
1569590095

1

Abstract—The authors describe challenging use-cases for

Automatic Test Markup Language (ATML), and evaluate
solutions. The first case uses ATML Test Results to deliver active
features to support test procedure development and test flow, and
bridging mixed software development environments. The second
case examines adding attributes to Systems Modelling Language
(SysML) to create a linkage for deriving information from a
model to fill in an ATML document set. Both cases are outside
the original concept of operations for ATML but are typical
when integrating large heterogeneous systems with modular
contributions from multiple disciplines.

Index Terms— Software standards, Test equipment, Test
facilities, Testing, Software management, Software reusability,
Fault diagnosis, Sensor systems and applications, System-level
Design

I. INTRODUCTION

UTOMATIC Test Markup Language (ATML) is an
emerging standard that offers sophisticated markup and a

modular framework for representing information needed to
determine what tests to run and how to run them. ATML was
developed to support sophisticated box-level (Unit Under
Test, UUT) maintenance testing in the field, depot and at the
factory.

But the ATML Concept of Operations (CONOPS) is
fundamentally built around transferable concepts that can be
extended to other usages. The National Aeronautics and
Space Administration (NASA) invests heavily in design,
builds redundancy (the spare parts) in, but produces and
maintains very small quantities. In this environment, the focus
of testing is run-once, with some tests being repeated as the
design is refined, or for record with production units. Tests
can range from exploratory engineering evaluations to formal
acceptances. Performance margins and anomalies discovered

Manuscript received June 1, 2012. This work was performed in NASA
Johnson Space Center’s Avionics Systems Division, collaboratively with
Cassidian. Funding was provided by a NASA CIO Information Technology
Labs Study.

C. A. Lansdowne is with the National Aeronautics and Space
Administration, Houston, TX 77058 USA (phone: 281-483-1265; fax: 281-
483-6297; e-mail: chatwin.lansdowne@ nasa.gov).

C. Gorringe is with EADS Test and Services (UK) Ltd. (phone: +44 1202
872800, e-mail: chris.gorringe@3eads-ts.com).

P. McCartney is with METECS, Houston, TX, 77058 USA.

during development tests will eventually be discussed with
review boards, and the test outline may be reprioritised or
expanded by the test team based on test outcomes during the
ephemeral test opportunity.

II. ATML COMES ALIVE

NASA has demonstrated that ATML can be used in live
message-passing, to describe and manipulate state variables in
software elements controlling the testbed. [1] As we began
composing procedures, we found that we needed additional
metadata for the state variables so that “arbitrary knowledge”
about settings needn’t be learned by rote, and so that results
can be used without assumptions or required conventions. In
summary the ability to send enough information so that
individual test results can be interpreted correctly and acted on
without reference to any external context or knowledge.

A. Multiple Ranges: Sets, Pick-Lists, Health, and Safety

In the “pick-list” application, a script or procedure
developer needs to discover the values to which a string
variable can be set, and pick the appropriate value from the
list. This means that the c:Parameter uses a c:Expected range
associated with it, to carry this list, as the constraints of the
value. As an example, we scripted a networked power
controller which could respond to outlet states of {“OFF”,
“ON”, “CYCLE”} (although it only reports {“OFF”, “ON”}).
We found that the ATML Datum type was not conceived to
define multiple ranges to express a set, however a reasonable
accommodation exists, wherein the string is described by a
collection of strings (Figure 1Figure 1).

Figure 1. c:Range Expressing a Set

In this example, we gave the range the name “valid”, as it
identifies the settings that are valid. Ranges can also be used
to communicate how to interpret the setting or reading.
Examples could be “high”, “mid”, “low”, “alarm”, “full”,

Experimental Applications of Automatic Test
Markup Language (ATML)

Chatwin A. Lansdowne, Member, IEEE
Patrick McCartney

Chris Gorringe, Member, IEEE

A

https://ntrs.nasa.gov/search.jsp?R=20120008775 2019-08-30T20:27:12+00:00Z

1569590095

2

“empty”, “degraded”, “default”, “nominal”, “completed”,
“safe”, “unsafe” or others.

Data that is harvested through a tightly-coupled software
application program interface (API) will often use an internal
representation that needs to be translated for a user or a script
developer. In Figure 2Figure 2, the switch states from Figure
1Figure 1 are represented by an enumerated type. Here, the
“name” attribute of the c:Item element is used to associate a
functional meaning with these integer values.

