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ABSTRACT

We explore a detailed model in which the active galactic nucleus (AGN) ob-

scuration results from the extinction of AGN radiation in a global flow driven by

the pressure of infrared radiation on dust grains. We assume that external illu-

mination by UV and soft X-rays of the dusty gas located at approximately 1pc

away from the supermassive black hole is followed by a conversion of such radi-

ation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations

in a flux-limited diffusion approximation we find that the external illumination

can support a geometrically thick obscuration via outflows driven by infrared ra-

diation pressure in AGN with luminosities greater than 0.05Ledd and Compton

optical depth, τT & 1.

1. Introduction

A fundamental assumption of active galactic nuclei (AGN) unification schemes is that

type 1 and type 2 AGNs have similar intrinsic properties. The basic premise of this paradigm

is that obscuration and orientation effects are the major contributors to the observational

dichotomy of AGNs. The goal of this paper is to suggest an approach which explains the

AGN dichotomy as resulting from the extinction of the AGN radiation in a hydrodynamical

outflow powered by the pressure of the infrared radiation on the dusty plasma of AGN

outskirts.

The suggestion that Seyfert 2 galaxies suffer from enhanced extinction compared to

Seyfert 1 galaxies was made by Rowan-Robinson (1977) based on the infrared observations.

However it was not until the seminal work of Antonucci (1984), and Antonucci & Miller
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(1985) when key evidence was collected from studies based on optical spectropolarimetry.

The detection of broad permitted lines in the polarized UV and optical spectrum of the

nearby, luminous Seyfert 2 galaxy NGC 1068, confirmed that a bright, Seyfert 1 core is

hidden behind optically thick, obscuring material. Notice that a prediction of polarization

of the X-ray flux in the 0.1 − 10 keV range was made by Dorodnitsyn & Kallman (2010)

based on theoretical modeling of AGN outflows.

Direct evidence of the existence of toroidal obscuration comes from the mid- infrared

observations of Seyfert 2 galaxies, such as the prototypical Seyfert 2 galaxy NGC 1068,

and the closest AGN, the Circinus galaxy. Observations of NGC 1068 using VLTI reveal a

multi-component, multi-temperature dusty conglomerate: an inner, relatively small (∼ 1 pc)

and hot (∼ 800 K) component embedded into an outer (∼ 3.5 pc) component which is much

colder (T ∼ 320 K) (Jaffe et al. 2004; Raban et al. 2009). In the Circinus galaxy the observed

elongated, 0.4 pc in diameter component is interpreted as a disk-like structure seen almost

edge-on. This disk-like structure is co-incident with that inferred from the VLBI maps of

H2O maser emission (Greenhill et al. 2003), being embedded into a much larger rounded

component. This is interpreted as a geometrically thick torus with temperature T . 300K

(Tristram et al. 2007).

The premise and the principal puzzle of AGN unification is the physical mechanism

responsible for the geometrical thickness of the torus. Ample observational evidence for dust

rules out support of the torus by gas pressure, as in such a case the temperature of the gas

should be approximately of the order of the virial temperature, Tvir,g = 2.6 × 106M7/rpcK,

where M7 is the black hole (BH) mass in 107M�, and rpc is the distance in parsecs.

Various mechanisms have been proposed to settle this issue: for example, in one of

the first models a torus was considered being made of clumps having highly supersonic

velocities (Krolik & Begelman 1988; Beckert & Duschl 2004). Magnetic fields are implicitly

necessary in this model to provide enough elasticity to the clouds in order to avoid large

dissipation though cloud-cloud collisions. Another model suggested by Phinney (1989), and

Sanders et al. (1989) considered a locally geometrically thin, but globally warped disk. Global

magnetic fields were suggested to be a key ingredient either though hydromagnetic winds

(Konigl & Kartje 1994), or as directly supporting the vertical balance of a quasi-static torus

(Lovelace et al. 1998). The main difficulty with hydromagnetic models comes from the large

poloidal magnetic flux needed to support such a wind. It is unclear whether such a strong

global poloidal magnetic field exists at large distances from a BH. The clumpy nature of

an outflow was addressed by Elitzur & Shlosman (2006). These authors consider the dusty

hydromagnetic obscuring wind as an alternative to quasi-static torus models.

It has been pointed out by Pier & Krolik (1992) that the infrared radiation pressure
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on dust may suffice to balance the vertical gravitational force. Based on these ideas Krolik

(2007), Shi & Krolik (2008) constructed a semi-analytic model of a static, infrared-supported

torus. In all models in which infrared radiation is responsible for the torus thickness it is

tacitly assumed that external radiation ranging from UV to soft X-rays is absorbed and

converted into IR at the inner face of the torus.

To sum up, previous models of AGN torus obscuration divide with respect to whether

they are i) static, i.e. such as in a model of self-gravitating clouds or in a model of a static

IR supported torus; ii) dynamic, such as in hydromagnetic wind scenario.

In this paper we present simulations which demonstrate that obscuration at parses

scale can be produced by global outflows driven by infrared radiation pressure on dust.

Arguments for this model are both observational and theoretical. Simple estimates show

that the observed dust temperatures (see above) translate into high infrared radiation energy

densities. The latter when coupled with the high opacity of dust to IR radiation will produce

strong radiation pressure force. Furthermore, one can easily see that radiation pressure on

dust exceeds the gas pressure and that together with gravity and centrifugal forces they

determine the fate of the torus. To support this line of arguments, in (Dorodnitsyn et al.

(2011), Paper I), it was shown that if the temperature in the torus exceeds that of Tvir,r '
312 (n/105M7r

−1
pc )1/4 − 987 (n/107M7r

−1
pc )1/4 K, where n is the number density, MBH =

107M� is the black hole mass, equilibrium between rotational, gravitational and radiation

forces cannot be maintained resulting in the beginning of an outflow. Paper I also presented

a numerical solution of 2D transfer and dynamics subject to the restriction that the outflow is

1D and vertical. In Paper I it was assumed that external illumination by UV and soft X-rays

and the subsequent conversion of this radiation into IR results in pumping of the torus with

IR photons and producing a significant infrared pressure on dust. A conservative scenario

for the radiation acceleration was employed, that is only external sources were considered

with no contribution from the accretion disk. It was also assumed that a thin accretion disk

provides the necessary mass loading for the wind. Such disk is buried in the dusty wind

and its characteristic temperature can be of the order of a few×100− 1000K. Thus the disk

contribution to the infrared pressure on dust can be significant. Given the highly speculative

nature of estimates for the viscous transport in self-gravitating disks we do not take the disk

contribution into account in our conservative estimate for the torus radiation driving in this

paper.

