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1. Introduction 

While we have high confidence in radiative forcing calculations due to enhanced 

concentrations of greenhouse gases when using high-resolution spectral radiation 

algorithms, their steep computational cost makes them presently unaffordable in Global 

Climate Models (GCMs). Calculations from such algorithms have instead been used as 

the basis for designing approximate but much faster codes to perform efficient gaseous 

radiative transfer (RT) in GCMs. When clouds, aerosols and reflective/emitting surfaces 

also partake in radiative interactions, uncertainties in radiative fluxes increase, not only 

because the spatiotemporal distribution of their physical properties is dubious, but also 

because their radiative properties themselves are approximated and parameterized. In the 

end, the simulation of solar and thermal radiative processes becomes a rather complex 

endeavour that burdens climate simulations with a substantial degree of uncertainty. Still, 

before tackling radiative transfer involving clouds and aerosols, the more straightforward 

and well-defined problem of gaseous absorption needs to be advanced. Unfortunately, 

despite the relatively well-settled status of spectrally detailed clear-sky radiative transfer 

and the significant share of CPU resources allocated to radiation in GCMs, the radiation 

codes in these models may still be inadequate in reproducing the radiative effects of 

increased greenhouse gases obtained by more spectrally detailed codes. For example, a 

recent intercomparison [Collins et al., 2006] of well-mixed greenhouse gas forcing 

calculations between line-by-line (LBL) RT models and their speedier, but coarser, 

counterparts of GCMs used in the Intergovernmental Panel for Climate Change (IPCC) 

4 th Assessment Report, reported that for many of the cases analyzed, GCM codes 

exhibited "substantial discrepancies" relative to the detailed spectral LBL standards. The 
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against which R T code performance IS documented In scientific publications and 

coordinated joint modeling activities such as GCM intercomparisons. While it is 

understood that CIRC reference calculations at any time reflect current spectroscopic 

knowledge and may not be perfect, by keeping CIRC up-to-date with algorithmic and 

spectral database improvements as they become available, and by gradually expanding 

the effort with new cases, a valuable service to the radiation modeling community will 

exist for years to come. 

This paper presents results from Phase I of CIRC, designed to test R T codes under 

relatively non-complex atmospheric conditions, i.e., either cloudless skies or skies 

completely covered by homogeneous liquid clouds. Submissions from 13 solar and 11 

thermal infrared codes are analyzed against reference LBL calculations. Besides overall 

performance, we also delve into particular aspects of R T model behavior exposed by the 

specifications and requirements of individual cases. Simplified versions of the cases help 

isolate contributions of individual components to the overall errors. Before presenting the 

results, a detailed description of how the CIRC input and reference R T calculations were 

generated is provided in the next section. 

2. The CIRC Phase I dataset 

a. The cases 

Table 1 provides a summary of the seven primary (baseline) cases used in Phase I to 

test RT algorithm performance. Two of the seven cases (Cases 6 and 7) include overcast 

liquid phase clouds with very different condensate amounts. The cloudy cases were 

selected for their apparent homogeneity as indicated by low temporal variability of the 

SW downwelling fluxes at the surface as measured by pyranometers. The high liquid 

5 



radiance residuals of each RR TM band in order to convert them to flux residuals. Band 

residuals wer added to obtain broadband flux residuals. These results and accompanying 

plots can be found at the project website, http://circ.gsfc.nasa.gov/CIRCcases.htm!. 

Further details on the construction of the cases are provided below. 

With the intercomparison underway, CIRC participants suggested that the 

interpretation of model performance will be aided by including additional "subcases" that 

are simplified variants of the above seven baseline cases. These extra cases with simpler 

atmospheric and surface specifications would, of course, be no longer radiatively 

constrained by observations. The subcases were constructed by imposing one or more of 

the following simplifications: (a) spectrally invariant SW albedo; (b) no aerosol; (c) no 

cloud. A complete list of the subcases is provided in Table 2. A total of 16 SW subcases 

and 2 L W subcases resulted after applying various combinations of these simplifications 

(changes in surface albedo and aerosol only affected SW cases). 

b. Input 

A full list of input variables needed to perform RT calculations are provided at the project 

website, http://circ.gsfc.nasa.gov/CIRC input.html. The input for six of the seven cases 

(the exception being Case 7) is based on v 1.4.1 of the ARM BBHRP evaluation dataset 

[Mlawer et aI., 2002]. The features and data content ofBBHRP most relevant to CIRC as 

well as the modifications employed to adapt the cases for the purposes of CIRC are 

provided below. 