Figure 2. c:Range Expressing a Set, with c:Item@name

In our scenario, each operator is controlling many software
elements, and each of those software elements could be
controlling hardware elements. It has been a long standing
need of ours to inform the operator of elements that are
missing or degraded. Last year we suggested enforcing
conventions [2] for health and safety indicators. But
constraints that are easy to meet for one development
environment are challenging for another tool. Arbitrary
constraints can be eliminated by instead taking a data-driven
approach, providing markup to describe what “healthy” is or
what “safe” is (and observe, these ranges need not be
orthogonal).

ATML attaches a named range to a Datum—but only one;
consider the range name as the range classification to which
the value belongs. It was not conceived that a “valid” range, a
“safe” range, and a “healthy” range would all be provided; the
multiplicity is one. Although awkward and verbose, a
technique was identified that validates against the existing
schema.

Figure 3. c:Datum with Multiple Ranges that are Sets

In Figure 3Figure 3 the software has an error condition if
the value is 0, is considered “healthy” if the value is -1, and
the set (concept from Figure 1Figure 1) of both 0 and -1 are
“valid”. . We also used the name attribute of the c:Item
elements to communicate that the software environment uses

an internal representation of 0 to mean “false” and an internal
representation of -1 to mean “true”. The construct is curious,
as nested empty c:Collection’s are used to carry the c:Range’s.
But this construct also allows c:SingleLimit and c:LimitPair
ranges to describe “healthy”, “safe”, and “valid” conditions.
In Figure 4Figure 4 the same construct is applied to a floating-
point data type. In this example, the thermocouple is reading
72.5° C. A “failed” thermocouple manifests by reporting a
value of -20° C. The thermocouple can report readings in the
(“valid”) range of -20 to 100, but readings outside the range of
-10 to 80 are not “safe”. The “unsafe” range here illustrates
using named sub-ranges (“unsafe.low” and “unsafe.high”) to
not only classify a temperature reading as “unsafe” but
provide further interpretation of what the unsafe condition is.

Figure 4. c:Datum with Multiple Ranges using Limits

B. tr:TestResults as a Status and Control Document

The tr:TestResults document construct can be used to
describe a software configuration and status snapshot during a
live operation (Figure 5Figure 5). This enables a data-driven

1569590095

3

data harvest from source-points in ATML format, rather than
collection in one format and later conversion to ATML.

Figure 5. tr:TestResults Document Structure

In such a document, tr:Parameters section is used to
describe the configurable (input) parameters, while
tr:TestResult is used for measurements and status (output)
parameters. tr:TestResult and tr:Parameter do not offer
identical metadata. Internally tr:TestResult uses the
tr:TestData extension of tr:Data which has the sole variance of
an added acquisitionTimeStamp attribute added to the c:Value
type, while tr:Parameter itself has a timestamp attribute. Also,
the ID attribute of tr:Parameter is a c:NonBlankString,
whereas the ID attribute of tr:TestResult is a more restrictive
xs:ID. And a tr:Parameter cannot have a tr:Transform or
tr:Extension, which could be useful for converting between an
internally useful representation and an externally useful
representation. tr:TestResult also offers optional tr:Outcome,
tr:Indigtments, tr:TestLimits, and tr:Extension, differences we
considered incidental.

Placing a tr:Test construct inside of tr:ResultSet is optional.
We have used this additional metadata to identify role (test-
point) of the software in the context of the test.

One must eventually conclude that tr:Outcome must be
“Aborted”, as it is neither “Passed” nor “Failed”.

The tr:Personnel construct allows the user of the software or
host to be recorded with the data. It also could allow a user to
take responsibility for manually inspecting the configuration,
by creating a record using the tr:QualityAssurance element.

We also observed that in the dynamic environment of a
development test, experimentation with algorithms can occur
and the software version itself becomes a test variable.
tr:TestProgram uses a c:SoftwareInstance, which has a
c:ReleaseData of type xs:date. But in this situation, the
timestamp on the software could change more than once per
day.

C. Implementation

For demonstration, an implementation was developed in

LabVIEW which discovers the controls on a Virtual
Instrument panel, then describes them in an ATML
tr:TestResults document from properties configured by the
software developer. This technique places minimal additional
burden on the developer to produce a well-documented
interface, and relieves the burden of maintaining the same
software documentation in two formats (one in LabVIEW
control properties, and one in ATML).

