@ https://ntrs.nasa.gov/search.jsp?R=20120008775 2019-08-30T20:27:12+00:00Z

1569590095

1

Experimental Applications of Automatic Test
Markup Language (ATML)

Chatwin A. Lansdowne, Member, IEEE
Patrick McCartney
Chris Gorringe, Member, IEEE

Abstract—The authors describe challenging use-cases for
Automatic Test Markup Language (ATML), and evaluate
solutions. The first case uses ATML Test Results to deliver active
features to support test procedure development and test flow, and
bridging mixed software development environments. The second
case examines adding attributes to Systems Modelling Language
(SysML) to create a linkage for deriving information from a
model to fill in an ATML document set. Both cases are outside
the original concept of operations for ATML but are typical
when integrating large heterogeneous systems with modular
contributions from multiple disciplines.

Index Terms— Software standards, Test equipment, Test
facilities, Testing, Software management, Software reusability,
Fault diagnosis, Sensor systems and applications, System-level
Design

I. INTRODUCTION

AUTOMATIC Test Markup Language (ATML) is an
emerging standard that offers sophisticated markup and a
modular framework for representing information needed to
determine what tests to run and how to run them. ATML was
developed to support sophisticated box-level (Unit Under
Test, UUT) maintenance testing in the field, depot and at the
factory.

But the ATML Concept of Operations (CONOPS) is
fundamentally built around transferable concepts that can be
extended to other usages. The National Aeronautics and
Space Administration (NASA) invests heavily in design,
builds redundancy (the spare parts) in, but produces and
maintains very small quantities. In this environment, the focus
of testing is run-once, with some tests being repeated as the
design is refined, or for record with production units. Tests
can range from exploratory engineering evaluations to formal
acceptances. Performance margins and anomalies discovered

Manuscript received June 1, 2012. This work was performed in NASA
Johnson Space Center’s Avionics Systems Division, collaboratively with
Cassidian. Funding was provided by a NASA CIO Information Technology
Labs Study.

C. A. Lansdowne is with the National Aeronautics and Space
Administration, Houston, TX 77058 USA (phone: 281-483-1265; fax: 281-
483-6297; e-mail: chatwin.lansdowne@ nasa.gov).

C. Gorringe is with EADS Test and Services (UK) Ltd. (phone: +44 1202
872800, e-mail: chris.gorringe@3eads-ts.com).

P. McCartney is with METECS, Houston, TX, 77058 USA.

during development tests will eventually be discussed with
review boards, and the test outline may be reprioritised or
expanded by the test team based on test outcomes during the
ephemeral test opportunity.

Il. ATML CoMES ALIVE

NASA has demonstrated that ATML can be used in live
message-passing, to describe and manipulate state variables in
software elements controlling the testbed. [1] As we began
composing procedures, we found that we needed additional
metadata for the state variables so that “arbitrary knowledge”
about settings needn’t be learned by rote, and so that results
can be used without assumptions or required conventions. In
summary the ability to send enough information so that
individual test results can be interpreted correctly and acted on
without reference to any external context or knowledge.

A. Multiple Ranges: Sets, Pick-Lists, Health, and Safety

In the “pick-list” application, a script or procedure
developer needs to discover the values to which a string
variable can be set, and pick the appropriate value from the
list. This means that the c:Parameter uses a c:Expected range
associated with it, to carry this list, as the constraints of the
value. As an example, we scripted a networked power
controller which could respond to outlet states of {“OFF”,
“ON”, “CYCLE"} (although it only reports {“OFF”, “ON"}).
We found that the ATML Datum type was not conceived to
define multiple ranges to express a set, however a reasonable
accommodation exists, wherein the string is described by a
collection of strings (Figure 1Figure-1).

<o:Daturn xsitype="cstring ">
<c:Range narme="valid">
i <o Expected comparato="EQ">
c:Collections
«ciltern=<c:Datum xsitype="c:string">«<c:Value=0FF /o Values</fc:Datum=</c:lterm>
<oiltern=<c:Daturn xsittype="cstring"><cValue=0MN</cValues</o: Daturn=</c:term:=
i <ciltern=<c:Datum xsitype="cstring"=<c:Value>C¥CLE</c:Value=<ic: Datum></c:ltem>
<fc:Collection=
i <feExpecteds
<fc:Ranges

=t Value>ON</c Value=
<fe:Daturn=

Figure 1. c:Range Expressing a Set

In this example, we gave the range the name “valid”, as it
identifies the settings that are valid. Ranges can also be used
to communicate how to interpret the setting or reading.
Examples could be “high”, “mid”, “low”, “alarm”, “full”,

1569590095

“empty”, “degraded”, “default”, *“nominal”, “completed”,
“safe”, “unsafe” or others.

Data that is harvested through a tightly-coupled software
application program interface (API) will often use an internal
representation that needs to be translated for a user or a script

developer. In Figure 2Figure-2, the switch states from Figure

an internal representation of 0 to mean “false” and an internal
representation of -1 to mean “true”. The construct is curious,
as nested empty c:Collection’s are used to carry the c:Range’s.
But this construct also allows c:SingleLimit and c:LimitPair
ranges to describe “healthy”, “safe”, and “valid” conditions.
In Figure 4Figure-4 the same construct is applied to a floating-

1Figure-1 are represented by an enumerated type. Here, the
“name” attribute of the c:ltem element is used to associate a
functional meaning with these integer values.

<c:Daturm xsitype="cinteger” value="1" =

=c:Range name="valid">

<i:Expected comparator="EQ">

=c:Collection=

<ciitern name="0FF"> <c:Datum wsitype="c:integer’ value="0"></c:Daturnz</c:ltem:s
<c:ltern name="0N"> <c:Daturm xsitype="ciinteger” value="1"=</c:Datum=<ic: tern=
<c:ltem name="CYCLE"=<c:Datum xsitype="cinteger” value="2">=/c:Datum></fc:ltem=
i =feCollection=

<fv Expected=

¢ <foRange=

<fo:Datum:

Figure 2. c:Range Expressing a Set, with c:ltem@name

In our scenario, each operator is controlling many software
elements, and each of those software elements could be
controlling hardware elements. It has been a long standing
need of ours to inform the operator of elements that are
missing or degraded. Last year we suggested enforcing
conventions [2] for health and safety indicators. But
constraints that are easy to meet for one development
environment are challenging for another tool. Arbitrary
constraints can be eliminated by instead taking a data-driven
approach, providing markup to describe what “healthy” is or
what “safe” is (and observe, these ranges need not be
orthogonal).

ATML attaches a named range to a Datum—but only one;
consider the range name as the range classification to which
the value belongs. It was not conceived that a “valid” range, a
“safe” range, and a “healthy” range would all be provided; the
multiplicity is one. Although awkward and verbose, a
technique was identified that validates against the existing
schema.

<c:Datum xsitype="ciinteger” value="-1"=

<c:Ranges

<c:Expected comparato="EQ">

<c:Callection=

=o:ltem=<c:Callection=<c:Range name="errar"=<c:Expected comparator="EQ">
=c:Datum xsiztype="c:integer” value="0"/>

</c:Expected=</o:Range»</c: Collection=</c: tern>
=t:ltem=<c:Callection=<c:Range name="healthy"><c:Expected comparator="EQ">
=c:Datum xsictype="c:integer” value="-1"f>

</c:Expected=</o:Range»</c: Collection=</c: tern>
=t:ltem=<c:Callection=<c:Range name="valid"><c:Expected comparator="EQ">
i cc:Collections

=c:ltem name="false"><c:Datum xsitype="ciinteger” value="0"></c:ltem>
i <oltem name="true"=<c:Datum xsitype="ciinteger” value="1"f></c ltem>
i =fcCollection=

</c:Expected=</o:Range»</c: Collection=</c: tern>

<fc:Collection=

<iv:Expected=

<fe:Range>

<fc:Datumz=

Figure 3. c:Datum with Multiple Ranges that are Sets

In Figure 3Figure-3 the software has an error condition if
the value is 0, is considered “healthy” if the value is -1, and
the set (concept from Figure 1Figure-1) of both 0 and -1 are
“valid”. We also used the name attribute of the c:ltem
elements to communicate that the software environment uses

point data type. In this example, the thermocouple is reading
72.5° C. A “failed” thermocouple manifests by reporting a
value of -20° C. The thermocouple can report readings in the
(“valid”) range of -20 to 100, but readings outside the range of
-10 to 80 are not “safe”._The “unsafe” range here illustrates
using named sub-ranges (“unsafe.low” and “unsafe.high”) to
not only classify a temperature reading as “unsafe” but

provide further interpretation of what the unsafe condition is.
<c:Datum xsitype="c:double” value="72.8" standardUnit=""C"=