Czerny & Hryniewicz (2011) suggested the dusty wind as a possible origin for the low-

ionization part of the broad line region. The effective temperature of the disk where the low

ionization part of a broad line flow is formed in this picture is Teff ∼ 1000K & Tvir,r. Thus,

their broad line flow is the innermost part of the our obscuring flow. At these small radii the
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uplifted dusty flow is exposed to external heating, the dust evaporates, and the radiation

force quenches which result in a failed wind scenario. The boundary between the two regions

is roughly set by the dust sublimation radius ∼ 0.4(L/1045)pc, where L(erg s−1) is the total

luminosity.

The nature of the AGN obscuration problem calls for multidimensional simulations and

reduce the predictive power of 1D modeling (which is extremely successful, for example, in

stellar evolution calculations). Contrary to Paper I, in the current work we solve the full

system of time-dependent equations of radiation hydrodynamics in three dimensions with

axisymmetry (2.5D), and find the fate of the dusty gas for conditions relevant to real AGNs.

The plan of this paper is as follows: In Section 2 we discuss some of the basic physical

properties of dust and gas in the torus, and review some of the results of Paper I which

are extensively used in this paper. The torus problem can only be solved using radiation

hydrodynamics (RHD). The basic setup of the equations of radiation hydrodynamics is

explained in Section 3. We also describe how physical conditions in a radiationally dominated

plasma of a torus influence various regimes at which such system of equations can be solved.

In Section 4 we describe our numerical approach which we adopt in order to solve the

full system of RHD. The implementation of the boundary conditions is also discussed. A

description of the results obtained from a calculated grid of models is given in Section 5. We

conclude with the discussion of the results and observational perspectives of our model in

Section 6.

2. Radiation and matter in the torus

At the inner parts of the accretion disk near the BH copious UV-, and X-ray radiation

is generated. The very high opacity of dusty plasma to UV radiation makes impossible

any static spherically-symmetric configuration if the UV luminosity, LUV
c,dust approaches the

critical value (see Paper I):

LUV
c,dust ' 5× 10−4 − 0.01Ledd, (1)

where Ledd is the Eddington critical luminosity:

Ledd =
4πcGMBH

κT

= 1.26× 1045M7, (2)

where κT = 0.4 cm2 g−1 is the Thomson opacity due to electron scattering, and M7 =

MBH/(107M�). Notice, that (1) is calculated taking κUV ' 6 × 103κT, the dust grain sizes
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of 0.025− 0.25µm (Mathis et al. 1977), grain density, nd = 2− 3 g cm−3, and 50− 100 dust

to gas mass ratio and assuming a perfect dust-gas coupling. For simplicity in the following

κ denotes the IR opacity of dust.

Analyzing the simplified model of the radiationally and rotationally supported torus,

in Paper I it was found the following approximate condition for the temperature, T for the

beginning of an outflow:

T0 > Tvir,r(r0) Γ1/4
c , (3)

where T0 is the temperature at the base of the wind at the distance r0 from BH, and

Tvir,r =

(
GMBHρ

ar

)1/4

, (4)

where ρ is the density, a = 7.56 · 10−15erg K−4 cm−3 is the radiation density constant, Γc =

L/Lc, and Lc is the critical luminosity in the infrared with respect to absorption on dust:

Lc =
4πcGMBH

κ
' (0.03− 0.1)Ledd, (5)

calculated assuming that the Rosseland mean opacity, κ ' 10 − 30κT in the temperature

range 102 − 103 K (Semenov et al. 2003).

The critical temperature (4) is, in fact, a definition of the virial temperature in a

radiation-dominated plasma. For densities relevant to numerical solutions presented in this

paper Tvir,r spans from 312 (M7/rpc)
1/4K for number density, n = 105, to 987 (M7/rpc)

1/4K

for n = 107.

In the dusty plasma of a torus, at typical values of T and ρ the pressure is domi-

nated by the radiation. Its relative importance is described by the parameter β = Pg/P '(
103 T 3

3 /n7 + 1
)−1

, where P is the total pressure

P = Pg + Π, (6)

where

Pg =
1

µm

ρRT, Π = a T 4/3, (7)

where Pg, and Π are the gas and radiation pressures respectively, R = 8.31 ·107erg K−1 g−1 is

the universal gas constant, and µm is the mean molecular weight. Thus, at typical densities

n = 106 − 107cm−3 and temperatures T = 102 − 103K one finds Pg � Π.
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When the approximate condition (3) is met, a radiatively-driven wind develops. The

terminal velocity, v∞ then can be estimated assuming spherical symmetry and neglecting Pg

in favor of the radiation pressure, FIRκ/c, obtaining

v∞ =
√

2GM/r0 (Γc − 1) ' 293 (M7Γ0.5κ10)0.5 km s−1. (8)

The characteristic temperature of the conversion layer, Teff was found in Paper I:

Teff =

(
4αΓ

GMBH

κTar2

)1/4

' 463 (
Γγ0.5M7

r2
pc

)1/4 K, (9)

where α ' 0.5 is the fraction of the incident X-ray flux re-emitted in the IR into the torus,

and Γ = L/Ledd In the calculations presented in this paper we adopt the parameter Γ,

instead of Teff , calculating the latter from (9).

3. The model setup and basic equations

In the frame of reference co-moving with the fluid, the description of the interaction

between radiation and matter is simplest, free from aberration and Doppler effects. For

example, only in such a frame the adopted emissivity and absorptivity of matter are isotropic

and only in such a frame they correspond to those tabulated from laboratory experiments.

As such, it is important to distinguish between reference frames when casting equations for

matter and radiation. The equations of radiation hydrodynamics, to first order in v/c, can

be formulated in the following form (Mihalas & Mihalas 1984):

Dtρ + ρ∇ · v = 0, (10)

Dtv = −1

ρ
∇p+ grad −∇Φ, (11)

ρDt

(
e

ρ

)
= −p∇ · v − 4πχPB + cχEE, (12)

ρDt

(
E

ρ

)
= −∇ · F−∇v : P + 4πχPB − cχEE, (13)

where quantities related to matter: ρ, p, and e are the material mass density, gas pressure

and gas energy density, v is the velocity; quantities related to radiation are the frequency-

integrated moments: E is the radiation energy density, F is the radiation flux, and P is the

radiation pressure tensor; χP, χE are the Planck mean and energy mean absorption opacities

(in cm−1), ; c is the speed of light, B = σT 4/π is the Planck function, and σ = ac/4 is the
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Stefan-Boltzmann constant, T is the gas temperature; other notation include the convective

derivative, Dt = ∂
∂t

+ v · ∇, and ∇v : P in (12) denotes the contraction (∂jvi)P
ij. Notice

that all the dependent variables in (10)-(13) are evaluated in the co-moving frame.