III. DERIVING ATML FROM SYSML

In any multi-disciplinary high-performance design
endeavour it is necessary to package information for
subsystems while maintaining a clear depiction of the whole
system and the environment it must operate in. In this context,
ATML is part of a larger information ecosystem, and it needs
to be exchanged between the tools of that ecosystem, not
hand-generated. The information will have versions: original
design, changed design, as-built… Throughout the process,
information must be traceable to the authoritative source of
information, and copies of information must be maintained
synchronous. Traditionally, this was enforced by manual
reconciliation of branches. Here we explore the simplest
automation, regeneration of information packages from single
authoritative sources.

The ATML CONOPS employs standardized test sets. Test,
maintenance, and diagnostic strategies must be considered
during the design phase, and this means that information about
test requirements must be reconciled with information about
fielded test assets at project Preliminary Design Review
(PDR) [3].

Remember, ATML is an information framework. The
philosophy is, describe the requirements, describe the
capabilities of the test set, describe the interconnections. This
will allow different implementations and design abstractions
to allocate resources, throw switches, run the test, and
interpret the results. This data-driven approach does not
require that every product use the same source code or
development environment, only the same information. The
respective curators of information supply the information they
curate. Capabilities can be changed without rewriting
software, if only the affected information is maintained.

The Systems Engineering process has since the early 1980’s
been portrayed using a “V” diagram (Figure 6Figure 6). The
process progressively decomposes a problem from studies and
concepts into requirements, subsystems, and components. The
design is executed, and then progressively integrated and
tested from components to subsystems, to system verification
(against requirements) and validation (against concepts of
operations). Finally it is deployed, with continuing support for
breakdowns, feature changes, and upgrades, ending with
retirement or replacement at obsolescence.

1569590095

4

Operations, Maintenance,

Changes, and Upgrades
Feasibility

Studies

Concept of

Operations

System‐level

Requirements

Sub‐System

High‐level
Design

Component

Detailed
Design

Systems

Validation

System‐level

Verification

Sub‐System

High‐level
Verification

Component

Testing

Software and Hardware

Design and Development

Retirement or

Replacement

Model-Based Systems
Engineering

Automation-Assisted
Test and Operations

Integrated Design
Environments

XTCE

Figure 6. Systems Engineering “Vee” Diagram

As Figure 6Figure 6 suggests, different kinds of tools
support the work of different phases. Systems Modelling
Language (SysML) is an Object Management Group (OMG)
standard sponsored by the International Council on Systems
Engineering (INCOSE) and gaining acceptance as a method of
expressing, verifying, and validating a system design prior to
execution in hardware and software. SysML is a subset of
Unified Modelling Language (UML 2) with extensions.[4]
The object of using SysML is that the design can be verified
against requirements (close the “V”) before implementation
begins. Following implementation, the unit, subsystem, and
system need to be verified (ATML) against the model
(SysML), and characterization (ATML) fed back into the
model (SysML).

A. Implementation

To explore potential approaches, MagicDraw was used as a
SysML editor. A test configuration block diagram for a power
converter was modelled as a test case.

To derive an ATML document from a SysML model,
information that will be loaded into the document must be
provided in the model. This requires creating libraries of
blocks and stereotypes with inheritable attributes. An
ontology, or at least a naming convention, is required so that
the relevant attributes can be located and interpreted.

B. Literal or Abstract

Our first, direct approach was to represent ATML
constructs literally in SysML. ATML attributes could be
expressed as properties of a UML stereotype, or of a SysML
block. Points of confusion include when to use a stereotype
and when a block, where to put the value of the ATML
element, and how to handle an xml “choice.” It did not look
possible for SysML properties to themselves have properties
(corresponding to XML attributes). Further, placing and
changing default information in these structures in SysML
without instantiating them requires frequent use of
redefinition, which is clumsy in the MagicDraw 17.0 tool.
Further, ATML supports very complex structures for
describing complex hardware, and these could be daunting and
unnatural for a SysML tool user. Also consider, both ATML
and SysML are at an intermediate stage of development as
neither presently achieves alignment with any ontology. The

exercise was however useful for developing greater familiarity
with both ATML and SysML.

Thus we fell back to trying to create library components
with standardized ATML-mapped attributes that might work
more naturally in the SysML editor but represent ATML
concepts. This approach could allow us to export constructs
from SysML, and map test results back to SysML.