=c:Resaolution=0.01</c:Resolution=

<c:Range=

=c:Expected comparator="EQ">

=c:Collection=

<c:ltem=<c:Collection><c:Range name="failed">

<c:Expected comparato="EQ"=

¢ § «<c:Datum xsitype="c:double" value="-20"/>

/o Enpected=

</o:Range=</c:Collection=</c:ltern=

<o:tem=<c:Collection=<c:Range narme="safe">

<c:LimitPair operator="AND">

{ <ciLimit comparator="GE">

<c:Daturn xsittype="c:double” value="-10"/>

<fe:Limit=

<c:Limit comparator="LE">

i <c:Datum xsitype="c:double” value="80"/>

i =/oLimit=

=/ LimitPairs

<fe:Range=</o: Collections </c:ltem:

<c:ltem=<c:Collection=<c:Range name="unsafe">

<c:Expected comparator="EQ">

<c:Collection=

<c:ltem=<c: Collection=<c:Range name="unsafe. low"=

<c:Singlelimit comparator="LT"=

¢ <oiDatum xsitype="c:double” valug="-10"f>

i1 =fcSinglelimit>

<fc:Range=</c: Collection></c:ltem>

<c:ltem=<c:Collection><c:Range name="unsafe.high">

i1 aeSingleLimit comparator="GT"=

: <c:Datum xsitype="c:double” value="80"/>

/e SingleLimit=

/o Range=</c:Collection=</c:ltern=

</fc:Callection=

</c:Eunpected=

</o:Range=</c:Collection=</c:ltern=

<o:tem=<c:Collection=<c:Range narme="valid"=

: <c:LimitPair operator="AND">

<c:Limit comparator="GE">

«<c:Daturn xsitype="c:double" value="-20"/>

</c:Limnit=

<c:Limit cormparator="LE">

<i:Daturn xsitype="c:double" value="100"/=

i <foilimitPair
<fo:Range></c: Collection=</c: ltem
</c:Collection>

<fc:Expected=

</c:Range=

=fc:Datum>

Figure 4. c:Datum with Multiple Ranges using Limits

B. tr:TestResults as a Status and Control Document

The tr:TestResults document construct can be used to
describe a software configuration and status snapshot during a
live operation (Figure 5Figure-5). This enables a data-driven

1569590095

data harvest from source-points in ATML format, rather than
collection in one format and later conversion to ATML.

atrTestResults wmins:t="um:IEEE-1636.1:2011:01: TestResults” xmins:c="um: IEEE-167 1:2010: Camman” xrmlns:sc="
urm: IEEE-P1636.92:01: SimicaCommon” wmins:xei="hittp: S w3, org/ 200103 chema-instance” ¥si:schemalocation
="urn:|[EEE-1636.1:2011:01: TestResults TestResults xed" uuid="{589B634F-10FB-481e-AD22-7115020155BF ">
<tr.Personnel>
<tr:.SystemOperator ID="jdoe1"f=
<itr.Personnel>
<trResultSet ID="_{47ac10b-58cc-4372-3567-0e02b2c3d479" name="BERT.v" statDateTime="2012-05-30T09:30:10">
i strOutcome value="Aborted"/>
i «trTest [D="_Bba7bB10-9dad-11d1-B0b4-00c04fd430c8" name="my Space-to-Ground Link” staiDateTime="
2012-05-30709:30:10"=
<trParameters=
<tr.Qutcome value="Aborted"/>
<tr.TestResult ID="_1" name="bits">
<tr.TestResult ID=" name="erars">
<tr.TestResult ID="_3" name="BER">
<tr.TestResult ID="_4" name="Tirme to Acy">
<trTestResult ID=" name="0nline">
<trTestResult ID=" narme="Connected">
H <trTestResult ID="_7" narme="HW Status">
| <finTest>
</trResultSet=
<tr:TestPragram:
i <c:Definition version="MyVersionOrRevisionhumber"=
<i:ldentification designato="My Operator- or Modelsupplied identification of instance test-point, configuration
diagrarm designator, usage, or meaning-- assigned after stad-up”>
i <o versionzhyRevisionHistory<c Versions
= ModelName=MyApplicationName </c:Modelames
i <fcldentification>
+ <fe:Definition»
i <c:SerialMumber>MylnstanceUUID</c: Serialblumber=
i <cReleaseDate»2011-12-02</c:ReleaseDate> |
<ftrTestProgranmz
<ftrTestResults>

Figure 5. tr:TestResults Document Structure

In such a document, tr:Parameters section is used to
describe the configurable (input) parameters, while
tr:TestResult is used for measurements and status (output)
parameters. tr:TestResult and tr:Parameter do not offer
identical metadata. Internally tr:TestResult uses the
tr:TestData extension of tr:Data which has the sole variance of
an added acquisitionTimeStamp attribute added to the c:Value
type, while tr:Parameter itself has a timestamp attribute. Also,
the ID attribute of tr:Parameter is a c:NonBlankString,
whereas the ID attribute of tr:TestResult is a more restrictive
xs:ID. And a tr:Parameter cannot have a tr:Transform or
tr:Extension, which could be useful for converting between an
internally useful representation and an externally useful
representation. tr:TestResult also offers optional tr:Outcome,
tr:Indigtments, tr:TestLimits, and tr:Extension, differences we
considered incidental.

Placing a tr: Test construct inside of tr:ResultSet is optional.
We have used this additional metadata to identify role (test-
point) of the software in the context of the test.

One must eventually conclude that tr:Outcome must be
“Aborted”, as it is neither “Passed” nor “Failed”.

The tr:Personnel construct allows the user of the software or
host to be recorded with the data. It also could allow a user to
take responsibility for manually inspecting the configuration,
by creating a record using the tr:QualityAssurance element.

We also observed that in the dynamic environment of a
development test, experimentation with algorithms can occur
and the software version itself becomes a test variable.
tr:TestProgram uses a c:Softwarelnstance, which has a
c:ReleaseData of type xs:date. But in this situation, the
timestamp on the software could change more than once per
day.

C. Implementation
For demonstration, an implementation was developed in

LabVIEW which discovers the controls on a Virtual
Instrument panel, then describes them in an ATML
tr:TestResults document from properties configured by the
software developer. This technique places minimal additional
burden on the developer to produce a well-documented
interface, and relieves the burden of maintaining the same
software documentation in two formats (one in LabVIEW
control properties, and one in ATML).

I1l. DERIVING ATML FROM SYsML

In any multi-disciplinary high-performance design
endeavour it is necessary to package information for
subsystems while maintaining a clear depiction of the whole
system and the environment it must operate in. In this context,
ATML is part of a larger information ecosystem, and it needs
to be exchanged between the tools of that ecosystem, not
hand-generated. The information will have versions: original
design, changed design, as-built... Throughout the process,
information must be traceable to the authoritative source of
information, and copies of information must be maintained
synchronous. Traditionally, this was enforced by manual
reconciliation of branches. Here we explore the simplest
automation, regeneration of information packages from single
authoritative sources.

The ATML CONOPS employs standardized test sets. Test,
maintenance, and diagnostic strategies must be considered
during the design phase, and this means that information about
test requirements must be reconciled with information about
fielded test assets at project Preliminary Design Review
(PDR) [3].

Remember, ATML is an information framework. The
philosophy is, describe the requirements, describe the
capabilities of the test set, describe the interconnections. This
will allow different implementations and design abstractions
to allocate resources, throw switches, run the test, and
interpret the results. This data-driven approach does not
require that every product use the same source code or
development environment, only the same information. The
respective curators of information supply the information they
curate. Capabilities can be changed without rewriting
software, if only the affected information is maintained.

The Systems Engineering process has since the early 1980’s
been portrayed using a “V” diagram (Figure 6Figure-6). The
process progressively decomposes a problem from studies and
concepts into requirements, subsystems, and components. The
design is executed, and then progressively integrated and
tested from components to subsystems, to system verification
(against requirements) and validation (against concepts of
operations). Finally it is deployed, with continuing support for
breakdowns, feature changes, and upgrades, ending with
retirement or replacement at obsolescence.

1569590095

Model-Based Systems

. - XTCE
Engineering

Feasibility

Operations, Maintenance,
Studies Changes, and Upgrades

Automation-Assisted
Testand Operations

Concept of Systems
Operations Validation

System-level
Requirements

High-level High-level
Design Verification

Component

petatled Testing

Design

Integrated Design
Environments

Figure 6. Systems Engineering “Vee” Diagram

As Figure 6Figure—6 suggests, different kinds of tools
support the work of different phases. Systems Modelling
Language (SysML) is an Object Management Group (OMG)
standard sponsored by the International Council on Systems
Engineering (INCOSE) and gaining acceptance as a method of
expressing, verifying, and validating a system design prior to
execution in hardware and software. SysML is a subset of
Unified Modelling Language (UML 2) with extensions.[4]
The object of using SysML is that the design can be verified
against requirements (close the “V”) before implementation
begins. Following implementation, the unit, subsystem, and
system need to be verified (ATML) against the model
(SysML), and characterization (ATML) fed back into the
model (SysML).