Frequency-independent moments E, F, which appear in the above set of RHD equations

are obtained by calculating angular moments from the frequency-integrated specific intensity,

I(r,Ω, ν, t):

E(r, t) =
1

c

∫ ∞
0

dν

∮
dΩ I(r,Ω, ν, t), (14)

F(r, t) =

∫ ∞
0

dν

∮
dΩ n̂ I(r,Ω, ν, t). (15)

The frequency-independent radiation pressure tensor P is found from

P(r, t) =
1

c

∫ ∞
0

dν

∮
dΩ n̂n̂ I(r,Ω, ν, t). (16)

The radiation force, grad is calculated from the following relation

grad =
1

c

χF F

ρ
, (17)

where χF = χa + χT is the total flux mean opacity consisting of absorption opacity, χa and

the Thomson scattering opacity, χT. In the following we will not differentiate between χF,

χP and χE, and omit subscript from χ where appropriate.

In addition to (10)-(13), the full system of equations of radiation hydrodynamics should

include an equation for F . However, we adopt a flux-limited diffusion approximation (FLD),

and there is no need of such equation as the closure relation between F and E is found from

the diffusion law:

F = − c

3κρ
∇E = −D∇E, (18)

where

D = c λ, (19)

is the diffusion coefficient and λ is the photon mean free path: λ = 1/(κρ), where κ = χ/ρ.

The diffusion approximation is adopted by tacitly assuming that optical depth τ & 1.

To take into account the possibility of τ < 1 the diffusion approximation should be modified
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so it has a correct limiting behavior . Notice that in a free-streaming limit |F| → cE.

However, when τ � 1 the mean free path, λ → ∞, and D → ∞, and |F| → ∞. That is,

when optical depth becomes small, or when ρ→ 0, the standard diffusion approximation is

no longer applicable.

In order to overcome this problem the standard approach is to adopt the flux-limited dif-

fusion approximation (Alme & Wilson 1974; Minerbo 1978; Levermore & Pomraning 1981).

In an FLD approximation λ is replaced by λ∗ = λΛ, where Λ is the flux limiter. The flux

limiter we adopt in the current work is that of Levermore & Pomraning (1981):

Λ =
2 +RLP

6 + 3RLP +R2
LP

, (20)

where RLP = λ |∇E|/E. If τ → 0, then RLP → ∞, and |F | ∼ cE. In the optically thick

limit RLP → 0 and Λ→ 1/3.

The gas is assumed to be in a local thermodynamic equilibrium (LTE) at a temperature,

which can be different from that of the effective temperature of radiation. The opacities

are treated in a grey approximation, i.e. frequency-independent, constant dust opacity is

assumed. The equation of state is taken to be that of an ideal polytropic gas, p = (γ − 1)e

with the ratio of specific heats γ. The gas temperature is obtained from the relation T =

(γ − 1)µme/(ρR). Given the great variety of physical conditions in dusty molecular gas,

exposed to UV, and X-ray radiation, we set µm = 1 throughout this paper.

Notice that in Paper I, radiation properties were calculated assuming stationarity and

radiative equilibrium. To understand why ∇ · F = 0 may be not too bad an approximation

it is instructive to compare time scales of the variation of the radiation field. In most cases

we expect the radiation field to follow matter with the fluid-flow time scale, tf = l/v ∼
l/vk ' 5 · 103 l31 M

−1/2
7 yr, where vk is the orbital velocity, l is a typical length scale of the

system, and l1 = l/1pc. Another important scale is the time which is necessary for a photon

to travel distance l: tr = l/c ' 3.43 l1 yr, for an optically thin case. In an optically thick

case a photon travels across l by means of a random walk. The corresponding time scale in

a diffusion regime is the diffusion time td = l2/cλ = tr l/λ ' 530 l21n6κ10 yr

If tr � tf the radiation field adjusts almost instantaneously to changes of the physical

conditions in the flow. Consequently, calculations are simplified immensely because the ex-

plicit time variation of the radiation field can be ignored. At a given time step the properties

of the flow can be calculated taking into account the radiation as it is frozen i.e. at the flow

time scale the radiation is essentially a sequence of snapshots which instantly adapts to the

flow.
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If additionally, optical depth τ is sufficiently high then the radiation-matter energy

exchange term in (12), and (13) scales as B − cE/4π ' O(B/τ 2). If this condition is

augmented by a requirement of a strict stationarity: ∂/∂t = 0, the resultant situation is

described as a radiative equilibrium and the radiation field can be found from the equation

∇ · F = 0. As was mentioned, the latter was used in Paper I to find radiation field in a

stationary outflowing torus.

Contrary to Paper I, in the present work we do not assume the existence of the wind

nor are we concerned with a wind solution which is stationary in a strict sense (both are the

assumptions of Paper I). Rather, we solve for the full time dependence of both the radiation

field and the flow. The effective coupling outlined above between time scales and local optical

depth (see e.g. Bisnovatyi-Kogan & Blinnikov (1978)) presents a significant challenge to any

RHD simulations. Careful analysis of the RHD system of equations (Mihalas & Mihalas 1984)

prescribes that in order to be consistent in all regimes of the radiation-matter interaction,

including the ability to describe correctly regions of the flow where τ < 1 or τ � 1, all terms

in the system of RHD (10)-(13) must be retained.