C. Requirements

The requirements diagram in SysML is an extension to
UML. As such it is a less mature component. Requirements
from SysML do not appear useful for automatic testing, as
they have been implemented as human-interpreted “dumb
text.”

D. Quantities and Units

SysML ties units to QUDV, an ontology now used by OMG.
Presently, only SI units are supported in QUDV, and
MagicDraw only includes a subset of those. Units in ATML
are relatively weak.

ATML identifies some concepts that today’s ontologies
overlook. These include the “unitQualifier”; although the
usage of this field has not been standardized by IEEE, it is
intended to associate a statistical method with the
measurement. This is important when comparing
measurements (for example, a signal measuring 2 V p-p can’t
be compared directly to a signal measuring 0.7 V rms). But it
could also be the key to data-driven data aggregation. When
aggregating “peak-peak” values, report the maximum value.
When aggregating “rms” values, take the rms of the values.
ATML also enables the capture of Resolution, Range,
Confidence, and ErrorLimits which are needed for comparing
a measurement against a test requirement. For example, it is
intended that, given a requirement to measure the power
converter output voltage with a passing result between 24V
and 32V, a reasoner could find an instrument capability in its
inventory that can make the measurement with the necessary
resolution, and then compare the measured result with the
requirement.

1569590095

5

Figure 7. Extending SysML for ATML Quantities

The UML stereotypes shown in Figure 7Figure 7 were not
ultimately useful. The extended ValueType worked well in
isolation, its value can be selected from the pick-list provided
by the enumeration. It was not evaluated in a practical
application.

E. Connectors and Wiring

Figure 8. Adding an Electrical Interface to a SysML Model

SysML ports can be overloaded (Figure 8Figure 8) to form a
construct that resembles a connector with pins. In the model,
we now represent an electrical circuit with a signal return. An
Electrical Interface block can be added as an intermediate
step; in the normal course of modeling, a high-level model
would be generated first, and details would be added and

defined progressively. Thus, the model now says that Power
Controller has a powerCtrlr_EIF, but we haven’t yet specified
how many connectors we’re using, how many pins, what kind
they are, or what they’re called. This block however does
allow us to identify signals in the model that are going to be
brought out.

Connecting the signals is tricky; if we use a SysML Internal
Block Diagram (IBD), it will create an instance of
powerCtrlr_EIF which we can wire, but that doesn’t actually
connect powerCtrlr_EIF. One approach is to redefine the pins
on Power Controller to connect them to powerController_EIF.
Redefining pins in MagicDraw was tedious and error-prone.

Now we can add the electrical connectors. In Figure
9Figure 9, the ConnectorACPowerPlug2 inherits from
atmlConnectorElectrical, but its matingConnectorType and
cost properties have been redefined. One method is to say
powerCtrlr_EIF “is a” ConnectorACPowerPlug2 and also “is
a” ConnectorACPowerSocket2, and the pins are connected
through again by redefinition. We’ve iterated on this concept
here, but haven’t concluded which answer is best. Again, on
an IBD we could have directly created instances of
ConnectorACPowerPlug2. But on the BDD we needed
instead to create the J1 and J2 connectors and then type them
from the ATML-derived connector library.

Figure 9. Adding Electrical Connectors to a SysML Model

It might be desirable for SysML to report a type mismatch
when connectors are mis-mated. Alternatively, users may
prefer an iterative approach so that the model can be
connected together and verified first, then come back and
identify where mechanical adapters are needed.

F. Capabilities, Resources, Ports, and Signals

In the course of this work we came to understand that
ATML does not begin test preparation by describing a
configuration diagram. Instead it works from a list of
requirements to be verified: the signal at certain pins is to
meet some description with some tolerance. Then the test set
peruses its inventory to find a capability to make such a
measurement within the tolerance, examines wiring
information, and configures the switch fabric to connect the
signal to the instrument. It appears to stop short of running the
test, and this is an area where the NASA Automation Hooks

1569590095

6

Architecture can help by enabling discoverable parameters to
be mapped to capabilities.

The term “Port” has a specific meaning in SysML distinct
from its specific meaning in ATML. In SysML, a port is a
point on a boundary. In ATML, a “Port” is a nodal collection
of pins and their connectors that need to be joined to perform a
capability (generally, routing signals in hardware). SysML
has UML standard ports and flow ports, and these ports are
used to represent variable parameters.