F or the clear cases, the atmospheric column is discretized in layers of varying 

physical thickness, ranging from 54 m near the surface to 4 km for the uppermost layers. 
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September ozone values for this case. For all other species, mixing ratios are taken from 

the US Standard Atmosphere. 

The cloud of Case 6 is based on ARM's Active Remotely-Sensed Clouds Locations 

(ARSCL) product [Clothiaux et aI., 2000], which provides height distributions of 

hydrometeor reflecti vity (and cloud boundaries) every 10 seconds based on observations 

from a Millimeter Cloud Radar (MMCR) and Micropulse Lidar (MPL). These ARSCL 

products are combined with thermodynamic profiles from radiosondes and column 

integrated water vapor estimates from the MWR and inserted into the Micro base cloud 

property retrieval algorithm [Miller et aI., 2003,' U.s. Department of Energy, 2006], 

which computes a time-height grid of the liquid water concentration, liquid effective 

radius, ice water concentration, and ice effective radius. Within the Microbase retrieval, 

the initial liquid water concentration data are integrated to produce an estimate of the 

Liquid Water Path (L WP) and then scaled by the ratio of the L WP retrieved from 

coincident MWR measurements and the initial Microbase L WP estimate. The retrieved 

cloud properties for each time and height are averaged over a 20-minute interval 

empirically deemed to encompass the cloud fields affecting the irradiance measurements 

used for the comparisons. For Case 7 (Pt. Reyes), the cloud property retrievals are based 

on the MIXCRA inversion algorithm [Turner, 2005,' Turner, 2007]. The cloud was 

assumed to be vertically homogeneous and its top and base were determined from 

WACR (a W-band Doppler radar operating at 95 GHz) measurements. 

For the SGP clear-sky cases (Cases 1-3) the aerosol optical depths are derived from 

spectral solar irradiance measurements of the Multi-Filter Rotating Shadowband 

Radiomenter (MFRSR) at 6 wavelengths below 1 ~m. These MFRSR measurements, 
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single tower is available for surface classification and albedo estimation. Based on a 

satellite (Multispectral Thermal Imager) image analysis of the region surrounding the 

NSA site in Barrow, Alaska on the day corresponding to Case 4, it was determined that 

an appropriate surface albedo would require taking the weighted average of the surface 

albedo below the tower (with a 85% weight) and the albedo of open water (with a 15% 

weight ). For PYE Case 7 MODIS-derived surface (i.e. land) albedos are used to generate 

pseudo-MFR albedos that can subsequently yield a spectral albedo function in the exact 

same manner as for the SOP cases. For all cases, the surface reflectance is assumed to be 

Lambertian. Since different radiation codes have their own band structure, the surface 

albedo was provided at relatively high spectral resolution (l cm- I
). Two additional 

spectral functions were provided, the product of surface albedo and the extraterrestrial 

spectral solar irradiance [Kurucz et al. 1992] in the 0.2-12.2 /-lm range, and the product of 

surface albedo with the 1 cm- I downwelling surface irradiances from our reference LBL 

SW calculations. These spectral functions allow participants to calculate both unweighted 

or weighted (by the either the TOA or SFC spectral flux) albedos within the (wide) 

spectral bands appropriate for their RT code. The impact of the SFC albedo weighting 

scheme on TOA SW fluxes is discussed in subsection 4e. 