4. Solution: method

4.1. Nondimensionalization

In order to explicitly extract governing parameters it is convenient to convert (10)-(13)

into a dimensionless form adopting dimensionless variables: r̃ = r/R0, t̃ = t/t0, where R0,

is a fiducial distance from the BH, t0 = R0/v0 is the characteristic flow-time, and ṽ = v/v0,

where v0 = φ
1/2
0 , and φ0 = GMBH/R0; matter variables convert as ρ̃ = ρ/ρ0, p̃ = p/e0,

ẽ = e/e0, where ρ0 = n0mp is the fiducial mass density and n0 is the number density, mp is

the proton mass, and e0 = ρ0v
2
0; radiation variables transform as Ẽ = E/E0, F̃ = F/cE0, and

P̃ = P/E0, where E0 = aT 4
0 , where T0 is the fiducial temperature. The opacity transforms

as χ̃ = χ/χ0, where χ0 = 1/R0. Using such nondimensionalization and further simplifying

notation by (hereafter) omitting tilde, we obtain

Dtρ = −ρ∇ · v, (21)

ρDtv = −∇p+ A1 χF− ρ∇Φ, (22)

ρDt

(
E

ρ

)
= − 1

β0

∇ · F−∇v : P +
1

β0

κρ (T 4 − E), (23)

ρDt

(
e

ρ

)
= −p∇ · v − 1

β0

A1κρ (T 4 − E), (24)
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where β0 = v0/c, and non-dimensional parameters are

A1 =
E0

e0

=
aT 4

0

ρ0v2
0

, A2 = (γ − 1)
e0µm

ρ0RT0

. (25)

We solve equations (21)-(24) adopting a time-dependent, axisymmetric 2.5D approxi-

mation, meaning that we keep track of all φ- components of all vector quantities, such as

rotational velocity, vφ, but assume ∂/∂φ ≡ 0. A cylindrical z, R coordinate system is adopted

in all our computations.

We derive our code from the family of the ZEUS codes (Stone & Norman 1992a).

The hydrodynamical part of our code partially adopts methods and infrastructure found

in ZEUS-2D, and ZEUS-MP codes (Hayes et al. 2006), including our original modifications

summarized in Dorodnitsyn et al. (2008). Our original implementation of the radiation

module which is adopted in the current work is built upon a simplified version developed in

Paper I.

Notice that the hydrodynamical part of the ZEUS codes is based on a two-step update

of the dependent variables: In the source step the local update is done for ∂tv, to account

for various forces: gas pressure, (∇p)/ρ, radiation pressure grad, and the gravitational force

∇φ; ∂te is updated taking into account p · ∇v tern, i.e. p dV work, where V is the specific

volume; shocks are treated adopting the artificial viscosity prescription of von Neumann &

Richtmyer (1950). Corresponding viscous stresses and dissipation due to artificial viscosity,

are also added in the source step. Next is the transport step: the previously updated

quantities are further updated taking into account fluid advection.

According to the general strategy adopted in the ZEUS codes the update of the radiation

energy is also made adopting the operator splitting of equation (23) into source and transport

terms. The most time consuming part is the solution of the equation (23) for E in the source

step: Thus, the radiation source step includes the finite difference update of E from

∂E

∂t
= −β−1

0 ∇ · F = β−1
0 ∇ · (D∇E)

= β−1
0

(
∂

∂l1
(D(∇E)z) +

∂

∂l2
(xD(∇E)x)

)
, (26)

Equation (26) is solved numerically adopting an alternative direction implicit scheme (ADI)

(Fletcher 1988; Fedorenko 1994). The fact that the effective time step in (26) is ∼ c/v times

larger than the original time step demands the sub-cycling when advancing (26) over the

original time-step dt. This is done by splitting dt, into 10-1000 sub-steps.
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Since in most (but not all!) of the dense parts of the flow tr, td � tf one obtains that

solving for the ∇ · F ' 0 term is the most important part of the solution for the radiation

field at a given time step. A three-point finite differencing stencil is used to approximate

the diffusion operator in (26), which involves a solution of a tri-diagonal matrix equation.

Further details of how the ∇ ·F term in equation (26) is taken into account can be found in

Paper I.

Our radiation module adopts and enhances the radiation module described in Paper I.

The latter was designed to integrate equation 0 = ∂E/∂w = −∇ · F ' 0 over a pseudo-time

w towards a stationary solution. This extensively tested module was augmented by the

algorithms needed to take into account ∇v : P+ 1
β0
κρ (T 4−E) terms in equation (26). This

part of the solution implements the well tested algorithms found in Turner & Stone (2001)

version of the ZEUS code.

The numerical grid used in the radiation module adopts the same staggered grid used

in the hydrodynamic part of the ZEUS code. On such a grid, for example, E is placed cell-

centered, while D is face centered. Finite differencing in (26) is done by approximating the

derivatives making use of volume elements dl2 = x dx and dl1 = dz. This approach allows

to avoid approximation errors near the coordinate singularities (Stone & Norman 1992b).

An important part of the method is the implementation of the implicit time-stepping

algorithm, and from this, the most important is that in our method during the update from

En
ij to En+1

ij the diffusion coefficients Dij are taken at the ”old time”, tn. The method we

are using for the radiation-matter interaction part adopts that of Turner & Stone (2001).

This includes a simultaneous solution of the following finite difference algebraic system of

equations obtained from (23)-(24):

En+1 − En =
(
−(∇v : P)n+1 + β1 κ

nρn((T n+1)4 − En+1)
)
δt, (27)

en+1 − en =
(
−(p∇ · v)n − A1β1 κ

nρn((T n+1)4 − En+1)
)
δt, (28)

(29)

where δt = tn+1−tn is the time step, and the omitted subscript ij is assumed for all dependent

variables, and other notation is introduced: β1 = β−1
0 , T n+1 ≡ (T n+1) = A2(en+1)/ρn.

Benefits from such a discretization of variables in time are twofold: i) no linearization of

difference equations is required, as opposed to a fully implicit method; ii) it allows for a much

simpler update of the radiation and gas energies at the radiation-matter interaction step, in

which case equations (27)-(28) are reduced to a single scalar algebraic equation (Turner &

Stone 2001). The numerical solution of the latter is much more robust compared to what is
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needed in a fully implicit method (e.g. such as in Hayes et al. (2006)).

In our hydrodynamic framework we combine the original radiation diffusion and bound-

ary conditions module (aka the ”radiation module”), the original matter- and radiation-

energy update module and the hydrodynamical module. The hydrodynamical part is taken

from that of ZEUS-MP framework without alteration. This includes radiation advection step

(transport step in zeus terminology) and the time-step calculation machinery. This part of

the ZEUS-MP has been extensively tested by Hayes et al. (2006) against the Marshak wave

test and the radiation-dominated shock wave test.

The radiation module developed in Paper I was verified against the time evolution of

the solution with only the diffusion operator in (23), the interaction between radiation and

matter via matter-coupling terms in (23),(24), and the verification of the interface between

the radiation terms in the rest of the zeus hydrodynamical algorithms.