An ATML Instrument has Resources which have Ports that
are used to supply signals or measure signals. [5] The
Instruments themselves have Ports designating connectors and
pins in the physical interface that Resources map to.

Figure 10. BDD and IBD Techniques for Representing

Capabilities and Resources

ATML resources have ATML ports, which must be “wired”
to the instrument ATML ports; it is also possible to describe
that a switch controls which instrument port is wired to the
resource. [6] ATML resources can support several
“capabilities,” which are either signal (stimulus) or
measurement (response) descriptions, and these must also be
mapped to the resource ports.

Switches were not represented in this iteration.

G. The Information Harvest

The Object Management Group (OMG) developed the Meta-
Object Facility (MOF) as a means for expressing metadata
from model languages such as SysML. The XML Metadata
Interchange (XMI) is a means for exchanging this metadata
using the eXtensible Markup Language (XML). Our approach
to harvesting the model information from SysML was to
process the XMI file exported from the SysML modeling tool.

The MOF uses the notion of MOF::Classes to define
concepts (model elements) on a meta layer. The biggest
challenge in parsing the XMI file is to map all of the classes
with the appropriate elements and end up with useful
information about the described system. This is done using an
extensive series of unique identifiers for each class and each
element in the diagram. For example, the ACPowerPlug
connector is defined as a packagedElement with a type of
uml:Class and given a unique ID. The power supply itself

(myAvBox) is also defined as a packagedElement with a type
of uml:Class and given a unique ID. Within the power supply
element, an ownedAttribute element is defined that is given a
type ID that references the ACPowerPlug definition. This
relationship is shown in Figure 11Figure 11.

 Figure 11. XMI Snippet Showing Relationships between Block
diagram elements and definitions

The type of linkage shown in Figure 11Figure 11 is
propagated for every component of the SysML block diagram
as well as all of the definitions and properties which are
referenced within the diagram. Tracing through these linkages
can become quite complicated even for this simple model.
The XMI cannot be processed as a stream since it is not
known ahead of time which definitions will be referenced
elsewhere in the file and how many times they will be used.
Thus, an XMI parser must store every unique ID and all of the
information associated with each uml:Class so that it can
interpret the actual model of interest.

A simple PHP-based processor was written to prove that it
is possible to trace through the XMI linkages and harvest all of
the necessary information by mapping all of the unique
identifiers. This processor would require additional
development to work for a generic block diagram and also for
other types of SysML models, but it is clear the information
exists in the XMI output and it could be followed with a more
robust processor. Once these linkages are traced, they can
easily be rearranged and output in another format such as
ATML.

Using library support files to contain the ATML constructs
was transparent, as MagicDraw duplicated the information in
the project XMI file. The use of redefinitions was not
observed to be a problem.

IV. CONCLUSION

ATML is not merely an information format, but an
information framework designed to support a streamlined
workflow. It was shown here how ATML documents might
be generated programmatically, for automatic discovery and
collection. ATML was applied to harvest not merely data, but
also the metadata describing configuration and control
variables in a heterogeneous software environment.

We also investigated how system models and ATML
documents might be linked together. SysML models will need
to be derived from libraries of ATML constructs so that
information can be extracted by data-driven algorithm. A
literal approach appears undesirable, as the ATML complex
literal constructs are difficult to use in SysML, and ATML
needs to transition to an ontology anyway. Thus, an abstract
representation of ATML concepts is recommended even
though this requires more work to strip. The exchange of
information between ATML and SysML cannot be performed
by a data-driven XSLT translation, an intelligent application is
required which understands the constructs on each side.

The techniques we explored here remain to be validated by
the SysML user community [7], and it remains to make the
actual conversion from SysML to an ATML document set and

1569590095

7

then actually use those documents to do useful work. We
explored two techniques for “wiring” connector pins and
ATML resources. One used instances in an internal block
diagram (IBD) and the other used port redefinition in a block
definition diagram (BDD). We would like further evaluation
by SysML users to determine which is “best.” It also remains
to be decided whether it should be possible or not to mis-mate
connectors in the SysML editor.

ACKNOWLEDGMENT

The authors would like to acknowledge the benefit we
received from the superior experience of several SysML users
at NASA’s Jet Propulsion Laboratory. These include Mike
Seivers, who pointed out the UML/SysML Test Profile. Mark
McKelvin, who identified our use of “Singleton instances” of
classes. Mark also urged that libraries don’t own things, they
own “characterizations” of the things. Marcus Wilkerson has
already been able to generate wirelists from models. Marcus
demonstrated for us how SysML ports can be overloaded, and
how detail can be added incrementally to the model of the
interface.