Finally, the participants were provided with the downwelling broadband flux at the 

TOA calculated from the [Kurucz et al. 1992] spectral solar irradiance for the Sun-Earth 

distance and solar zenith angle at the day and time of each case, which is consistenst with 

the downwelling TOA broadband of the SW LBL calculations. When using this flux, any 

errors in the SW flux calculations can not be due to excessive or missing energy, but only 
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factor and single-scattering albedo remained spectrally invariant. The aerosol information 

used in the CHARTS calculation was therefore exactly the same as that provided as input 

to the participants. The aerosol phase function was assumed to follow the Henyey-

Greenstein function. Aerosol effects were ignored in the L W. The surface albedo was 

resolved at 1 cm-1 (as that provided to the participants) and was linearly interpolated to 

the wavenumber of the calculation. Finally, the surface emissivity was set to unity across 

the L W spectrum. The output fluxes of the calculations were integrated using a boxcar 

function into 1 cm-1 wide bins. 

d. Radiative observations 

The LW and SW surface observed irradiances for the CIRC SGP and NSA cases are 5-

minute averages of values provided by ARM Best Estimate Radiative Flux V AP as 

included in the BBHRP v 1.4.1 and BBHRP v 1.4.1 tK (Case 3) datasets. The 5-minute - -

averaging window was centered at the time provided for each case. For the PYE case 

(Case 7) the L W irradiance measurement value is the mean of the 5-minute average from 

two pyrgeometers at the site. The PYE SW value is taken from the 5-minute average of 

measurements from the single collocated shaded pyranometer. 

The observed TOA irradiance values are from the spatially and temporally closest 

Clouds and the Earth's Radiant Energy System (CERES) measurement for Case 4. For 

Cases 3 and 7, the broadband TOA fluxes are inferred from the spatially and temporally 

closest Geostationary Operational Environmental Satellite (GOES) using a radiance-to-

flux and narrowband-to-broadband conversion algorithm. For the remaining SGP cases 
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surface, i.e., without contributions of scattered radiation along the direction of the solar 

beam. No spectral results were solicited. The spectral range of LW and SW calculations 

was left to the participants, but under the condition that the radiation source is exclusively 

the Earth's surface and atmosphere for the LW and the Sun for the SW. 

Some of the input information provided to conduct the eIRe runs is typically not 

available in an operational GeM environment, for example, spectral surface albedo. On 

the other hand, the available input may be incomplete for some RT algorithms, e.g., those 

requiring separate albedos for the ground and an overlying vegetation canopy. While the 

submissions solicited should ideally come from runs where the model uses as much of the 

information provided as possible, this may have required modifications of the R T 

algorithms from their standard operational configuration, so submissions where the 

algorithms operate with assumptions and input that more closely resemble default 

operational configuration were not discouraged. For example, the participants were 

allowed to perform runs where they would employ modifications such using the incident 

solar flux corresponding to the total solar irradiance (TSI) of the host model, or leaving 

scattering active in their L W algorithm even though there is no scattering in the reference 

LBL calculations. 

Submissions have been received from 11 LW and 13 SW RT algorithms. The 

algorithms are identified in Tables 3 and 4, along with some pertinent information, such 

whether the algorithm is currently implemented in a Large Scale Model (LSM) and who 

the submitting party is. For some of the models multiple submissions were received, 

corresponding to different configurations of the runs (e.g., high/low accuracy modes, 

with and without L W scattering, different weightings of the spectral surface albedo 
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pj, - pj 
e " (%) = 100 x n,1 . n ,0 

n,I,J PJ 
n,O 

(1) 

p/o is the flux (irradiance) calculated with the reference LBL radiation code (LBLRTM 

for L Wand LBLRTM/CHARTS for SW) for case n, and F j is the corresponding flux n,1 

by RT model i. The flux types for LW are the upwelling radiation at the TOA, the 

downwelling at the SFC and the net flux divergence of the atmospheric column defined 

as the net (down minus up) at TOA minus net at SFC. For the SW, the flux types are as 

above, with the addition of the diffuse component of the downward flux at the SFC 

defined as the total flux minus the direct-horizontal flux. It should be pointed out that for 

the SW, the net flux divergence corresponds to the flux absorbed by the atmospheric 

column and underlying surface. 