A. Implementation

To explore potential approaches, MagicDraw was used as a
SysML editor. A test configuration block diagram for a power
converter was modelled as a test case.

To derive an ATML document from a SysML model,
information that will be loaded into the document must be
provided in the model. This requires creating libraries of
blocks and stereotypes with inheritable attributes. An
ontology, or at least a naming convention, is required so that
the relevant attributes can be located and interpreted.

B. Literal or Abstract

Our first, direct approach was to represent ATML
constructs literally in SysML. ATML attributes could be
expressed as properties of a UML stereotype, or of a SysML
block. Points of confusion include when to use a stereotype
and when a block, where to put the value of the ATML
element, and how to handle an xml “choice.” It did not look
possible for SysML properties to themselves have properties
(corresponding to XML attributes). Further, placing and
changing default information in these structures in SysML
without instantiating them requires frequent use of
redefinition, which is clumsy in the MagicDraw 17.0 tool.
Further, ATML supports very complex structures for
describing complex hardware, and these could be daunting and
unnatural for a SysML tool user. Also consider, both ATML
and SysML are at an intermediate stage of development as
neither presently achieves alignment with any ontology. The

Retirement or’
Replacement

exercise was however useful for developing greater familiarity
with both ATML and SysML.

Thus we fell back to trying to create library components
with standardized ATML-mapped attributes that might work
more naturally in the SysML editor but represent ATML
concepts. This approach could allow us to export constructs
from SysML, and map test results back to SysML.

C. Requirements

The requirements diagram in SysML is an extension to
UML. As such it is a less mature component. Requirements
from SysML do not appear useful for automatic testing, as
they have been implemented as human-interpreted “dumb
text.”

D. Quantities and Units

SysML ties units to QUDV, an ontology now used by OMG.
Presently, only SI units are supported in QUDYV, and
MagicDraw only includes a subset of those. Units in ATML
are relatively weak.

ATML identifies some concepts that today’s ontologies
overlook. These include the “unitQualifier”; although the
usage of this field has not been standardized by IEEE, it is
intended to associate a statistical method with the
measurement. This is important when comparing
measurements (for example, a signal measuring 2 V p-p can’t
be compared directly to a signal measuring 0.7 VV rms). But it
could also be the key to data-driven data aggregation. When
aggregating “peak-peak” values, report the maximum value.
When aggregating “rms” values, take the rms of the values.
ATML also enables the capture of Resolution, Range,
Confidence, and ErrorLimits which are needed for comparing
a measurement against a test requirement. For example, it is
intended that, given a requirement to measure the power
converter output voltage with a passing result between 24V
and 32V, a reasoner could find an instrument capability in its
inventory that can make the measurement with the necessary
resolution, and then compare the measured result with the
requirement.

1569590095

zsterectypes
atmiDatumQuality_c
[Element]
+Rezolution : double [0.1]
+ErrorLimits : atmilimit_c [0..1]
+Confidence : atmilimit_c [0.1] [

+Range : double [0.1] [_suses

b zsterectypes
atmiDatumType_c
[Element]

+value : atmivalueType_c

zsterectypes
atmiStandardUnit_c
[Element]

v #USER
S s

) 2
zsterectypes
atmiUnitAttributes_c
[Element]
+standardUnit : stmiStandardUnit_c [0.1]

+nonStandardUnit : atmiMonBlankString_c [0.1]
+unitGualifier : atmiMonBlankString_c [0.1]

«enumeration:
atmiUnitQualifier _c

#MalueTypes
atmiValueType _c =
rms
statiztic : stmilntGualifier C | |heak
peak-peak
median
percentile 0

Figure 7. Extending SysML for ATML Quantities

The UML stereotypes shown in Figure 7Figure—7 were not
ultimately useful. The extended ValueType worked well in
isolation, its value can be selected from the pick-list provided
by the enumeration. It was not evaluated in a practical
application.

E. Connectors and Wiring

bdd [Block] Povver Controller [Power Supply def lJ

Win : poveerClrlr _EIF
highside_j: %

«hlocks

“out Cirlr_EIF
Power Controller CiHeide o ™

highside_o: %

o sicle_i: W lowvside_o W

¢ PovverEfficiency

AmbiTemp : (TS \asteHeat | W
F,‘PtvrlnConned |—_E|

vales
: Bjunit = ampere}

«hlocks
powerCtrir_EIF

highside_j: % E’] highzide_o: %
loveside_i: Y | |

arts ’:l:l . .
: Connector A CPowerPlug2 lowesicde_o: Y
: Connector ACPowerSocket2

highside_i: Y{redefines power unit = wolt
lowyside_i: W{redefines neutral unit = wolt}
highside_o : V{redefines povwer unit = volt }
lowyside_o: Viredefines neutral unit = valt}

Figure 8. Adding an Electrical Interface to a SysML Model

SysML ports can be overloaded (Figure 8Figure-8) to form a
construct that resembles a connector with pins. In the model,
we now represent an electrical circuit with a signal return. An
Electrical Interface block can be added as an intermediate
step; in the normal course of modeling, a high-level model
would be generated first, and details would be added and

defined progressively. Thus, the model now says that Power
Controller has a powerCtrlr_EIF, but we haven’t yet specified
how many connectors we’re using, how many pins, what kind
they are, or what they’re called. This block however does
allow us to identify signals in the model that are going to be
brought out.

Connecting the signals is tricky; if we use a SysML Internal
Block Diagram (IBD), it will create an instance of
powerCtrlr_EIF which we can wire, but that doesn’t actually
connect powerCtrlr_EIF. One approach is to redefine the pins
on Power Controller to connect them to powerController_EIF.
Redefining pins in MagicDraw was tedious and error-prone.

Now we can add the electrical connectors. In Figure
9Figure—9, the ConnectorACPowerPlug2 inherits from
atmlConnectorElectrical, but its matingConnectorType and
cost properties have been redefined. One method is to say
powerCtrlr_EIF “is a” ConnectorACPowerPlug2 and also “is
a” ConnectorACPowerSocket2, and the pins are connected
through again by redefinition. We’ve iterated on this concept
here, but haven’t concluded which answer is best. Again, on
an IBD we could have directly created instances of
ConnectorACPowerPlug2. But on the BDD we needed
instead to create the J1 and J2 connectors and then type them
from the ATML-derived connector library.

[b [BRock] Power Controser | Power Supety a8t |

i T _LF
PO abiocka o

5 i
ighaide i V' Pewer Cantretier =Lk
waide |- V' ookl 524
Ao € Lo \iastatost W
¥
T ook I
Figraide | vV _J powerCirie_EIF | ighaide o
lowesie | i
gt) wside_o
lowside) T
highitice_o
kereveide o .
¥

perever Y «hlocks.
Connector ACPowerFua?

el W
around : TmasngonnectonTyne = Con

Lacost = &

perever W

ablerks
“eonmecton J2 - Teo0st = Gireder

ground -
netrel ;Y

Figure 9. Adding Electrical Connectors to a SysML Model

It might be desirable for SysML to report a type mismatch
when connectors are mis-mated. Alternatively, users may
prefer an iterative approach so that the model can be
connected together and verified first, then come back and
identify where mechanical adapters are needed.

F. Capabilities, Resources, Ports, and Signals

In the course of this work we came to understand that
ATML does not begin test preparation by describing a
configuration diagram. Instead it works from a list of
requirements to be verified: the signal at certain pins is to
meet some description with some tolerance. Then the test set
peruses its inventory to find a capability to make such a
measurement within the tolerance, examines wiring
information, and configures the switch fabric to connect the
signal to the instrument. It appears to stop short of running the
test, and this is an area where the NASA Automation Hooks

1569590095

Architecture can help by enabling discoverable parameters to
be mapped to capabilities.

The term “Port” has a specific meaning in SysML distinct
from its specific meaning in ATML. In SysML, a port is a
point on a boundary. In ATML, a “Port” is a nodal collection
of pins and their connectors that need to be joined to perform a
capability (generally, routing signals in hardware). SysML
has UML standard ports and flow ports, and these ports are
used to represent variable parameters.

An ATML Instrument has Resources which have Ports that
are used to supply signals or measure signals. [5] The
Instruments themselves have Ports designating connectors and
pins in the physical interface that Resources map to.