REFERENCES
[1] C. A. Lansdowne, J. R. MacLean, et. al., Automation Hooks Architecture

Trade Study for Flexible Test Orchestration, ISBN 978-1-4244-7960-3,
Autotestcon Proceedings, Sep. 2010.

[2] C. A. Lansdowne, J. R. MacLean, et. al., Automation Hooks
Architecture—Concept Development and Validation, EDAS
1569424063, Autotestcon Proceedings, Sep. 2011.

[3] C. Gorringe, The Use of ATML in Managing TPS Developments and Life
Cycle Maintenance, Autotestcon Proceedings, Sep. 2010

[4] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML,
ISBN: 978-0-12-3786074-4, Elsevier, 2009

[5] IEEE Std 1671-2010, DOI 10.1109/IEEESTD.2011.5706290, January
20, 2011, Appendix F

[6] C. Gorringe, T. Lopes, D. Pleasant ATML Capabilities Explained, DOI
10.1109/AUTEST.2007.4374218, Autotestcon Proceedings, Sep. 2007

[7] C. Delp, L. Cooney, et al, The Challenge of Model-based Systems
Engineering for Space Systems, Year 2, INCOSE INSIGHT, vol. 12,
Issue 4, pp. 36-39, Dec. 2009

Chatwin Lansdowne
Chris Gorringe

Patrick McCartney

Sept. 13, 2012

Experimental Applications
of

Automatic Test Markup Language
(ATML)

MMSEV
Simulation

Power Strip

Test Flow and Data Manager (TFDM)

System Monitor

Camera

Floor Control

DS-NET

Power System
Cmder

Power
SubSystem

EDGE Graphics

Test Operations Net

Flight Vehicle Net

LTE I/F

LTE I/F LTE I/F LTE I/F

LTE I/F LTE I/F

LTE I/F LTE I/F

Command Logger

External
Participants

Automation Hooks Architecture
API

m
REST

• Advertised
– Automated Discovery: Dynamic “Plug‐and‐

Play”

• REST Architecture
– Two commands: GET and PUT

– Versatile: co‐host support files and
hyperlinks– interface definitions,
requirements, theory of operation,
streaming data, GUI…

• HTTP
– standard messaging, error messages,

compression, security, caching

Testing

• Xml
– Archive‐quality

– Enables Data‐driven software architecture

– Foundation of artificially intelligent data
processing

– Self‐describing message format

– Create database tables by script

• hypermedia layout
– Insulates against layout changes

– Coexistence of variations

– Separate metadata for caching

• xml:ATML (IEEE 1671)
– standardizes units, arrays, time zone

– Scope includes signals, instrument
capabilities, problem reporting

– exciting opportunities for COTS tools and
radically different engineering work flows

• Orchestration features
– Health and Status Rollup

– Synchronizing and Scheduling

Example: Controlling a Web Power Switch

• Switch vendor’s interface
requires screen‐scrape to ATML

• But ATML can coexist with HTML

Parameter Pick‐Listing using
ATML c:Range (Expressing sets)

• Associate a “valid” c:Range with the parameter

• Express the set as a c:Collection of c:Item

• Issue: requires “knowing how to” compare a
string to a collection of strings

5

Parameter Pick‐Listing using
ATML c:Range

• Often, the internal representation of a parameter
is not meaningful to the user

• Example: enumerated list
• ATML can carry both internal and user‐oriented
representations, with Item@name

0
1
2

6

“healthy”, “safe”, “valid”:
Expressing Multiple Ranges

• ATML schema allows
0..1 named range

• Need a data‐driven way to roll up
health and safety status

7

• Example
demonstrates
using sub‐
ranges to
provide
further
interpretation
for the
operator

Using multiple ranges, with limits

8

Example of Data‐Driven Flow from
LabVIEW to ATML

<tr:Parameter ID=“Run.Sample Size" name="Sample Size">

<!-- Parameter ID is a c:NonBlankString, so it could be traceable
to the software variable name/-->

<tr:Description>Set "Sample Size" to the target number of
bits to test (duration of the run).</tr:Description>