In the LW, the best overall simulated flux type appears to be the downward flux at 

the SFC, but there are two instances of flux errors outside the ±3% range (Cases 4 and 5 

for Model 3). The TOA flux error is never outside the ±3% bounds. Model 11 exhibits a 

persistent overestimate of r-J 1.5% in the downward flux and an underestimate of r-J20/0 in 

the TOA upward flux (including cloudy cases). Since the upward flux at the surface 

depends solely on surface temperature according to the Stephan-Boltzmann law and the 

downward LW flux at TOA is zero, the errors in net flux divergence (which relates to the 

total heating/cooling rate of the entire atmosphere column) can be smaller than the errors 

in the TOA up or SFC down fluxes if there is error cancellation. For about 700/0 of model-

case combinations the net flux divergence indeed exhibits smaller errors than either of the 

TOA and SFC flux errors. A few models, namely models 1,2,4, 9, 10 (and 8 if cloudy 

Case 6 is excluded) maintain SFC and TOA flux errors within ±1% of LBL. But only 
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are significantly better (with the exception of Model 11, Case 2b, the errors are always 

within ±5%). However, in the absence of clouds and aerosols, the underestimation of 

gaseous absorption is revealed more clearly, so the absorbed flux errors become larger 

especially in Cases 6 and 7. Only models 2 and 5 achieve absorption errors within ±2.5% 

for all the pristine cases. 

b. Overall errors per model and flux quantity 

A more compact view of model performance can be obtained by averaging errors over all 

cases, and these are shown in Figures 3 and 4. Specifically for each model i and flux type 

j we show the mean error, the mean absolute error, and the error standard deviation 

(shown as error bars) over all cases, defined respectively as: 

Nc 

2 (Fn~i - F/o) 
e! =..!.!..n.::.!;.=l ___ _ 

I 

Nc 

_ 21F/i - Fn~ol 
Ie! 1= ..!.:..;;;;n=.!.o-l --

Nc 

alee) = 

(2) 

(3) 

(4) 

where Nc is the number of cases (including subcases), i.e., 9 for LW and 23 for SW (7 

and 21 for model 6). All quantities are expressed in Wm-2
• Cancellation of errors is 

allowed in the calculation of the means to recognize the fact that in an operating 

environment in which the R T codes are applied on a wide range of atmospheric input, the 

average performance should also be evaluated. On the other hand, the mean absolute 
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where Nf is the number of flux types, and the subscript 0 refers to the LBL flux. We 

calculate the above error for Nf =3 flux types for both the SW and L W, i.e., we exclude 

the poorly simulated diffuse SW surface flux which suffers also from not being available 

for models 5 and 6. In addition to calculating this error for all 9 L Wand 23 SW cases, we 

also perform a second calculation for only the subcases of pure molecular atmospheres, 

i.e., excluding cases 6 and 7 for the L Wand excluding all but subcases 1 (b), 2(b), 3(b), 

4(b), 5(b), 6( d) and 7(b) for the SW. 

The top two panels of Fig. 5 show the errors calculated by eq. (5). This type of error 

metric could potentially serve as a simple way to rank model performance and to set 

thresholds of acceptable RT code performance for particular applications. The bottom 

panels tell us whether the errors calculated from eq. (5) are smaller or larger when only 

simplified atmospheres and surfaces are considered. Reminding ourselves that in the L W 

the simplified atmospheres differ only in that clouds have been removed, it is not 

surprising that performance does not in general improve in the absence of purely 

absorbing clouds thick enough to have near unity emissivity. One the other hand, all 

models, with one exception, predictably improve their performance in the SW for the 

simplified cloudless atmospheres with no aerosols and spectral variations of surface 

albedo. The exception, model 12, while not consistently performing better for the pristine 

cases for all flux types, seems to suffer primarily from the fact that its absorbed flux 

performs notably worse, enough to push the error metric of eq. (5) above the values 

corresponding to the full basket of cases. 

Another metric that can be illuminating is the percentage local mean deviation 

(LMD(%)), introduced originally by Pinty et al. [2004] in the RAMI intercomparison of 
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when spectrally variably surface albedos are used in place of a spectrally flat albedo; (b) 

the difference in flux between two different ways of averaging the spectrally detailed 

albedo into coarse spectral intervals. 