The tests we have implemented are those described in detail in Turner & Stone (2001),

and we outline them in the following. In the first test we follow how the static uniform

matter initially out of balance with radiation approaches thermal equilibrium. Assuming

that E is constant (notice that in the torus E � e), equation (24) is reduced to an ordinary

differential equation (ODE) for unknown e. Solving this ODE we compare the resultant

solution with the full solution from the radiation module and thus verify the radiation-

matter energy update in the code. We found an excellent agreement (|ecode− ea|/Ea < 1%),

where ea is the solution of the ODE.

The second major test involves the evolution of the radiation flux divergence term alone.

Generally, the easy way to do it is to compare the numerical solution in the optically thick

regime with the analytical solution of the heat diffusion equation. The idea is that one can

write an analytic solution (such as (Turner & Stone 2001), eq. (47)) of the diffusion equation

with constant diffusion coefficients on the unit square with periodic boundary conditions,

and to compare it with the solution from the diffusion solver (with no hydrodynamics). This

was done in Paper I where a very good agreement was obtained between such an analytic

solution and the numerical solution of the 2D diffusion equation.

4.2. Boundary conditions and the grid

The boundary conditions (BC) are adopted from Paper I where one can find a cor-

responding discussion. Cylindrical {z, R} coordinates were adopted. The computational

domain spans from R0 to R1 in horizontal, and from z0 = 0 to z1 in vertical direction in

the meridional plane. The stiffness imposed by radiation terms together with the necessity
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to sub-cycle during the radiation time-step, matter-, and radiation-update steps makes the

computation numerically entensive. For a given set of input parameters, we solve our prob-

lem on a 200 × 200 grid, and compare the results with those obtained on low resolution,

100× 100 grid. On both resolutions the solution converges towards a quasi-stationary one.

The BC for the matter provide ρ, e and v as follows: At the equatorial plane the inflow

BC are adopted, having always vz,in > 0. An outflow, i.e. vz < 0 through the equatorial

plane is not permitted. Notice that we allow for vz,in to be arbitrary small, being numerically

limited to a fraction of vs,g, the sonic velocity calculated using only Pg. During numerical

calculations the value of vz,in mirrors the value of the velocity found in the adjacent cell inside

the computational domain. Thus, vz,in adjusts in the process of computation. The difference

of our approach from others often adopted in simulations of accretion disk winds is that we

obtain vz,in and thus the mass-loss rate, Ṁ self-consistently. A power-law distribution for

the density is assumed at the equator:

ρ(0, x) = x−d, (30)

At all other boundaries including the inner, left boundary, outflow BC are adopted. The

azimuthal component of the velocity vφ is assumed to be Keplerian at the equatorial plane.

For the radiation at the left boundary which is located at the distance R0 from the BH,

we specify the distribution of energy density

E(z, x0) = Ex0 z
−ε, (31)

where Ex0 = E(z = 0, R0)/E0. At the equatorial plane, the disk ”photospheric” conditions

are mimicked using the effective temperature, Teff , which provides

Fz(z0, R) = −DdE/dz = σT 4
eff , (32)

where Teff is calculated from a self-consistent ”photospheric” boundary condition, i.e. Teff =

T (z0, R). The free-streaming boundary conditions are assumed at the upper boundary,

located at z1 and at the right boundary at R1.

Thus, equations (21)-(24) with boundary conditions (30)-(32) are integrated in time

until a quasi-static solution is found.
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5. Results

One of the primary objectives of this paper is to prove by multidimensional radiation

hydrodynamics calculations the suggestion made in Paper I, that the structure which is

usually referred to as an AGN torus is better described in terms of a radiationally supported

flow rather than as a quasi-static obscuring torus.

To approach this goal a set of models is calculated from the first principles of radiation

hydrodynamics. The structure we model is represented by an extended, rotating ring of

radiatively-dominated plasma in the {z,R} plane in cylindrical coordinates. Our calculations

are performed in 2.5D meaning that we are able to calculate arbitrary 2D, time-dependent

distributions of gas and radiation and to model an arbitrary axially-symmetric (i.e. ∂φ ≡ 0)

velocity field. Apart from the fundamental properties of the torus such as the distribution

of mass, radiation energy density and velocity, the mass-loss rate and the torus mass are

readily obtained from such calculations.

5.0.1. Basic parameters

The BH mass, MBH = 1× 107 M�, and the size of the obscuration region R0 = 1pc are

fixed at these values in all our models. Also the models are characterized by the Thomson

optical depth of the torus, which is calculated at the inclination θ = π/2 from the z-axis:

τT =
∫∞

0
κTρ dR, and by parameter Γ which measures the intensity of the illumination of the

inner face of the torus by UV and soft X-rays. The effective temperature of the conversion

layer, Teff is found then from (9), and we also adopt T0 = Teff in (25). The parameter d = 0.5

enters the equatorial distribution of density (30), and parameters Ex0 = 1, and ε = 0.1 shape

the distribution of E in (31) and are fixed in all models.

The dust opacity κ is fixed at a constant value throughout the computations. The

latter approximation may create an artificial situation when a very low density wind with

n � n0 is accelerated to very high velocities. This wind is an artifact of the adopted

approximation: it has a negligible column density and a negligible mass-flux, and in a more

detailed calculation, when κ is allowed to depend on density such wind would not exist.

It is convenient to introduce the following definitions: the average bulk velocity of the flow

〈v〉 =

∫
V

ρvdV /

∫
V

ρdV , where V is the total volume occupied by the flow; and the maximum

velocity of the dense wind: v∗max found throughout the flow given the condition ρ(z,R) > ρth

is satisfied. Experimenting with various threshold values ρth we found that if ρth is in the

range ρth = 0.01 − 0.001ρ0 the value of v∗max remains almost unchanged. Notice that such

a definition of v∗max gives results which are approximately in accord with estimates based
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on the kinetic output of the wind vkin ' 2Lkin/Ṁ , where Lkin =

∫
Σ

ρv3/2 dΣ is the kinetic

luminosity of the wind, and Σ is the outer boundary of the computational domain.