<tr:Data>

<c:Datum xsi:type="c:double" value="3000000"
nonStandardUnit="bits">

<c:Resolution>1</c:Resolution>
<c:Range name="valid">

<c:LimitPair operator="AND" >

<c:Limit comparator="GE“><c:Datum xsi:type="c:double"
value="1000"></c:Datum></c:Limit>

<c:Limit comparator="LE“><c:Datum xsi:type="c:double"
value="1000000000"></c:Datum></c:Limit>

</c:LimitPair>

</c:Range>

</c:Datum>

</tr:Data>

</tr:Parameter>

9

The Test Results Document

Read‐only “status” variables

Read/write “configuration” variables

Outcome is always “Aborted”

User

Software version

• Descriptions could be
loaded into tr:TestResults

10

The Test Description Document

Read‐only “status” variables

Read/write “configuration” variables

• Static metadata is best loaded
into tr:TestDescription
Future work: behaviors

11

The Mission Lifecycle

12

NASA Information Architecture

System
Lifecycle

Operate
Maintain

Upgrade

Design

Manufacture

Test &
Eval

Learn

Simulation
Cost Risk

Perf

Lessons
Learned

Each domain of practice uses different data formats,
conventions, representations, and tools making
Interoperability and Reuse challenging

Information evolves as it is
used by each domain

How do both
computers and
humans do this?

How do the data
and IT help us
really learn?

Operations, Maintenance,
Changes, and Upgrades

Feasibility
Studies

Concept of
Operations

System‐level
Requirements

Sub‐System
High‐level
Design

Component
Detailed
Design

Systems
Validation

System‐level
Verification

Sub‐System
High‐level
Verification

Component
Testing

Software and Hardware
Design and Development

Retirement or
Replacement

Model‐Based
Systems

Engineering

Automation‐Assisted Test
and Operations

Integrated Design
Environments, CAD

Change Information Flow…

Scripts

Test Results Mission
Assurance

Archive

Analysis

Test
Procedure
Executor

Facility
Processes

MBSE
and

SysML

Test
Orchestration

…Change Work Flow

Recorded
Mission
Telemetry

Test Orchestration and Data Harvest
Complement MBSE

13

SysML: Maintaining Coherency

adapted from SysML and MBSE: A Quick‐Start Course, Georgia Tech and InterCAX

Fundamentally, a SysML model is used to generate a set of project documents
that are maintained “in sync” with each other

14

Define “Success” for ATML

A
T
M
L

A
T
M
L

• Test = Requirements + Capabilities + Wiring

• Maintain Documentation not Software
• New Test Article, new Description

• Replace an Instrument, Change a Description

• Change Wiring, Update the Description

• At PDR, flag requirements that can’t be
tested on deployed test sets

ATML
Work Flow

ATML UML Model

A Power Converter
Test Configuration
Interface Block

Diagram

Questions: how to treat ports, vs. signals, vs. interfaces: which defines the connector type
(dare I ask about gendered connectors), which the voltage. Want units attached where
applicable so we can understand how they’re being represented.

:Power Supply

:Lab Power

:Load Tester

Temperature

:DC Bus Plug
Connection

DC Out:
Bus Plug

Vin

Vout

VoltageOut_set
CurrentLimit_set
PowerLimit_set

Resistance_set
Voltage_meas
Current_meas
(constant V, P, or I)

Enabled_set

:DC Load Plug
Connection

DC In:
Bus Plug

DC Out:
Load Plug DC In: Load Plug

24‐32VDC 20‐32VDC

Requirements in SysML

• Simplistic human‐
readable text
representation

• Can be linked to the
model
– Model

components can
“satisfy”
requirements

– Test Cases can
“verify”
requirements

• MagicDraw plans to
add support for
SBVR

17

• ATML provides an intriguingly
rich mark‐up for measured
quantities
– Standard units
– Free‐form units
– Statistic (rms, peak…)
– Resolution
– Accuracy and confidence
– Nominal Value
– Acceptance Limits
– Constraint Limits