To gain insight into the first issue we calculate the TOA flux difference between the 

baseline and "a" subcases (i.e., the difference between cases with spectrally resolved 

albedo and spectrally flat albedo) averaged separately for the clear (Cases l-S) and 

cloudy cases (Cases 6-7), i.e., 

Nc 

~ (F:~A - F:C~~ ) 
I1F.TOA = ...:.:,n.....:=l _____ _ 

I 
(7) 

where Nc=S for clear and Nc=2 for cloudy. Figure 7 shows these average differences, with 

the LBL results shown as dashed lines. To look into the second issue, we estimate for 

Cases 1-4 the TOA flux difference between calculations where the coarse-band albedo 

comes from weighting the spectral surface albedo values with the LBL spectral 

downwelling flux reaching the surface (these calculations were used for F:~A in eq. 7) 

and calculations where the incoming spectral solar radiation at the TOA was instead used 

to perform the weighting. Figure 8 shows these differences (positive indicates that the 

flux from surface flux weighting is larger) for those models that made results for both 

those surface albedo weighting options available. 

The LBL results in Fig. 7 indicate that the average effect of surface albedo spectral 

variations is ~ 1.S Wm-2 for cloudless atmospheres and ~-O.4 Wm-2 for cloudy 

atmospheres. The sign of the TOA flux difference is negative for Case 4 with its ice-

driven surface albedo, and the two cloudy cases, and positive for all other cases 
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resolved spectral albedo functions. The subtle effects of surface albedo averaging will 

emerge again in the CO2 forcing analysis of subsection 4 f. 

e. Cloud and aerosol radiative effect errors 

Cloud and aerosol radiative effect SW errors by the participating models can be best 

isolated by using the spectrally constant surface albedo subcases. We therefore define the 

error in L Wand SW cloud radiative effect for model i and flux type j as: 

e j = (F j - F j ) - (F j - F j ) 
n-n(y),i n,i n(y),i n,O n(y),O (8a) 

e j = (F j - F j ) - (F j - F j ) 
n(x)-n(y),i n(x),i n(y),i n(x),O n(y),O (8b) 

For the L W y = "a" in eq. (8a). To evaluate the SW cloud radiative effect error for Case 6 

we select the aerosol-free subcases, so x = "b" and y = "d" in eq. (8b); for Case 7 which 

does not include aerosols x = "a" and y = "b". These cloud radiative effect errors (both 

SW and LW) are shown in Fig. 9. LW cloud radiative effect errors remain within 

approximately ±5 Wm-2 for all flux types for both cloudy cases, with the exception of 

model 7 which is slightly outside this range, and are generally larger for the less optically 

thick cloud of Case 7. SW cloud radiative effect errors are much larger than their LW 

counterparts and are generally of greater magnitude for the optically thicker cloud of 

Case 6. Due to smaller absolute values and occassional error cancellations, absorbed flux 

radiative effect errors can be small even if TOA and SFC radiative effect errors are large. 

Overall, it appears that the radiative effect of the downwelling SFC flux is simulated 

slightly worse than the TOA radiative effect. Interestingly, for both the LW and SW 
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provided for participants to average appropriately within their model's band structure, 

perhaps smaller cloud radiative effect errors would have resulted. However, this would 

not necessarily have been a better approach to evaluate cloud radiative effect estimation 

capabilities since in an operational environment such a level of detailed information on 

cloud radiative properties would not have been available. 

f Carbon dioxide forcing errors 

The CO2 forcing can be defined as either: 

j j -pj pj 
5-4' - 5' - 4' ,l ,l ,l 

(lOa) 

or: 

j j -pj F j 
5(x)-4(x),i - 5(x),i - 4(x),i (lOb) 

Eq. (lOa) applies for both the LW and SW; eq. (lOb) applies only for the SW with either 

x="a" or x="b". In the SW therefore three CO2 forcing error calculations are possible, 

one that corresponds to the baseline case and two that correspond to the two subcases 