Model Γ R0 τT n0 〈v〉 v∗max Lkin Lbol Ṁ

1 0.5 1 0.53 3 · 105 138.4 666.61 1.23 · 1041 6.24 · 1044 1.71

2 0.3 1 0.53 3 · 105 104.87 560.27 6.38 · 1040 3.74 · 1044 1.38

3 0.1 1 0.53 3 · 105 55.82 373.46 1.48 · 1040 1.24 · 1044 1.85

4 0.05 1 0.53 3 · 105 36.63 282.23 6 · 1039 6.25 · 1043 0.64

5 0.8 1 1.8 1 · 106 112.62 765 4.11 · 1041 9.99 · 1044 5

6 0.5 1 1.8 1 · 106 90.55 513.42 2.56 · 1041 6.24 · 1044 4.18

7 0.3 1 1.8 1 · 106 73.18 348.45 1.37 · 1041 3.74 · 1044 3.37

8 0.1 1 1.8 1 · 106 59.73 159.74 3.09 · 1040 1.24 · 1044 1.88

9 0.05 1 1.8 1 · 106 42.8 129.39 1.31 · 1040 6.25 · 1043 1.39

Table 1. Models characterized by initial parameters: Γ, R0(pc), τT, characteristic den-

sity n0(cm−3), and the resulting averaged flow velocity, 〈v〉(km s−1), the averaged maximum

velocity, v∗max(km s−1), the kinetic and bolometric luminosities, Lkin(erg s−1), Lbol(erg s−1),

and mass-loss rates Ṁ(M� yr−1).

Table 1 describes the set of calculated models, summarizes the governing parameters

and outlines the most important results. The models are divided into two broad categories

with respect to the total Thomson optical depth at the equator: marginally optically thin

τT ' 0.53 and optically thick τT ' 0.8. For simplicity, we refer to the first category as

type I models and to the second as type II. After t ' 3 t0 dynamical times, where t0 '
1.5×1011 r

3/2
pc M

−1/2
7 s, the quasi-equilibrium solutions are found for all models. Characteristic

distributions of ρ, E and v for type I models are shown in Figure 1-3, and for type II models

in Figure 4-7.

5.0.2. The kinetic energy of the wind

The first apparent trend with respect to the energy budget is that pumping radiation

energy into the flow (larger Γ) results in a larger kinetic output, Lkin in such models. For

example we have Lkin/Lbol = 9.6 · 10−5 for Model 4, with Γ = 0.05 while for Model 1 with

Γ = 0.5 we get Lkin/Lbol = 2 · 10−4.

Similar comparison for marginally optically thin models with similar Γ gives Lkin/Lbol =

2 · 10−4 for Model 9, and Lkin/Lbol = 4.1 · 10−4 for Model 6. A note of caution: the mass-loss

rate, Ṁ in Table 1 reflects only the formal integral over the mass-flux at the boundary of
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the computational domain, which may not reflect the true escape of the gas to infinity. To

illustrate this, in the following we show that most of the gas remains gravitationally bound

to the BH.
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Fig. 1.— Model 1. Color-intensity plots of the dimensionless density, ρ (left) and dimension-

less infrared radiation energy density, E (right), and the superimposed velocity field. Axes:

distance in parsecs.

Figure 1 shows the color-intensity plot of ρ (with superimposed velocity field ) and E

from Model 1. The effective temperature of the radiation decreases from its maximum at

the left boundary relatively smoothly, while the distribution of ρ demonstrates a pronounced

disk-like structure.

This is one of the most important results of the current work: the self-consistent distri-

bution of density naturally evolves into a geometrically thick disk-like structure. Notice that

only the density BC at the equator and the radiation energy at one boundary are provided.

The aspect ratio of the resultant toroidal structure is h/R ∼ 1, where h(R) is the vertical

extent of the disk. Formation of a geometrically thick disk is observed in other models which

have higher τT: in Figure 4 for Model 6, and in Figure 5 for Model 7.
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equatorial plane in parsecs;
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Fig. 6.— Model 9: the surface plot of the z− and R− velocity components, where Uesc is

the escape velocity. Horizontal: R: distance from the BH in parsecs; z: distance from the

equatorial plane in parsecs;
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5.0.3. The structure of the velocity field in the torus

The analysis of the velocity field shown by arrows in Figures 1,3, and 4 supports the basic

hypothesis made at the beginning of this paper: the torus is formed by gas which is not in a

static equilibrium. It is not surprising that the characteristic density, n0 (or alternatively τT)

is one of the most important driving parameters, which critically influences the distribution

of the radiation energy density and to a large extent determines the topology and magnitude

of the velocity. The most important observation is that the disk-like structure seen in density

plots represents a portion of a wind which is mostly subsonic. This is a striking analogy

with models of outflowing stellar atmospheres driven by radiation pressure in the continuum

(Bisnovatyi-Kogan & Dorodnitsyn 1999) where the inner subsonic part of the wind is usually

the most dense one and the transition to τ . 1 happens soon after the sonic point is reached.

Figures 3, and 7 show the color-intensity plot and contours of the total velocity v =

(u2
z + u2

R))1/2. One can see that in the first case the geometrically thick obscuring flow does

not have enough speed to escape the potential well of the BH. The fast component is formed

only when density drops. Low luminosity model shown in Figure 7 has a weak outflow

without such a clear separation into low velocity and dense wind (i.e. ”atmosphere” in a

stellar analogy) and the fast wind.

The difference between the lower density models (τT = 0.53, i.e. Figure 1) and higher

density ones (τT = 1.8, i.e. Figure 5) is that in the latter there is a larger portion of the wind

where the velocity is comparable to the escape velocity of the gas, Uesc = (GMBH/R0)1/2 '
207M

1/2
7 R

−1/2
pc km s−1. Most of the torus mass is participating in the intensive global motion,

though most of the gas remains in the potential well of the BH. Notice that we do not see

a quasi-static disk in our solution at any stage of our simulation. However if Γ is not too

small the velocities in a denser, disk-like part of the flow are such that vR � vz ∼ Uesc (c.f.

Figure 2). A similar situation is observed in the most of our models except for type II models

with Γ = 0.05. In the latter case (c.f. Figure 6), vR ∼ vz everywhere in the computational

domain, except for the region close to the conversion layer, where vz > vR. The results show

that the average velocity of the obscuring flow, 〈v〉 is almost always comparable but smaller

than the escape velocity: for example, 〈v〉 = 0.53Uesc for Model 5; 〈v〉 = 0.43Uesc for the

Model 6; and 〈v〉 = 0.28Uesc for Model 8.

For models with τT = 0.53 the maximum velocity reaches v∗max = 3.17Uesc for Model

1, v∗max = 2.66Uesc for Model 2, dropping further until it is v∗max = 1.34Uesc for Model 4.

