly smaller than 

those at 770 nm, as would be expected if the signals originate from chlorophyll-a fluorescence as

sociated with the declining emission tail throughout the NIR region. Similar seasonal variation in 

scaled-F is seen by both sensors as well as EVI. These variations in GOSAT and SCIAMACHY 

scaled-F are consistent with a vegetation source such as fluorescence. Like the EVI, a retrieved 

fluorescence signal (scaled by incoming PAR) is sensitive to the amount of green biomass contained 

within the sensor field-of-view or fractional amount of intercepted PAR. 

We note a significant filling-in (retrieved as F) at 866 nm over parts of the Sahara desert and the 

Saudi Arabian peninsula where vegetation is sparse. Filling-in over barren regions may be produced 

by luminescent minerals in soil and/or rock. 

5 Conclusions 

Our simulations indicate that terrestrial fluorescence filling-in of the 866nm Ca II line can be de

tected using hyperspectral instruments (spectral resolutions of the order of tenths of a nm) such as 

SCIAMACHY if the fluorescence at this wavelength is of the order of 0.1-0.2mWm-2 mn- 1 sr-1. 

After corrections for instrumental artifacts, we retrieved an additive signal over land at 866 nm with 

SCIAMACHY. The magnitude of the derived additive signal at 866 nm is similar to that of our lab

oratory measurements. The spatial and temporal patterns of the detected additive signals at 866 nm 

are consistent with a vegetation source; they are similar to those of EVI and those derived from 

additive signals at 770 and 758 nm where fluorescence from chlorophyll-a in vegetation is stronger 

and expected to be the primary source of the signals. 



Figure 1: Derived monthly averages for July (left panels) and December (right panels) 2009; Top: 

scaled-F (unitless) from GOSAT (0.696*758nm + 770nm); Middle: scaled-F from SCIAMACHY 

(866 nm); Bottom: Aqua MODIS enhanced vegetation index (EVI) 
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