[b Pociage] myinsumert | ResourcesPats

Figure 10. BDD and IBD Techniques for Representing
Capabilities and Resources

ATML resources have ATML ports, which must be “wired”
to the instrument ATML ports; it is also possible to describe
that a switch controls which instrument port is wired to the
resource. [6] ATML resources can support several
“capabilities,” which are either signal (stimulus) or
measurement (response) descriptions, and these must also be
mapped to the resource ports.

Switches were not represented in this iteration.

G. The Information Harvest

The Object Management Group (OMG) developed the Meta-
Object Facility (MOF) as a means for expressing metadata
from model languages such as SysML. The XML Metadata
Interchange (XMI) is a means for exchanging this metadata
using the eXtensible Markup Language (XML). Our approach
to harvesting the model information from SysML was to
process the XMl file exported from the SysML modeling tool.

The MOF uses the notion of MOF::Classes to define
concepts (model elements) on a meta layer. The biggest
challenge in parsing the XMl file is to map all of the classes
with the appropriate elements and end up with useful
information about the described system. This is done using an
extensive series of unique identifiers for each class and each
element in the diagram. For example, the ACPowerPlug
connector is defined as a packagedElement with a type of
uml:Class and given a unique ID. The power supply itself

(myAvBox) is also defined as a packagedElement with a type
of uml:Class and given a unique ID. Within the power supply
element, an ownedAttribute element is defined that is given a
type ID that references the ACPowerPlug definition. This

relationship is shown in Figure 11Figure-11.

Figure 11. XMI Snippet Showing Relationships between Block
diagram elements and definitions

The type of linkage shown in Figure 11Figure—11 is
propagated for every component of the SysML block diagram

as well as all of the definitions and properties which are
referenced within the diagram. Tracing through these linkages
can become quite complicated even for this simple model.
The XMI cannot be processed as a stream since it is not
known ahead of time which definitions will be referenced
elsewhere in the file and how many times they will be used.
Thus, an XMI parser must store every unique ID and all of the
information associated with each uml:Class so that it can
interpret the actual model of interest.

A simple PHP-based processor was written to prove that it
is possible to trace through the XMI linkages and harvest all of
the necessary information by mapping all of the unique
identifiers. This processor would require additional
development to work for a generic block diagram and also for
other types of SysML models, but it is clear the information
exists in the XMI output and it could be followed with a more
robust processor. Once these linkages are traced, they can
easily be rearranged and output in another format such as
ATML.

Using library support files to contain the ATML constructs
was transparent, as MagicDraw duplicated the information in
the project XMI file. The use of redefinitions was not
observed to be a problem.

IV. CONCLUSION

ATML is not merely an information format, but an
information framework designed to support a streamlined
workflow. It was shown here how ATML documents might
be generated programmatically, for automatic discovery and
collection. ATML was applied to harvest not merely data, but
also the metadata describing configuration and control
variables in a heterogeneous software environment.

We also investigated how system models and ATML
documents might be linked together. SysML models will need
to be derived from libraries of ATML constructs so that
information can be extracted by data-driven algorithm. A
literal approach appears undesirable, as the ATML complex
literal constructs are difficult to use in SysML, and ATML
needs to transition to an ontology anyway. Thus, an abstract
representation of ATML concepts is recommended even
though this requires more work to strip. The exchange of
information between ATML and SysML cannot be performed
by a data-driven XSLT translation, an intelligent application is
required which understands the constructs on each side.

The techniques we explored here remain to be validated by
the SysML user community [7], and it remains to make the
actual conversion from SysML to an ATML document set and

1569590095

then actually use those documents to do useful work. We
explored two techniques for “wiring” connector pins and
ATML resources. One used instances in an internal block
diagram (IBD) and the other used port redefinition in a block
definition diagram (BDD). We would like further evaluation
by SysML users to determine which is “best.” It also remains
to be decided whether it should be possible or not to mis-mate
connectors in the SysML editor.

ACKNOWLEDGMENT

The authors would like to acknowledge the benefit we
received from the superior experience of several SysML users
at NASA'’s Jet Propulsion Laboratory. These include Mike
Seivers, who pointed out the UML/SysML Test Profile. Mark
McKelvin, who identified our use of “Singleton instances” of
classes. Mark also urged that libraries don’t own things, they
own “characterizations” of the things. Marcus Wilkerson has
already been able to generate wirelists from models. Marcus
demonstrated for us how SysML ports can be overloaded, and
how detail can be added incrementally to the model of the
interface.

REFERENCES

[1] C.A. Lansdowne, J. R. MacLean, et. al., Automation Hooks Architecture
Trade Study for Flexible Test Orchestration, ISBN 978-1-4244-7960-3,
Autotestcon Proceedings, Sep. 2010.

[2] C.A. Lansdowne,J. R. MacLean, et. al., Automation Hooks
Architecture—Concept Development and Validation, EDAS
1569424063, Autotestcon Proceedings, Sep. 2011.

[3] C. Gorringe, The Use of ATML in Managing TPS Developments and Life
Cycle Maintenance, Autotestcon Proceedings, Sep. 2010

[4] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML,
ISBN: 978-0-12-3786074-4, Elsevier, 2009

[5] IEEE Std 1671-2010, DOI 10.1109/IEEESTD.2011.5706290, January
20, 2011, Appendix F

[6] C. Gorringe, T. Lopes, D. Pleasant ATML Capabilities Explained, DOI
10.1109/AUTEST.2007.4374218, Autotestcon Proceedings, Sep. 2007

[7]1 C. Delp, L. Cooney, et al, The Challenge of Model-based Systems
Engineering for Space Systems, Year 2, INCOSE INSIGHT, vol. 12,
Issue 4, pp. 36-39, Dec. 2009

er : solar_arr

z solar_i: 120_VAC

power_conditioner_unit

rmer
-,
120 VAC \120_VAC
it 120_VAC
L¥ |
ftion : PDU-F1_power_distribution
references
- Rope_Light-1-Ext-M-1
- WAP-1F-M-1
- MedOpsLight-1F-M-1
parts

:PDU-1F-1
:120vde_PS-1F-F-1
2120vde_TB-1F-F-1
cQd_outlet1F-B-1

- MedQps_light_swtich-1F-M-1
- Qd_outlet1B-F-1

- PoE_Injector-1C-F-1
AV_Systermn_Pwr_Distribution

: AV_System_Pwr_Distribution

Jparts
: UPS-1D-F-2
: UPS-1D-F-1
:120vac_to_12vdc_converter
LAY _junction_box-1C-F-1 .
- AV _ext_kill_sitch-1F-Ext-M-1 Sen
L AN _int_kill_switch-1A-T-1 R
: pwr_connector-1E-F-1

: pwr_connector-10-F-1 o ED(;,

- RPCT1D-F-1 “GMY

: RPC-1E-F-2 ‘DFL
CDPLx
srail_li

dled di

Test Flow and Data Manager (TFDM)

Floor Control

Simulation

Power Strip

w
=
w
[=
ar

IIIIIIIIIIIIIIIIIII

erations

e

Test O

IIIIIIIIIIIIIIIIIII

DS-NET

SubSystem

1
1
1
1
"
| “ m
1i%y
W |2
LE 1 [75)
Lo 2
Iy N
, 1| [
i D
-
1 o
(e
1

Command Logger

External

Cmder

Flight Vehicle Net

Advertised

— Automated Discovery: Dynamic “Plug-and-
Play”

REST Architecture
— Two commands: GET and PUT

— \Versatile: co-host support files and
hyperlinks— interface definitions,
requirements, theory of operation,
streaming data, GUI...

HTTP

— standard messaging, error messages,
compression, security, caching

xml:ATML (IEEE 1671)
— standardizes units, arrays, time zone

— Scope includes signals, instrument
capabilities, problem reporting

— exciting opportunities for COTS tools and
radically different engineering work flows

Automation Hooks Architecture

API

<Al

Archive-quality
Enables Data-driven software architecture

Foundation of artificially intelligent data
processing

Self-describing message format
Create database tables by script

hypermedia layout

Insulates against layout changes
Coexistence of variations
Separate metadata for caching

Orchestration features

Health and Status Rollup
Synchronizing and Scheduling

ML/>

Automatic Test Mark-up Language

Example: Controlling a Web Power Switch

e Switch vendor’s interface
requires screen-scrape to ATML

e But ATML can coexist with HTML

Edit Wiew History Eookmarks Tools Help
Het Cantrol - Comfort Inn - ABCvill [+ |
€ | © eper.digitalloggers. comjindes. it e | |2~ cooge 2| # i
@ Ethernet Controller: Comfort Inn - ABCville 3 . <;;;l:UE§I}ut m];;,
<ATML/>

Individual Control Automatic Test Mark-up Language

Qutlet Control # Name State Action

Setup Bus A: 121V 0.0A [000000.2 kWh]

Scripting 1 Nomadix 5600 ON Switch OFF Cycle

Date/Time 2 E1 Switch OFF Switch O

AutoPing 2 W1 Switch ON

System Log 4 E2Switch ON Switch OFF Cycle T ———.