• SysML uses OMG QUDV
ontology
– SI units only
– Backed by an RDF/OWL

knowledge model

Quantities in ATML

18

QUDV representation for Units
Defining a
custom unit
($US 2011) in
MagicDraw

19

<xs:pattern value="(\+|\‐)?\d+(\.\d*)?((E|e)(\+|\‐)?\d+)? *((y|z|a|f|p|n|µ|u|m|c|d|h|k|M|G|T|P|E|Z|Y|
Ki|Mi|Gi|Ti|Pi|Ei)?(F|S|C|A|V|J|eV|T|N|Hz|lx|H|m|in|ft|mi|nmi|lm|cd|Wb|g|rad|deg|°|W|BW|Bm|P
a|bar|B(\(\d *m?W\))?|%|pc|decade|octave|Ohm|sr|kn|K|degC|°C|degF|°F|s|min|h|L|mol)\d*((∙|\.|/)
(y|z|a|f|p|n|µ|u|m|c|d|h|k|M|G|T|P|E|Z|Y|Ki|Mi|Gi|Ti|Pi|Ei)?(F|S|C|A|V|J|eV|T|N|Hz|lx|H|m|in|ft
|mi|nmi|lm|cd|Wb|g|rad|deg|°|W|BW|Bm|Pa|bar|B|%|pc|decade|octave|Ohm|sr|kn|K|degC|°C|degF
|°F|s|min|h|L|mol)\d*)*)?” />

standardUnit
filter in ATML

Pins, Ports, Connectors, Wiring

• Consider a power controller box…

Note, flow ports may be
deprecated in SysML

20

Nomenclature clash: “Port”
SysML: a (logical) point on a boundary

ATML: a nodal collection of pins and their
connectors that need to be joined to perform a
capability (generally, routing signals in hardware)

Pins, Ports, Connectors, Wiring

• Ports can be over‐loaded to form something
analogous to “pins.”

21

Pins, Ports, Connectors, Wiring

• JPL
recommended
adding an
“Electrical
Interface”
component.

• The EIF allows
the designer to
include an
electrical
interface in the
design, before
connectors have
been selected.

22

Pins, Ports, Connectors, Wiring

• Almost.
• The connectors

can’t be
instances of the
library parts,
because the
Power
Controller isn’t
an instance.

• Stock
connectors can
be pulled from a
library, with
inherited ATML
metadata.

23

powerCtrlr_EIF “HAS A”
ConnectorACPowerPlug2 and
ConnectorACPowerSocket2

Pins, Ports, Connectors, Wiring

• Instead, the
power
controller
needs its
own
connectors,
inheriting
from the
library parts.

• Property
redefinitions
are used
liberally
throughout.

24

powerCtrlr_EIF “HAS A” connectorJ1 and connectorJ2

connectorJ1 “IS A”
ConnectorACPowerPlug2

connectorJ2 “IS A” ConnectorACPowerSocket2

A Better Place to Start

A Tutorial,
How to
model:

 Interfaces

 Ports

 Resources

 Switches

 Capabilities

 Signals

ATML Ports, Resources, Capabilities…

• Didn’t try switches
• Two ways to “wire:”

instances in an IBD, vs.
port redefinition in a BDD

The Harvest
• Model saved in
OMG XML
Metadata
Interchange
(XMI)

<xmi:XMI>
<xmi:Documentation> … </xmi:Documentation>

<uml:Model> … </uml:Model>
<xmi:Extension> … <xmi:Extension>
<xmi:Extension> … <xmi:Extension>
<xmi:Extension> … <xmi:Extension>
<xmi:Extension> … <xmi:Extension>
<xmi:Extension> … <xmi:Extension>
<sysml:Block> … <sysml:Block>
<sysml:Block> … <sysml:Block>
<sysml:Block> … <sysml:Block>
<sysml:Block> … <sysml:Block>

</xmi:XMI>

<packagedElement xmi:type='uml:Class' xmi:id='_17_0_2_ecd035c_1314997189054_814634_12767'
name='ConnectorACPowerPlug'> …. </packagedElement>
:
<packagedElement xmi:type='uml:Class' xmi:id='_17_0_2_ecd035c_1314998427607_193279_13954'
name='myAvBox'>

<ownedAttribute xmi:type='uml:Property'
xmi:id='_17_0_2_ecd035c_1314998668035_133257_14285'
type='_17_0_2_ecd035c_1314997189054_814634_12767'/>

:
</packagedElement>

Conclusions for SysML Interoperability

• SysML models will need to be derived from
libraries of ATML constructs (abstract not literal
representation) so that information can be
extracted by data‐driven algorithm.

• Neither SysML nor ATML has a knowledge model,
although SysML Quantities do.

• Using redefinition to assign values to properties
inherited from library “ATML” types was difficult.

• Two techniques for “wiring,” best not selected