(spectrally flat albedo with aerosol and spectrally flat albedo with no aerosol). We chose 

to show in this subsection not the errors, but the forcings themselves in order to highlight 

an issue related to the sign of the SW TOA forcing. These are shown in Fig. 11 where the 

dashed lines depict the LBL reference results. In the L W, models divide in almost equal 

numbers to those that underestimate and those that overestimate the SFC and COL (flux 

divergence) forcing. When it comes to TOA forcing, however, only one model yields a 

notable overestimate. The magnitudes of the L W CO2 forcing are quite good for most 

models, typically less than 0.5 Wm-2 different from LBL. When comparing the 
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forcing (i.e. Case 5 reflecting more than Case 4 despite the larger CO2 concentration) for 

this exact reason, a higher near infrared surface albedo for Case 5 due to downwelling 

surface flux weightings that have changed from Case 4 (this has been previously pointed 

out by Oreopoulos and Mlawer 2010). Since in an operational GCM environment, the 

effect of CO2 on band-average surface albedo would most probably be neglected a zero 

CO2 TOA forcing would result. Overall, the quality of the results in Figure 11 varies 

greatly. Even when concentrating on the CO2 forcing of the spectrally flat albedo 

subcases, deviations from LBL calculations are quite large, as was previously found by 

Collins et al. [2006]. The poorest performer appears to be model 9. For this model CO2 

doubling apparently implicitly increases the concentration of some of the other uniformly 

mixed absorbing gases, O2, N20, CH4 and CO. When looking at the spectral response of 

this model to doubling CO2, one sees flux changes in spectral intervals where CO2 should 

not be active. Obviously, it should be made a priority that deficiencies like this are 

eliminated from radiation codes used in climate models. 

g. Longwave scattering 

The LBLR TM code used to generate the L W reference results does not account for cloud 

scattering. Still, it is instructive to have a general idea on the impact of scattering for our 

particular cloudy cases. Here we examine the scattering effects of those participating 

models (4, 5 and 10) that provided submissions with and without L W scattering effects. 

The comparison is shown in Fig. 12; the no-scattering results from the LBL code are also 

included for reference. To facilitate visualization and comparison of the differences 

between scattering and no-scattering results for both cloudy cases and the two fluxes at 
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h. LW heating rate errors 

Heating (cooling) rate errors are only calculated for the L W since no reference LBL SW 

heating rate profiles are available. We use only the five original clear-sky cases and the 

two cloudy cases in order to put models 5 and 6, which did not submit results for the two 

L W subcases, on equal footing with the other models. The added vertical dimension 

makes the evaluation of heating rate profile errors somewhat more challenging than the 

column boundary fluxes we have been dealing with so far. We settled on using a mass-

weighted [e.g., Raisanen and Barker, 2004] heating rate (HR) root mean square error 

(rmse) for each model i calculated as follows: 

(11) 

where the heating rate HR~,i (cooling rate when a negative value is obtained) of model i 

in layer I for case n is given in (Klday) by: 

11Ft 
HR~,i = 86400(s/day) x L-7 

C p I1Pn 
(12) 

f1p~ is the pressure thickness of layer I for case n, cp is the specific heat of air at constant 

pressure, g is the acceleration of gravity constant, and f1F~,i is the flux divergence of 

model n in layer I of case n. As before, the index 0 is reserved for the reference LBL 

model. For the clear-sky cases we calculate the HR rmse separately for the parts of the 