Logout BusB: 123V 0.0A[000003.1 kWh] o]ttt el __,

Help 5 Outlet 5 ON Switch OFF Cycle
& Outlet & OFF

Manual T Outlet 7 ON Switch OFF Cycle

FAQ 8 Life Support ON O Switch OFF Cycle

Product Information

Digital Logger Inc. Master Control
All Qutlets OFF
All Outlets OMN

Wersion 1.6.0 (Jun 22 2012 7 21:56:21) Cycle all Outlets e

BAAIS795 FETRORD]

Parameter Pick-Listing using
ATML c:Range (Expressing sets)

=z Datum xsitype="c:string"=

. <c:Range name="valid">

.| <o:Expected comparator="EQ">

1 <oCollections

1 <mltem><c:Datum xsitype="e:string"=<cValue=0FF</c Value=</c: Datum==</c: ltem:>
1 <oltem<c:Datum xsitype="e:string"=<c:Value=0M</e Value=</c: Datum></c:ltem:=
1 <mlteme<c:Datum xsitype="c:string"=<c Value=CYCLE</c Value=</c: Datum=</c:lterm=
.11 </cCollection

.| <fcExpected:
L </cRanges OFF

L <o Value=0N</c: Values CYCLE
=fc:Datum=

e Associate a “valid” c:Range with the parameter
 Express the set as a c:Collection of c:ltem

e /ssue: requires “knowing how to” compare a
string to a collection of strings

Parameter Pick-Listing using
ATML c:Range

<c:Datum xsitype="cinteger” value="1" =

. <c:Range name="valid">

.| <c:Expected comparator="EQ"=

11 <cCollection=

11 <ecltem name="OFF"> <c:Datum xsitype="c:integer” value="0"></c:Datum==/c:ltem>
11 =cltem name="ON"> <c:Datum xsitype="c:integer” value="1"></c:Datum=</c:ltem>
10D zoiltem name="CYCLE"=<c:Datum xsitype="c:integer” value="2"></c: Datum></c:ltem=
11 </e:Collections

L | </cExpecteds ON 0

i </ciRange= SE,ELE ;

<fo:Datum=

e Often, the internal representation of a parameter
is not meaningful to the user

e Example: enumerated list

e ATML can carry both internal and user-oriented
representations, with ltem@name

“healthy”, “safe”, “valid”:
Expressing Multiple Ranges

E::|::c:IIZII:E.u’[Rl_lél"r;E:I}-:Es:ib:’[j,fp|e="|::in’teger"vall_|e="-1"::r ° ATMLSChema a”OWS Status
| =c:Expected comparator="EQ"> 01 namEd ra nge

=c:Collection=
- <coltern=<c:Collection><c: Range name="error"»<c:Expected comparator="EQ"=
=z Datum xsitype="cinteger” value="0">=
</c:Expected=</c:Range=</c: Collection=</c:ltern=
< ltem=<c Collection=<c:Range name="healthy "=<c:Expected comparator="EL">
=c:Datum x=itype="ciinteger” value="-1"=
<t Expected=</c.Hangex</c.Collection=</c: tem=
=i ltem=>=<c:Collection=<c:Range name="valid"»<c:Expected comparator="ELI">
. =c:Collections
L <oiltern name="false"=<c: Datum xsitype="cinteger" value="0"=</c:ltern=
o =ciltem name="true"=<c:Datum xsitype="ciinteger” value="1"=</c:ltem:>
i </ciCollection=
. </c Expected><i/c:Range></c:Collection></c:ltem:>
 <foCollection
</c:Expected> * Need a data-driven way to roll up

Efc:ﬂange}

imamm} health and safety status

Status

i <e:Datum xsitype="c.double" value="-10",>
<fc:Limit>
<c:Limit ¢ nrrm

Usmg

P <fe:LimitPair>
<fc:Range><fc.Collect|0n><fc:ltem>

<c:ltem=<c:Collection==<c:Range name="unsafe": °
: fic:E}{pected comparator="EQ"= Exa m ple

ultiple-ranges, with limits

Imne-

<c:Callection=
<o:ltem=<c:Collection=<c:Range name="unsafe.low"> demOnStrateS
L L <o SingleLimit cormparator="LT"= : _

L <c:Datum xsitype="c:double” value="-10"/> usl ng SU b

P ;:Ic:SingleLimit::
<fc:Range></c:Collection=</c:ltem> ranges to
=c:ltem=<c:Collection=<c:Range name="unsafe. high"=>

=ciainglelimit cormparator="GT"> prOV|de

L1 =c:Datum xsittype="c:double" value="80"=
<fcosinglelimit= fu rther

;:It;:Hange}{fc:Cullectiun}{fc:ltem} . .
i </c:Collection= |nte rp retatlon
i </ciExpected:
<fc:Range=</c:Collection=</c:tem= for the
<c:ltem=<c:Collection=<c:Range name="valid">
P <c:LimitPair operator="AND"> Ope rator

=c:Limit comparator="GE"»
L <ciDaturn wsictype="c:double" value="-20"/>
<fc:Limit=

~ec et s Armrmeatme— " B

Example of Data-Driven Flow from
LabVIEW to ATML

! Numeric Properties: Sample Size

Appearance | Data Type | DataEntry

Current Object
Mumeric

[CJUse Default Limits
Minirnurm
1000, 0000

Maximum
1.0000E4+9

Increment .:\

Display Formak Docurnentation Datal < »

Response to value outside limits

Coetce b

<tr:Parameter ID="Run.Sample Size" name="Sample Size">

<I-- Parametep1D is a c:NonBlankStri
to the software variable name/--

. SO it could be traceable

iption>Set "Sample“Size" to the target number of
bits 1o test (duration ef the run).</tr:Description>

tr:Data>

<c:Datum
no

i:type="c:double" value=g
andardUnit="bits">

,'3000000"

£.0000 erce tanearest v <c:Resolution>1</c:Resolution>
T : <c:Range name="valid">

Page Size £ 0.0 - L]

10,0000

¥ Description and Tip

"Sample Size" Description

Set "Sample Size" to the target number o
the run),

"Sample Size" Tip

File Edit %iew Project Op

itPair operator="AND" >

Index

=

RF On Lock ©00i=
Q- O =
Time to Acq 1E-9-
1 1 bits |3E+5
0 |”— 10

errors |168136

ols ﬂindqm T
98] &n]| %lr&ﬂ@j@
e

<c:Limit comparator="GE"“><c:Datum xsi:type="c:double"
value="1000"></c:Datum></c:Limit>

<c:Limit comparator="LE“><c:Datum xsi:type="c:double"
value="1000000000"></c:Datum></c:Limit>

</c:LimitPair>
</c:Range>
</c:Datum>
</tr:Data>

</tr:Parameter>

Carkoon Test Automation, keprojfify Computer |{

10

The Test Results Document

<tr:TestResults xmins:t="urn:|EEE-1636.1:2011:01: TestResults" xmins c="urm:|EEE-1671:2010: Cormmon" srmlns: sc="
urn: [EEE-P1B636.99:01: SimicaCarnmon” wmlns: xsi="http: Seseee w3, org 2001 5MLSchema-instance” wsiischemalocation T T—————

="um:IEEE-1636.1:2011:01. TestResults TestResults xed” uuid="{589B634F-10FE-481e-AD22-7 1150201 556F "=

<trPersaiiiel=

File Edit W%iew Project Operate Tools %

| atr SystemOperator [0="jdoe1"f User BE |C..|E| 13pt Applic] 4O
<ftr:.Personnel> Index L
<trResultzet ID="_f47ac10b-58cc-4372-a567-0e02b2c3d479" name="BERT»" startDateTime="2012-05-30T0%:30:10"= E STOF

2012-06-20755. 30 70
<tr:Parameterss

<trTestResult I0=

<ftrTests
it Racult et

<tr:TestProgram:=

di

w

: <jc:Identifications
<jc:Definitionz

<ftrTestProgram:=
<ftrTestResultss

<ty TestResult [D="
<tr TestResult ID="
<tr TestResult [D="_
<tr TestResult ID="
<tr TestResult I0="

