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A control analysis and design framework is proposed for systems subject to paramet-
ric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial
analysis and nonlinear optimization to design an optimally robust controller. The approach
determines a maximum uncertainty range for which the closed-loop system satisfies a set
of stability and performance requirements. These requirements, defined as inequality con-
straints on several metrics, are restricted to polynomial functions of the uncertainty. To
quantify robustness, SOS analysis is used to prove that the closed-loop system complies
with the requirements for a given uncertainty range. The maximum uncertainty range, cal-
culated by assessing a sequence of increasingly larger ranges, serves as a robustness metric
for the closed-loop system. To optimize the control design, nonlinear optimization is used
to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the
resulting controller is optimally robust to parametric uncertainty. This approach balances
the robustness margins corresponding to each requirement in order to maximize the aggre-
gate system robustness. The proposed framework is applied to a simple linear short-period
aircraft model with uncertain aerodynamic coefficients.

I. Introduction

Classical control design is typically focused on satisfying a set of closed-loop stability and performance
requirements with sufficient margins of robustness to model uncertainty. These requirements vary depending
on the application, but are generally based on the same fundamental principles. For example, while the
required level of robustness is different in every problem, the effect of model uncertainty must always be
evaluated. Typical requirements provide specifications for stability, command tracking, disturbance rejection,
noise attenuation, and transient response.

Current practices in control design verification rely on classical robustness analysis of linearized system
dynamics obtained over a set of operating points. Monte Carlo simulations of the non-linear dynamics are
used to check for any oversights. If the requirements are not satisfied, the controller is tuned through an
ad-hoc process and control verification is repeated. This process is inefficient and may result in overly conser-
vative designs. Advanced robust control techniques, such as mu-synthesis,1 were formulated to include model
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uncertainty as part of the design process. These techniques yield optimal designs by explicitly accounting for
model uncertainty and performance requirements. However, they typically produce conservative, high-order,
and unstructured controllers. Further, standard techniques cannot implement multiple requirements without
constructing a vector valued problem, which can lead to increasingly conservative results. The approach pro-
posed in this paper incorporates some of the optimality features of advanced robust control into a classical
design framework by targeting real parametric uncertainty.

The framework applies sum-of-squares (SOS) polynomial analysis2 in sequence with a nonlinear opti-
mization. Given a set of controller gains, the uncertainty analysis problem is solved using an SOS algorithm.
An SOS optimization proves that the closed-loop system complies with the requirements for a specified range
of uncertainty. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger
ranges, serves as a robustness metric for the closed-loop system. This metric is a numerically proven lower
bound on the true uncertainty range for which the closed-loop system is requirement compliant. Standard
nonlinear optimization is not applicable to this analysis because convergence to a globally optimal result
would not be guaranteed. The control design problem, however, lends itself to nonlinear optimization. This
optimization tunes the controller gains in order to enlarge the maximum uncertainty range. Optimal gains
are identified that maximize robustness in the closed-loop system. Additional details on related control
analysis and design approaches are available in References 3 and 4.

The proposed framework assumes a fixed controller structure and polynomial stability and performance
requirements. These requirements, which are defined as inequality constraints on several stability and per-
formance metrics, are restricted to depend polynomially on the uncertainty. However, this dependency often
arises naturally when considering stability and frequency domain requirements for linear time-invariant (LTI)
systems. The framework is applied to a linear short-period aircraft model with uncertain aerodynamic coef-
ficients. This simple example has been chosen to facilitate the reproducibility and interpretation of results.

Remaining sections of this paper are organized as follows. Section II describes a linear short-period
aircraft model with parametric uncertainty. A classical controller is designed to increase damping and to
achieve reference tracking in the nominal closed-loop system. Section III derives the set of stability and
performance requirements to be satisfied. Section IV briefly introduces SOS analysis and describes its usage
within the proposed strategies. Section V presents the optimally robust control design formulation. Finally,
Section VI offers some concluding remarks.

II. Aircraft Model and Controller

An example of a linear short-period aircraft model with uncertain aerodynamic coefficients5 is described
in this section. A classical flight controller is designed for the nominal system to increase damping and
to achieve reference tracking. The controller is manually tuned to satisfy traditional damping, tracking,
rise-time, and noise attenuation specifications, as well as gain and phase robustness margins. Although the
design appears satisfactory in the traditional sense, the remaining sections are used to assess and improve
the robustness of this controller to parametric uncertainty.

A. Short-Period Aircraft Model

The X-15 was an experimental hypersonic rocket propelled aircraft flown by NASA in the 1960s. A short-
period model of its longitudinal dynamics is given by the following system:

ẋ = A(λ)x+Bu (1)

The states of this system are angle-of-attack α (deg) and pitch rate q (deg/sec), given by x = [α, q]>. The
input to the system is elevator deflection u = δe (deg). The vector λ denotes parametric uncertainty. State
and input matrices for the X-15 short-period model are defined as follows:

A(λ) =

[
a1 a2

a3(1 + λα) a4(1 + λq)

]
=

[
−0.2950 1

−13.0798(1 + λα) −0.2084(1 + λq)

]
(2)

B =

[
0

b1

]
=

[
0

−9.4725

]
(3)
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The terms λα and λq in the aircraft model represent real parametric uncertainty in the aerodynamic
coefficients Cmα and Cmq , respectively.1,6 The nominal system is given by λα = λq = 0. Thus, the nominal
uncertain parameter is λ̄ = [0, 0]. As an example, 75% uncertainty is considered by allowing each uncertain
parameter to vary on the interval [−.75 .75]. Eigenvalue decomposition reveals that the nominal short-period
dynamics have a damping ratio ζ = 0.07 and a natural frequency ωn = 3.63 rad/sec. Hence, the dynamics
are lightly damped. One of the goals of the control design is to attenuate oscillations corresponding to this
dynamic mode.