Comparable results are obtained for models with τT = 1.8: the maximum v∗max = 3.64Uesc

is obtained for Model 5. A Γ is reduced so does the v∗max, being v∗max = 2.44Uesc for Model

6, and finally v∗max = 0.76Uesc is obtained for Model 8.
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5.0.4. The column density and optical depth

Comparing various models at θ = 45◦ one can see that Models 1-4 (τT = 0.53) do not

have enough column density to provide Compton-thick obscuration at this inclination. On

the other hand, at higher inclinations both sets of models provide a noticeable extinction of

the light from the supermassive BH. Notice that we do not account for the possible nonzero

optical depth provided at smaller radii by any sort of additional wind, such as MHD wind

or warm absorber flow. Such flows can add to column densities enough to provide a wind

optical depth, τw . 1.

The column density in Model 1 increases from Ncol = 9.6 · 1018 cm−2, at the inclination,

θ = 45◦ to Ncol = 1.49 · 1020 cm−2 at θ = 65◦, and Ncol = 6.8 · 1023 cm−2 at θ = 90◦.

The column density in Model 3 increases from Ncol = 8 · 1018 cm−2 at θ = 45◦ to Ncol =

1.3 · 1020 cm−2 at θ = 65◦, and Ncol = 7.4 · 1023 cm−2 at θ = 90◦. The column densities

for the denser Models 5-9 (τT = 1.8) are higher. For example, in Model 5 one obtains:

Ncol = 8.8 · 1018 cm−2 at θ = 45◦; Ncol = 3 · 1020 cm−2 at θ = 65◦; and Ncol = 2.3 · 1024 cm−2

at θ = 90◦.

As the luminosity is reduced by almost an order of magnitude, such as in Model 8, part

of the wind closer to the disk (higher inclinations) becomes denser, and the column density

increases correspondingly, to Ncol = 8.2 · 1021 cm−2 at θ = 45◦; Ncol = 3.8 · 1022 cm−2 at

θ = 65◦; and Ncol = 2.4 · 1024 cm−2 at θ = 90◦.

In order to provide obscuration, for example, at 30◦ away from a disk plane the AGN

torus should have equatorial densities at least of the order of 106cm−3

We also calculated the infrared (i.e. with respect to dust) optical depth, τIR,z in z-

direction as measured from the upper boundary of the domain. Models 5-9 undergo the

transition from optically thick to marginally optically thin ones at z ' 0.25 − 0.5 with a

shape which closely follows density distribution. The inner low density funnel is always

optically thin. Above this region there is an extended marginally optically thick region.

Lower density models 1-4 have optically thick but geometrically thin disk, of of vertical

extent z . 0.2. The rest of the wind has τIR,z . 1 closely tracing the distribution of ρ.

The distribution of vR (e.g. Figure 2 ), demonstrates that vR is increasing in a quasi-

monotonic way along the spherical radius, r. This is analogous to a one-dimensional,

radiation-driven stellar wind. On the other hand, the acceleration region is clearly seen

in the plots of vz. At a given height, z the region of a rapid increase of vz extends in radial

direction until approximately the optical depth in the infrared (as measured from the right

boundary), τIR,R & 1. When τIR,R drops, the radiation flux becomes free streaming and no

significant lifting force in z -direction is generated.
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5.0.5. The mass of the torus

As the characteristic density, n0 increases by a more than an order of magnitude when

we go from Models 1-4 to Models 5-9, the mass of the torus, Mtor increases only by a factor

of 3: from 1.3 ×104M� (Models 1-4), to 4.5 ×104M� (Models 5-9). These numbers provide

probably the first self-consistent estimates of the torus mass. From the above one can see

that, though Mtor � MBH, the self-gravity may be important inside the torus body closer

to the equatorial plane where densities are higher. We performed test calculations and

found that basic parameters of the torus are almost unaffected by the choice of the density

distribution parameter, d in (30). The more important driving parameter which sets the

scaling for mass-loss rate, velocity field, and the torus mass is the characteristic density n0

(or τT).

5.0.6. Relevance to previous work and limitations of the present model

It is instructive to contrast the approach of the current work to that of Paper I. Com-

pared to the current work, Paper I contained several simplifying assumptions, from which

the most stringent were the following two: a) A monotonically accelerating wind with vz > 0

was assumed to exist everywhere in the domain and consequently no inflow solutions were

permitted, and b) only the z-component of the velocity was taken into account. In Paper

I the 2D distribution of E was calculated from the condition ∇ · F = 0 assuming tr � tf
(see the discussion in Section 2). Additionally, in Paper I the equations included only the

momentum and continuity equation for the matter, and no gas pressure nor the energy equa-

tion for the matter were considered. Essentially, in the previous studies the radiation force

was calculated from a solution of a 2D diffusion problem assuming radiative equilibrium,

and only after that plugging a z-component of this force into a 1D wind problem in the

z-direction.

In this paper we solve the full system of radiation-hydrodynamics equations, adopting

from Paper I only the description of the boundary conditions. In the present work vmax

is systematically larger than vmax = vz,max from Paper I. In Paper I the streamlines were

directed along the z-axis, but in 2D they can bend, return or be tightly packed towards the

equatorial plane. Thus the addition of another degree of freedom in the present work results

in smaller mass-loss rates.

For example, comparing models with Γ = 0.8, τT ' 2, we see that vmax is considerably

larger in full RHD modeling: v∗max ' 160 km s−1 versus vmax ' 760 km s−1 where results

from Paper I are marked by a ”∗”. This illustrates our previous statements about the very
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low density and high velocity portion of the wind. The velocities in the denser parts are in

accord with previous results: 〈v〉 ' 112 km s−1. Removing the restrictions of Paper I, the

most stringent being the z-only motion of the gas, also results in higher kinetic energy of

the wind: Lkin ' 5× 1041 erg s−1 versus L∗kin ' 5.5× 1039 erg s−1. In both sets of models Lkin

is still a tiny fraction of Lbol. The mass-loss rate in the full case is lower than in Paper I:

for the same set of parameters as above Ṁ is reduced from 9.5M� yr−1 to 5M� yr−1. Lower

density models have a similar trend of increasing the vmax and Lkin compared to the previous

studies and reducing Ṁ . For the models with Γ = 0.3, τT ' 0.5 the latter is again reduced

by almost 50%, from 2.76M� yr−1 to 1.38M� yr−1.