<tr:Outcome value="Abored"/=
<trTest ID="_Bba7b810-9dad-11d1-80b4-00c04fd430c3" name="my Space-to-Ground Link" startDateTime="

<trTestResult ID="_1" name="bits"> . " ”

' 2" name="emars"> Outcome is always “Aborted

3
"name="Time to Acqg"> « ” .

ane="Onling"s Read-only “status” variables

' name="Cannected"=

" name="HW Status"=

: Lip="Ahortod" e L R 14
<trCutcome vilies"dkorad" (= | :HIF'

< 3enalMumberzMyinstanceUID=/c: SeralMumber=
<c:Releaselate>2011-12-02</c:ReleaseDates

I_ql‘__ﬂ_ Ujl-r-:

Configure | Run | S I Remake I Abo

[i i i mb 0.0560453
Read/write “configuration” variables § _samplesi: _ 00560453 BER

RFOn | Lock MMHi=

Jb J 1E-62

Time to Acq 1E-9-

| blts |3E+6
10
errars |168136

Carkoon Test Automation, keprojfify Computer |{

name="BER"=

Software version

<c:Definition version="My"ersionOrRevisionMumber"=

: <c:ldentification designator="My Operator- or Model-supplied identification of instance test-paint, configuration
gram designator, usage, or meaning-- assigned after start-up”=

L <oVersion=MyRevisionHistory</c:Versions

el Myl sonkan<l Voiellane * Descriptions could be

loaded into tr:TestResults

The Test Description Document

=?xml version="1.0" encoding="UTF-8"7>

<td: TestDescrption uuid="f47ac10b-58cc-4372-a867-0elZb2c3d479" xmins xsi="
http: Awaneir i3, arg 2001 SsMLSchema-instance” xmins:td="

urn:IEEE-1671.1:2009: TestDescription” xmlns: c="urm:IEEE-1E71:2010: Commaon®
¥zl schemalocation="urn: IEEE-1671.1:2009: TestDescription TestDescription. xsd"=

<t LT =
| Description/> * Static metadata is best loaded
e oot Hormation> into tr:TestDescription

=td Actiong> Future work: behaviors

=td: TestGroups:

=td: TestGroup xsitype="td: TestGroupUnspecifiedOrder” name="nane" [D="1"=
<td: Outcames>

L <td:Outcore 1D="1" value="Abored" >

:c:ftd:Dutcnmeaﬁ v w . . .
<td: ParameterDescriptionss Read/write “configuration” variables

<td: TestResultDescriptions= Read-only “status” variables
<td:ActionReferences=

: <td:ActionReference actionlD="0"/>

<ftd:ActionReferences=

=fd: TestGroups=

=id: TestGroups=
=/td:DetailedTestinformation=

</td: TestDescription=

The Mission Lifecycle

Each domain of practice uses different data formats,
conventions, representations, and tools making
Interoperability and Reuse challenging

Test &

14 . Test .. Dperaie
: System
Lifecycle

Design

Lessons

Learned | Il

Simulation

Information evolves as it is
used by each domain

NASA Information Architecture

12

Test Orchestration and Data Harvest

Complement MBSE

Operations, Maintenance, Retirement or

<
T > Changes, and Upgrades \ Replacement Recorded
Mission
%4 - Systems Automation-Assisted Test Telemetry
// ialldation and Operations
/, ~ System-level
- Y Verification .
— Change Information Flow...
High-level
Model-Based < Verification
SVStemS <> Component ‘
Engineering Testing
Software and Hardware . g b o
Design and Development = Test Results g, Mission
L HEE Assurance
Integrated Design ' r Archive
Environments, CAD iilllllllllll“l”\
Test - 4 ,
\LS .
MBSE ResV - . Scripts Analysis -
del Orchestration =
and ™o Xy =
Result® p ‘\
SysML :
...Change Work Flow Facilty
Processes

13

14

SysML: Maintaining Coherency

Fundamentally, a SysML model is used to generate a set of project documents
that are maintained “in sync” with each other

documents

......

operational concepts

analysis &
| simulation
models

adapted from SysML and MBSE: A Quick-Start Course, Georgia Tech and InterCAX

ATML
Work Flow

Defme ”Success” for ATML

ATML UML Model

........

rrrrrrrrrrrr

| m=.| Stason) o i
TPS Procurement
[Tesr e Adapi
| Deseription | 1 | Deseription
| TPs) (TPS)
TPS De

nnnnn

e Test = Requirements + Capabilities + Wiring

e Maintain Documentation not Software

At PDR, flag requirements that can’t be

New Test Article, new Description
Replace an Instrument, Change a Description
Change Wiring, Update the Description

tested on deployed test sets

£
RN

B

2

ATML UML Model

Heport to Congresslonal Committees

MILITARY
READINESS

DOD Needs to [dentify

and Address Gaps and
Potential Risks in
Program Strategies
and Funding Priorities
for Selected
Equipment

bdd [Package] Test Activity [Equipment List lJ

hlocks
PSTestConfig
I t C f' t .
=il
«hlocks “in ;. povwerCirir_EIF shlocks bl () C
EF L Vout - shlacks
Lab twer ot Power Controller i EEL (L] [I l e r a C e

va 5 i
rippleFreq : Hz{unit = hertz}E' AmbiT B o | Westshest - i
tippleRns : Wunit = volt} e H_EIPowerOutEqn lﬂ]

vaiues
Currert_meas : A{unit = ampere}
YDG : W{unit = volt} - PovverFlowy .

LoadResistance_set : Cunit = obm}
: PovwerinEgn = (Pin=lin * %in) “oltage_meas ; Viunit = volt}
1 PowverEfficiency

[]
parts
1 poverCirle_EIF
ProvtinConnect
e

va 5
: Afunit = armpere}

an102

bCn: Oe out: DC In: Load P!
:DC Bus Plug Bus Plug Load Plug .DC Load Plug n: Load Flug
:Lab Power [Connection - Vout — Connection _—
b g = - g =
DC Out: 24-32VDC 20-32VDC :Load Tester
Vin
Bus Plug :Power Supply
VoltageOut_set / Enabled_set Resistance_set
CurrentLimit_set Temperature Voltage _meas

PowerLimit_set Current_meas

(constant V, P, or I)
Questions: how to treat ports, vs. signals, vs. interfaces: which defines the connector type

(dare | ask about gendered connectors), which the voltage. Want units attached where
applicable so we can understand how they’re being represented.

Requirements in SysML

req [Package] Requirements [Regts JJ

zuzabiltyRequirement:
Application

Id="1"
Text="The power supply shall be
suitahle for the intended application.”

requirements
Environment

deriveR
. leriveRedts

T «déﬁveRem»

____.’l__L_

s

Id="g"

Text="The power
supply shall meet
ervironmental

sperformanceRequirement:

MeetinterfaceSpecs

zderiveRedts

lg="2"
Text="The pawer supply shall
meet interface specifications”

sreguirement:
Packaging

lg="g"
Text="The power supply
shall meetthe package

specifications” 7 requirements”
ederiveRedtsy |
«de'r_iveﬁe@ o _«deﬂveﬂ[eqt_» ______ o _ wderiveRedts iderﬂequia‘

srequirement: wrequirement: wrequirements srequirement: srequirement:s

PeakCurrent OutVoltage Stability TurnOnTransient ReverseEnergy
Id="ar Id="4" Id="5" Id="F" Id="7"
Text="The peak Text="The output Text="The power Text="The power Text="The power
current shall be bus waltage shall he supply shall be SuUpply output supply shall
less than lpeak’ maintained stahle: measure the Current Rize time present Reverse

4‘_[5

«Fationsler E=n

protect external
components from

hetween Youtmax
and Vautmin, ar
balaw Wshutd own "

damage

M &\
«Rationale: E—;
protect external
components from
hreakdowr] or
undervoltage
partial shutdowns

1
averifys | Test Cases

OutVoltage

impedance {freq
Sween)”

shall he less than
Irate Afsec”

Energy less than
Eren

T

AN

«Rationales =]
protect the power
suply

«Fationale: =

don't blow fuses
at turn-on

«Rationale:
protect external
components from
back-EMF §
reverse voltage

=

Simplistic human-
readable text
representation

Can be linked to the
model

— Model
components can
“satisfy”
requirements

— Test Cases can
“verify”
requirements

MagicDraw plans to
add support for
SBVR

18

Quantities in ATML

— Sl units only

— Backed by an RDF/OWL
knowledge model

L.+~ c:Confidence |
Base type: rsidouble
Propetties: isRef 0, content
sirple
The
CraturnQuality fConfidence
child elernent shall contain
the required confidence.