atmosphere below and above 200 hPa (a proxy separator between troposphere and 
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evaluation of submissions are publicly available for download on the CIRC website 

~~~~~~~~~. Provided that CIRC participants will consent in having their 

submissions be posted on the CIRC website, any interested individual will be able to 

perform their own code evaluation and examine aspects of code performance that we did 

not cover in this paper. 

Our analysis has revealed a number of intriguing findings. We found that errors in 

SW simulations, which have more degrees of freedom and parameters to specify, were 

larger than LW errors. We also found that diffuse and absorbed SW fluxes are particular 

areas of concern. Obtaining the correct breakdown of total to direct and diffuse may be 

important for the simulation of chemical or surface processes in climate models. 

Previously found underestimates of SW absorption by less spectrally detailed models 

[Ackerman et al., 2003] seem to be confirmed here. Another finding was that the number 

of bands available to resolve spectral surface albedo and other details of wide-band 

averaging can be important, so model developers need to pay attention to their 

representations of spectral albedo variations. SW CO2 forcing, which should be included 

in all models, needs to be better simulated for those models that include it; L W CO2 

forcing has been more scrutinized and is quite well simulated by thermal radiation codes. 

Finally, while L W fluxes may be quite adequately simulated at the atmospheric column 

boundaries, net flux divergences within the atmosphere that determine heating (or 

cooling) rates may need further attention. In addition, scattering by clouds in the L Wean 

potentially have measurable contributions and should ideally be included. We hope that 

scattering capability will soon be available to all LBL codes as well (some, like model 5 

of this study already have it). 
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Table 1. Synopsis of the seven CIRC Phase I primary (baseline) cases. The four 

rightmost columns show observed and LBL-calculated (in bold) flux values (in Wm-2
) at 

the surface (SFC) and the top-of-the atmosphere (TOA) for both the thermalliongwave 

(L W) and solar/shortwave (SW) part of the spectrum. Observed TOA fluxes are from 

GOES using narrowband to broadband conversion algorithms or from CERES (case 4), 

while observed SFC fluxes come from ARM instruments. The first six columns provide 

some essential input information (SZA=Solar Zenith Angle, PWV=Precipitable Water 

Vapor, LWP=Liquid Water Path). The aerosol optical depth (raer) is for 0.55 ~m. Case 5 

is as Case 4, but with doubled CO2• 

Date,{Site) Case SZA PWV "Caer L WP LWSFC LWTOA SWSFC SWTOA 

(em) (gm-2
) 

September 25, 2000 47.9° 1.23 0.04 289.7 301.7 705.9 169.8 

(SGP) 288.2 304.3 701.2 175.0 

July 19, 2000 (SGP) 2 64.6° 4.85 0.18 441.8 288.6 345.4 127.8 

439.3 292.6 348.0 117.1 

May 4, 2000 (SGP) 3 40.6° 2.31 0.09 336.4 277.6 772.5 159.6 

333.0 280.8 773.1 173.6 

May 3, 2004 (NSA) 4 55.1° 0.32 0.13 194.7 229.1 638.9 425.8 

192.4 230.5 642.8 422.9 

May 3, 2004 (NSA, CO2) 5 55.1 ° 0.32 0.13 

195.7 229.2 641.3 422.7 

March 17, 2000 (SGP) 6 45.5° 1.90 0.24 263.4 339.0 234.8 97.6 623.2 

335.2 241.8 92.1 628.8 

July 6, 2005 (PYE) 7 41.2° 2.42 39.1 373.2 284.0 479.8 356.0 

372.6 280.2 473.7 356.4 
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Table 3. L W codes participating in CIRC Phase I. 

Model Brief Model Description In LSM? Experiment variants Submitted By Reference(s) 
Index 

0 LBLRTM v.11.1IHITRAN 2004, No None Delamere, Mlawer Clough et al. (200S) 
MT CKD 2.0, AER V 2.0 

1 RRTM-LW, 10-3000 cm- I
, CKD, 16 No None Iacono, Mlawer Mlawer et al. (1997); 

bands, 2S6 g-points Clough et al. (200S); 
2 RRTMG-LW, 10-3000 cm- I

, CKD, Yes None Iacono Mlawer et al. (1997); 
16 bands, 140 g-points Iacono et al. (2008) 

3 CLIRAD-LW, 0-3000 cm- I
, k- Yes "High/Low" Accuracy Oreopoulos Chou et al. (2003) 

distribution and one-parameter 
scaling, 10 bands, 8SI113 k-points 

4 CCC 0-2S00 cm- I
, CKD, 9 bands, S6 Yes With/without scattering Cole, Li Li (2002); Li and Barker 

g-points (2002); Li and Barker 
(200S); 