One of the serious limitations of our model is due to the non-vanishing dust opacity. In

more realistic simulations the very low density parts of the wind, i.e. the funnel seen in the

ρ plots will probably not exist. The dust there will most likely sublime and the funnel will

be filled with much hotter gas. One can expect a picture will resemble an X-ray evaporative

flow of Dorodnitsyn et al. (2008) but instead of a quasi-static torus there will be an X-

ray induced evaporation of a dense infrared driven flow. Even without X-rays in the very

low density part the dust will decouple from the gas, breaking the one-fluid hydrodynamics

approximation, and thus such dust even if survived will be quickly blown away. Summing

up we believe that the high velocity and low density component is most likely an artifact of

our simplifying assumptions. We will address this in future work.

The finite optical depth provided by some other gas/wind at smaller radii is also not

taken into account. For example, if a broad absorption line (BAL) wind is formed closer to

BH and the transverse (approximately) optical depth, τtr between the corona and the dusty,

infrared-dominated outflow is large, then nothing will be left for the torus. On the other

hand to have τtr > 1. requires a wind which is more massive than we typically observe in

BALs. In any case if τtr � 1. the model developed in this paper is not applicable. In case

of no external heating, the only source of radiation is the accretion disk itself. This should

be addressed in a future work. Help may come from hard X-rays which can penetrate much

deeper in the torus body providing distributed sources of heat. That was shown by Chang

et al. (2007) to be quite effective in puffing up the initially geometrically thin accretion

disk. In more complete simulations, when heating by hard X-ray is implemented we expect

more efficient acceleration at larger R. At present our calculation gives the most conservative

estimate of the radiation driving at large distances from the BH. The problem of AGN winds

is very non-linear and interdependent one, and to answer these questions global multi-group

radiation-hydrodynamics simulations of AGN accretion disk + winds are required.
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6. Observational consequences and conclusions

It is widely accepted that AGN unification schemes require an obscuring toroidal struc-

ture as a basic premise. Obscuration can be quasi-static or dynamical (winds). An example

of the first kind of obscuration is the polytropic torus, which is a rotationally supported

torus with the equation of state Pg ∼ ρ1+1/n, where n is the index of the polytrope. Such a

torus has been shown to be unstable to 3D non-axisymmetric perturbations by Papaloizou

& Pringle (1984), but even without such a difficulty it is likely inappropriate as an AGN

torus prototype. The temperature in a gas-pressure-supported torus is of the order of the

virial temperature which is 2.6 × 106M7/rpc K. That is far too high to be reconciled with

the existence of dust which requires temperatures of the order of 100− 1000 K. Obscuration

can be clumpy/cloudy but we believe that this is the level of complexity which is of the next

order compared to the fundamental question approached in the current paper.

The problem of AGN unification via toroidal obscuration can be formulated in the

following form: what supports the torus against vertical collapse to a geometrically thin

state and thus maintains its aspect ratio h/R ∼ 1? Infrared pressure on dust grains seems

to be the best candidate. In Paper I it was shown that if the temperature inside the torus

is of the order of Tvir,r ' 312 (n5M7/rpc)
1/4 − 987 (n7M7/rpc)

1/4 K an equilibrium between

radiation pressure, rotational and gravitational forces cannot be maintained, which results

in formation of an outflow resembling that of an accretion disk wind.

The conversion of external UV and X-ray radiation into IR pumps the torus with IR

photons. Internal temperatures of a few×102 K provide conditions for the extensive presence

of dust which results in a strong coupling between the gas and IR photon field due to

the high opacity of dust to IR radiation. In the bulk of the infrared supported torus the

infrared radiation pressure Π � Pg, with the possible exception of the equatorial region.

Correspondingly, the torus problem must be formulated in terms of equations of radiation

hydrodynamics. In the current paper we solved a full system of such equations and found

that if external BH luminosity exceeds ∼ 0.05Ledd an outflow is created, and that significant

masses are involved in global motions.

The obtained mass-loss rates depend on Γ = L/Ledd and on the characteristic density,

n0 which scales the distribution of ρ in the equatorial plane. Generally, models with higher Γ

and with larger n0 (or alternatively τT) tend to have higher mass-loss rates. However there

exist an overlap, when marginally optically thin but luminous models produce mass-loss

rates similar to the optically thick and less luminous ones. For example, the model with

τT ' 0.5, and Γ = 0.3 has mass-loss rate, Ṁ = 1.4M� yr−1, similar to the model with

τT ' 2 and Γ = 0.05. Besides such overlap, in optically-thick models with higher Γ much

larger Ṁ is obtained than in optically thin ones. For example, in one of the Thomson thick
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and luminous models with τT ' 2 and Γ = 0.8 the mass-loss rate is Ṁ = 5M� yr−1 Another

important finding is that most of the flow has velocity 〈v〉 . Uesc, that is too small to escape

the potential well of the BH. Thus the AGN obscuring flow is better described in terms of a

failed wind rather than viewed as a bipolar and 2.5D analogy of a stellar wind.

In our calculations a number of simplifications were made. The most restrictive one is

the shape of the conversion layer, where UV and soft X-rays are converted into the infrared.

We assume that such a conversion is happening at the vertical boundary of the computational

domain while in real AGN two important complications arise: i) the curvature of such layer is

important and can only be determined during self-consistent global radiation hydrodynamics

simulations, and ii) the corresponding ”photospheres” are located at different depths which

could be captured in RHD simulations with multi-group description of radiation. Taking

into account additional heating by hard X-rays would also contribute to the structure and

dynamics of the obscuring flow (Chang et al. 2007; Shi & Krolik 2008). These effects must

be incorporated into future global radiation hydrodynamics simulations.

Observationally, tracing wind kinematics through the detection of maser emission is one

way to ”see” an AGN obscuring flow. From our results it follows that infrared supported flow

naturally produces outflows with bulk velocities as large as ∼ few× 100 km s−1. It is beyond

the scope of this paper to calculate conditions and particular locations in the flow suitable for

maser emission. However, our solutions allow us to predict that if such emission is observed

at distances 0.4− 1.5 from a BH and being offset from the corresponding Keplerian velocity

of the equatorial disk by several hundreds km s−1, it may indicate an IR-driven outflow.

Such evidence may already be present in the VLBI observations of a broad bipolar outflow

in Circinus galaxy in H2O maser emission (Greenhill et al. 2003).
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