percentile10

| c:DatumType | atml«[)&:[:?‘::l;z:;‘y .
| = attriputes | [Elemeri]
ATML id i iouingly | | oo i arpl g W
p rOVI es a n I nt rlg u I ng y | i standardUnit ; | :(E:I;r?;ic;g:w(:se E‘a:trmll..lr]ml—_n:[[l:l:‘1]])
H | | rnInInnInIITIzL_LL | +Range : double [0.1) & auses
rich mark-up for measured [s | SO
__________________ [«stereotypes
T4 s i ID T
quantities | | meauatrier | et
. +value : atmlValueType_c
— Standard units I Eresidin : ‘
— _ H i Base bype: _xs:double 4
F ree fO rm U n |tS | E ZEEFEMES: isRef 0, content | m:serzmy:?n ey
. . — v andardUnit_c
J— Statl St I C (rm S, pea k. .o) | H D".le_l;%ln]Qualitty.lEe"solutitop | [Element] L
! chlld element shall contain
_ ReSOI utio n | i the required resalution, I h.qne:) /
| i --------------- A L “
1 t-+ c:ErrorLimit stereotype:
— Accuracy and confidence | tenmis cAmitAsnEse_¢
Baza type: cilimit [Element]
H ! Propetties: isRef 0, content | ~ -
— Nominal Value | . e | [,
. . | = == 3 Ba?quuality.l’Emﬂ.imits +unitQualifier - atmiNonBlankString_c [0.1]
— Acceptance Limits | ooy g | chldsamant sl o |
Constraint Limits | 5 |
— specification of any of the 0 oo
| group’s child elernents. :.__E c:Range | S —
LB + ciLirni |atmiUnitQualifier _c
SysML uses OMG QUDV : R - : e) SR
' cornplex 7 |ms
I The D livy statistic * atmiUnitGualifier_c | |
ontology | | e | it
v the range, |median

19

QUDV representation for Units

Unit - Dollars2011

Specification of instance slots

& slot gives the walue or values of a structural Feature of the instance, Select a slot and click the
reate Value butkon, to create a new walue for ik,

E & Histary ;| OO Dollarsz011 @ DerivedUnit [4THL Mamespaces]

=

D e @ = =

Iﬂ Dollars2011 ; i:)er.iv.éduhit.: ~Sloks-

Close

E

SR
I (]

| .
[] ?:I::rm;;:;cgwper' BEEx [EH = 'E' Select property and click. Create Yalue
= : Ji== ko create new value for it,
""" Relations O definitionlr ; Strinal0,. 1] |
""" (| Tags Eu| descripkion @ Skrinagl0.. 1]
""" Constrainks || i-CH Factor : UnitFackar[1,,*]
""" Elslots || LD name ; String :
""" Deployed Artifacts — F | {05 quantitykind : Quantitykind[o,. 1]
----- IUsage in Diagrarms Lo O symbol ¢ String[0..1]
4 >

.

Defining a
custom unit

(SUS 2011) in
MagicDraw

standardUnit
filter in ATML

¥

<xs:pattern value="(\+|\-)2\d+(\.\d*)?((E| e)(\+|\-)?\d+)? *((y|z|a|fIp[n|p[u|m]|c|d|h|k|M|G|T|P|E|Z]|Y|
Ki|Mi|Gi|Ti|Pi|Ei)?(F|S|C|A|V|J|eV|T|N|Hz]|Ix|H|m]in|ft|mi|nmi]|lm|cd|Wb|g|rad|deg|°|W|BW|Bm|P
a|bar|B(\(\d *m?W\))?|%| pc|decade|octave| Ohm|sr|kn|K|degC|°C|degF|°F|s|min|h|L] mol)\d*((-|\.]/)
(ylzlalflpIn|pn|ulm|c]ld|h|k|M|G|T|P|E|Z|Y|Ki|Mi|Gi|Ti|Pi|Ei)?(F|S|C|A|V]|J|eV|T|N|Hz|Ix|H|m|in]|ft
|mi|nmi|lm|cd|Wb|g|rad|deg|°|W|BW |Bm|Pa|bar|B|%]|pc|decade|octave| Ohm|sr|kn|K|degC|°C|degF

| °F|s|min|h|L] mol)\d*)*)?” />

20

Pins, Ports, Connectors, Wiring

bdd [Block] Power Contraller [Power Supply def lJ

%in o poswerClrlr _EIF

whlocks

Nomenclature clash: “Port”
SysML: a (logical) point on a boundary

Power Controller

Youl | poserClrlr_EIF

~
7

ATML: a nodal collection of pins and their

CoOnstaits

PoveerOugEgn

connectors that need to be joined to perform a
capability (generally, routing signals in hardware)

AmbiTemp :

T PowverFlow
: PovverinEgn = (Pin=lin * %in)
. PovverEfficiency

-

parts

Ehjfznwer':trlr_ElF
rinConnect

]

valkes
D Adunit = ampere}

WiasteHeat ;WY

e Consider a power controller box...

Note, flow ports may be
deprecated in SysML

Pins, Ports, Connectors, Wiring

bdd [Block] Power Contraller [Power Supply def lJ

%in o poswerClrlr _EIF shlocks

Youb | poswerClrlr_EIF

highside _i: v Power Controller [highside_o: %
CORFRNTS _
lowvside oW PovverOutEdgn

—PouwarerFlow loweside_o W

: PovverinEgn = (Pin=lin * %in)
. PovverEfficiency

parts

YigsteHeat WY
o Rrnconmedt B

AmbiTemp: C

valkes
D Adunit = ampere}

e Ports can be over-loaded to form something
analogous to “pins.”

22

Pins, Ports, Connectors, Wiring

bdd [Elock] Povwer Contraller [Poweer Supply def _]_J

Win o poweerClrlr_EIF

shlock:

“out - powwerClrlr _EIF

highside_i: % Power Controller
constaits
loewezicle i W PorverOutEon

AmbiTemp : C

TPowverFlowy
: PowverinEgn = (Fin=lin * %in)
: PovwverEfficiency

W highiside o W
LH loweside_ o W

parts

|'_,_ rinConnect

WasteHest Wy

=l

high=ide_i . %
lowyside i W

vakes
: Afunit = ampere

T

zhlocks: _
powerCtrir_EIF highside_o @ v
|

parts
: Connector ACPowerPlug2

: Connector & CPowerSocket 2

|:|:| loweside_o VW

highzide_i : Y{redefines power unit = volt}
Ioveside i Yiredefines newtral unit = volt }
highzide_o : Yredefines power unit = volt }
loveside o Wiredefines neutral unit = wolt}

JPL
recommended
adding an
“Electrical
Interface”
component.

The EIF allows
the designer to
include an
electrical
interface in the
design, before
connectors have
been selected.

powe
Conng¢
Conng

Pins, Ports, Connectors, Wiring

bdd [Block] Power Cortroller [Power Supply def J_J

Win: pavweerClrlr_EIF
highside_i ; %'

Power Controller

shiock: Wout ; powerCtrlr_EIF

highside_o: 4

corshaints i
lowsicde_j ;W oer CLEEn
- ~PoenverFloyy

. PowverinEgn = (Pin=lin * %in)
. PowverEfficiency

lovwwside_o Y

s

AmbiTemp : C pa WigsteHeat | W
|’_F‘I\n.-'rlnl:|:|nnect |—_E|

; Afunit = ampere}

rales

high=zide_i: W
lovsice oW ||

shlocks: . .
powerCtrir_EIF highside_a @ %

high=zide_i : V{redefines power unit = wolt
loveside i YWiredefines neutral unit = walt}
highside_o : “{redefines povwer unit = wolt

loweside_o ;W

nes matingConnectorType

rCtrlr_EIF “HAS A”
sctorACPowerPI ugz and lowslde_g _{edefines nevtralunit = vott}
rctorACPowerSocket2 1/
power W
neutral ; v
ground ;% atingConnect
cost =

cost = Biredefine
matingConnectarT

iredefines matingCDnnectDrType%

|ﬂ:lpmn.-'er W

ground ;Y
neutral ; %

23

Stock
connectors can
be pulled from a
library, with
inherited ATML
metadata.

Almost.

The connectors
can’t be
instances of the
library parts,
because the
Power
Controller isn’t
an instance.