S FLBLM, 40-3000 cm- I
, line-by-line, No None Fomin F omin (2006) 

6 FKDM, 40-3000 cm- I
, CKD, 23 g- No None Fomin F omin (2004) 

points 
7 CAM 3.1,0-2000 cm-t, absorptiviy- Yes Treatment of lowest Oreopoulos Collins et al. (2004) 

emissivity approach level air temperature 
8 FLCKKR (LW), 0-2200 cm- I

, CKD, No None Rose, Kratz, Kato, Fu and Liou (1992); Fu 
12 bands, 67 g-points Charlock et al. (1997) 

9 RRTMG-LW (as implemented in Yes None Raisanen Mlawer et al. (1997); 
FMIlECHAMS.4), 10-3000 cm- I

, 16 Iacono et al. (2007) 
bands, 140 g-points 

10 ES, 10-3000 cm- I
, 9 bands/33 g- Yes With/without scattering Manners Edwards and S lingo 

points, ESF of band transmissions (1996); Edwards (1996) 
11 NASA-GISS, SO-2000 cm- I

, CKD, Yes None Zhang, Rossow, Lacis Zhang et al. (2004) 
33 ;; ~~!~~~ 
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List of Figures 

Figure 1. Percentage errors as defined by Eq. (l) of each participating model for each 

case for L W upward flux at TOA, downward flux at SFC and flux divergence. Gray 

indicates unavailability of submissions. Errors outside the colorbar range are assigned the 

extreme colors of the colorbar. 

Figure 2. As Fig. 1, but for SW. In addition, the diffuse flux at the surface (difference 

between total flux and the direct solar beam flux) is shown. The flux divergence in this 

case correspons to the atmospheric absorption. Gray indicates unavailability of 

submissions. Errors outside the colorbar range are assigned the extreme colors of the 

colorbar. Model 6a is a variant of Model 6 where the optical properties of the scatterers 

are described in greater spectral detail within the k-distribution bands following Fomin 

and Correa (2005). 

Figure 3. Mean errors in Wm-2 over all cases of the three flux types of Fig. 1 depicted as 

gray bars, their associated standard deviations depicted as error bars, and mean absolute 

errors depicted as black bars. There are calculated from eq. (2) , (4), and (3) respectively 

for each participating model and the three radiative fluxes of Fig. 1. 

Figure 4. As in Fig. 3, but for the four flux types of Fig. 2. 

Figure 5. The total error of each participating model according to eq. (5) for all L Wand 

SW cases (upper panels, left for LW and right for SW). The bottom panels (again, left for 

L Wand right for S W) show the difference between total errors calculated for the full 

basket of cases (i.e., top panels) and total errors calculated for a subset of the cases, 

namely the seven cloudless (clear) L W cases and the seven pristine SW cases (no aerosol, 

spectral flat surface albedo) of Table 2. 
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aerosol minus fluxes with no aerosol, specifically the difference between subcase "a" 

minus subcase "b" fluxes for Cases 1-5 and subcase "c" minus subcase "d" fluxes for 

Case 6 (there is no aerosol in Case 7), see. The radiative effect errors depicted are 

averages over all 6 cases, see eq. (9). TO A, SFC and COL flux designations are as in the 

previous figure. 

Figure 11. CO2 forcing (flux difference between cases with 375 ppm CO2 and 750 ppm 

CO2) for LW (upper left panel) and SW (remaining panels). The LBL forcings are 

indicated by the dashed lines: for the L W plot the black line indicating positive value is 

for the forcing in atmospheric flux divergence ("COL"), the gray line is for forcing of 

upwelling TOA flux, and the black line indicating negative value is for the downwelling 

flux at SFC; for the SW plots, the lines indicating positive values are for TOA (gray) and 

SFC (black), and the line indicating negative values is for absorptance ("COL"). Further 

explanations are given in the text. 

Figure 12. Comparison between LW fluxes at TOA and SFC with and without scattering 

for the participating models that submitted both types of calculations. The LBL reference 

fluxes also shown were calculated only without scattering. 

Figure 13. The mass-weighted LW heating rate (HR) root mean square error of each 

particpating model derived from eq. (9). Three HR rmse's are calculated: For the original 

five clear cases below 200 mb; for the original five clear cases above 200 mb; and for the 

two cloudy cases below 200 mb. 
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