24

Pins, Ports, Connectors, Wiring

bdd [Block] Power Controller [Poweer Supply det J_J

Win poweer Crle_EIF shlacks
N “out Ctrlr_EIF
highside _i: W Power Controller Dhigh%?a’éfr.;. : :\.-r‘
constaits \:
ide i e CLtECn
lowrside_i- Y - DwerF|DWq loveside_o ;W
: PovwerinEgn = (Pin=lin * *in)
: PoweerEtficiency
. . parts .
AmbiTemp ;. C |‘_,_‘rwrlnCunneu:t l__E|WasteHeat S
vales
 Afunit = ampere}
hlacks
highside_i: W powerCtrir_EIF d:‘ highside_o: %
lowesicde_i 0N |

highside_i ; %{redefines power unit = volt
loveside_i: Viredefines neutral unit = volt
highside_o : Y{redefines povwer unit = wolit}
loveside o Yiredefines neutral unit = wolt }
T

loveside_o Y

Q)

povver Y
neutral %

zhlocks
ConnectorACPowerPlug?

ground ; %

paits
atingConnectorType = ConnectorACRowerSocket2{redefines matingZonnectorType

zhlock:s =
connectorJ1 4673@: Siredefines cost}

pmpeties

connectorJ1 “IS A”

ConnectorACPowe
e

connectorJ2

zhlocks
ConnectorACPowerSocket2?

Plug2

pants
cost § Biredefines cost}
gConnectorType = Connector ACPowerPlug2{redefines matingConnectorType

]

powerCtrlr_EIF “HAS A” connector)1 and connectorl)2

povver Y

ground - Y
neutral ;W

Instead, the
power
controller
needs its
own
connectors,
inheriting
from the
library parts.

Property
redefinitions
are used
liberally
throughout.

A Better Place to Start

Figure 1 — Instrument Definition Interface

o
ATHIL CAPABMITIES EXPLANL <hw:Interface>
<C:Ports: "
SoiPort name—Back /’;’ Figure 4 — Wire resources’ ports to instrument .
</c:Ports> . Q T
Llerysd </hw:Interface> pOf‘tS (Dlagram) u to rI a I’
15,00 i &
SRR =
“-;a"‘ .m-;;’.:."f-i aﬁ,ﬁ&? ﬁ‘;‘,“'.‘.’;]
e el e

i
!
:
it
5

E IR s S Figure 2 — Resource Definition H O to
T,a—_f-*—‘“-"‘""“ e ey dome £ B T gy <Resources>

"p1" />
"P2" />

<hw:Resource name="Resource_1">
</CciPorts>
</hw:Interface>

<hw:Interface> L
i - |
</hw:Resource>
<hw:Resource name="Resource_2">

<hw:Interface> " I nte rfa Ces

<C:Port name=
<C:POrts>
<C:Port name="P1"/>
<c:Port name="P2"/>] P
</CIPOrts> Or S
</hw:Interface>
</hw:Resource>

</Resources> Figure 6 — Switch Definition
<switching> |] R
<hw:switch name="Front_Back_switch"> eSO u rces
<hw:Interface>
<C:POrts>
<c:PoOrt name="pPortl" />
n - L N <c:Port name="Port2" />
Figure 7 — Capability Description of a SineWave

" itch
<c:Port name="Resource"” /x> SWItC es
</c:Ports>
<hw:capability name="sinewave"> <ﬂh1'_i' nterface>
<hw:Interface> <hw:cConnections:>
<C:Ports>

oo, o
<c:Port name="sinewave" /> ARG M= A i u Ca pa b I I Itl eS
= <hw:relayconnection from:"Portl"

</c:Ports> . "
4 to="Resource” />

</hw:Interface>

<hw:signalpescription xmlns:std="http://www.ieee.orq/1641">
<std:signal name="sinewaveSignal"” cut="sinewave">
<std:Sinusoid

name="sinewave"
frequency="10kHz range 1kHz to 10MHz errimt 0.1Hz res 1Hz"
i rms 1V range luv to 1v errimt 0.1% range 1V to 10V errimt 1%
</std:5ignal> . .
</hw:signalpescriptions d;ﬂ“’;ﬁgzﬂs“““”
</hw:CapabiTlity> </Sw"|t|.:h'|'ng>

</hw:Relaysetting>

<hw:RelaySetting name="Back"> ||
<hw:relayconnection from="rPort2"

Signals

to="Resource” />
</hw:Relaysetting>

Figure 8 — Capability Description of an RMS Measurement

<hw:Capability name="measRMS">
<hw:Interface>
<C:POrts>
<C:Port name="Input” />
</c:Ports>
</hw:Interface>
<hw:signalbescription xmlns:std="http://www.ieee.org/1641">
<std:signal name="RMsSignal"” In="Input” out="rmsMeas">
<std:RMS
name="rmsMeas"
In="Input"
nominal ="trms range luv to 10v errimt 0.1% range 10V to 150V errimt 1%"/>
</std:signal>
</hw:5signalDescription>
</hw:capability>

Front_Back_Switch
Figure 18 — Derived System Capabilities

measRMS

ATML Ports, Resources, Capabilities...

bdd [Package] mylnstrument [ResourcesParts lJ

whlocks
mylnstrument

i BMCHWPort

BN
center © AThLPIN
ground © ATHLPIn

parts
resourcel
resources
Signall
Sigral2
heasurement]

in2 : BMCH"Part

J1: BMC
center : ATMLPin
ground © ATMLPIR

whlocks
resourcel

whlocks
resource?

port! ; ATMLResourcePort

port2 ;. ATMLResourcePort

port! : ATMLREsourcePort

port2 ;. AThLResourcePort

out! : BMCHWPart
J1: BNC
center : ATMLPiIn

ground : ATMLPIn
out2 : BMCHWPaort

J1: BNC
center : ATMLPIN

ground : ATMLFIn

Out - ATMLSigralOut

zhlocks
Signal1

zhlocks zhlocks
ATMLConnector ATMLHWPort
ghlocks shlocks
BHC BNCHWPort
[

e Didn’t try switches

e Two ways to “wire:”
instances in an IBD, vs.
port redefinition in a BDD

ibd [Block] mylnstrument [Capability Topology lJ

parts
ac_armpl = myarmplituce

de_offset = my offset

freq = my freg
phase = my phase
type = my type

Out - ATMLSignalCut

zhlocks
Signal2

In: ATRLSignaln

whlocks
Measurementi

lresource?

:resourcel

: Measurement1
[F1
R — |
In: ATMLSignalin
in1 : BMCHWPort
P! @ ATHWLResourcePort -
piott2 © ATMLResourcePort P ;:i
: ATMLResourcePart out! : BHCHWPart r
» ATMLResourcePort gt - BME o

ot - ATMLSignaiout

: Signall

: Signal2

ot ATMLSignal Ot

The Harvest

[)
<xmi:Documentation> ... </xmi:Documentation> o M O d e I Save d | n
bdd [Package] sn101 Instance [Instance of the my4

<uml:Model> ... </uml:Model>
block / <xmi:Extension> ... <xmi:Extension> O M G XM L
<RIOCK»
sn101 : myAvBox — <xmi:Extension> ... <xmi:Extension>

| = myAvBox patProperty <xmi:Extension> ... <xmi:Extension>
' = <xmi:Extension> ... <xmi:Extension> M eta d ata
myAvBox.partProperty : ConnectorACPowei <xmi:Extension> ... <xmi:Extension>
= myAvBox.pantProperty. partProperty <sysml:Block> ... <sysml:Block>
= myAvBox.partProperty.partProperty
= myAvBox partPropery.partProperty <sysml:Block> ... <sysml:Block> I n te rC h a n ge
cost="8"unit= dollarsUS2011} <sysml:Block> ... <sysml:Block>
leadTime = "100000"{unit= second}
location =™ <sysml:Block> ... <sysml:Block>
matingConnectorType = "ACPowerSocket" d/xmi:XMI>

type = "ACPowerPlug"

«blocks o | |
AvBox.partProperty.partProperty : neutral

. ModelName=""

sblocks
_ AvBox.partProperty.partProperty : ground
ModelName ="
<blocks
myAvBox.partProperty.partProperty : power . ' \ L. '
I <packagedElement xmi:type='uml:Class' xmi:id='_17_0_2_ecd035c_1314997189054_814634_12767
odelName ="'

name='ConnectorACPowerPlug'> </packagedElement>

<packagedElement xmi:type='uml:Class' xmi:id='_17_0_2_ecd035c_1314998427607_193279 13954’

name='myAvBox'>
<ownedAttribute xmi:type='uml:Property’
xmi:id="_17_0_2_ecd035c_1314998668035_133257_14285'
type='_17_0_2_ecd035c_1314997189054_814634_12767'/>

</packagedElement>

Conclusions for SysML Interoperability

e SysML models will need to be derived from
libraries of ATML constructs (abstract not literal
representation) so that information can be
extracted by data-driven algorithm.

 Neither SysML nor ATML has a knowledge model,
although SysML Quantities do.

e Using redefinition to assign values to properties
inherited from library “ATML” types was difficult.

Two techniques for “wiring,” best not selected