A family of transfer functions is generated by gridding the uncertainty parameters over the uncertainty
range [−.75 .75]× [−.75 .75]. This illustrates the effect of uncertainty on the open-loop dynamics. Figure 1
shows the frequency response for this family of transfer functions from the elevator input δe to the angle-of-
attack output α. The nominal model, corresponding to λ̄, is highlighted by the darker curve. The uncertainty
causes frequency responses to group into clusters by λα, and variations within each cluster are due to λq.
Hence, the open-loop dynamics are more sensitive to variations in λα than in λq.

Figure 1. Family of open-loop transfer functions from δe to α with 75% uncertainty.

Next, a classical flight controller for the nominal aircraft model is designed using a standard approach.
The design takes into consideration desired performance characteristics related to damping, tracking, rise-
time, and noise attenuation, as well as gain and phase robustness margins.

B. Controller

An inner-loop proportional (P) controller is implemented with pitch rate feedback to increase damping in
the short-period oscillation. An outer-loop proportional-integral (PI) controller is implemented with angle-
of-attack feedback to achieve reference tracking of the signal r at low frequency. The closed-loop control
architecture is illustrated by the following block diagram:

Figure 2. Closed-loop system interconnection.
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The overall control architecture is governed by three gains: Kq, Kp, and Ki. Proportional rate feedback is
a common approach to increasing damping in aircraft dynamics. An inner-loop proportional gain Kq = −1 is
selected. The resulting nominal inner-loop system is overdamped with real poles at -2 and -7.98. Robustness
of the inner-loop is characterized by an infinite gain margin and a phase margin of 91.46 degrees.

An outer-loop controller is designed around the inner-loop system using the principles of loopshaping.
The objective is to track a reference angle-of-attack command. Therefore, the loop gain is boosted at low
frequency using integral action. The gain Kp = −1 is fixed to ensure that the PI controller only has integral
effect on the loop transfer function at low frequency. An integral gain Ki = −2 is selected to obtain a
rise time of 2 seconds, no overshoot, and zero steady-state error. Overall, the bandwidth of the closed-loop
system is decreased significantly from 5 rad/sec in the open-loop to 1 rad/sec in the closed-loop.

Robustness of the outer-loop system, evaluated at the input of the aircraft model, is characterized by an
infinite gain margin and a phase margin of 89.19 degrees. Clearly, closed-loop robust stability is not a great
concern. Instead, the control challenge is focused on performance in the presence of uncertainty. Figure 3
shows the performance characteristics of the nominal controller, as well as the effect of uncertainty on the
closed-loop dynamic. Samples of uncertainty parameter pairs are drawn from the 75% range.

(a) Family of doublet responses. (b) Family of frequency responses from r to α.

Figure 3. Properties of the closed-loop dynamics with 75% uncertainty.

Figure 3 highlights properties of the closed-loop system. Time domain characteristics of the nominal
system, such as a 2 second rise time and no overshoot, are confirmed by the plot on the left. Frequency
domain characteristics of the closed-loop transfer function, such as reference tracking and bandwidth, are
shown in the plot on the right. Figure 3 also graphically represents the effect of uncertain aerodynamic
coefficients on the closed-loop dynamics. Both time domain and frequency domain perspectives indicate
that uncertainty primarily affects closed-loop damping.

Classical time and frequency domain analysis indicate that the nominal control design above meets
standard performance and robustness characteristics. This nominal controller, defined by the three gains
Kq, Kp, and Ki, is denoted knom = [−1,−1,−2].

III. Stability and Performance Constraints

Stability and performance requirements for the closed-loop system are described next. Stability in the
presence of parametric model uncertainty is a key robustness requirement that must be satisfied. Perfor-
mance requirements related to reference tracking, rise time, overshoot, and noise attenuation are formulated
to formalize the desired closed-loop behavior. Requirements are defined as inequality constraints. These con-
straints depend on the uncertainty λ and the controller gain k. When the constraints, denoted gi(λ,k) ≤ 0,
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are satisfied for all i, the requirements are satisfied as well. The uncertain parameter realizations for which
the requirements are satisfied are given by S = {λ : gi(λ,k) ≤ 0 for all i}.

Robust stability is specified through a set of constraints that depend on coefficients in the characteristic
polynomial of the closed-loop system. The outer loop transfer function, from signal e to α and denoted L(s),
is derived algebraically using the system interconnection in Figure 2, the aircraft model, and the controller
gains. An analytic representation of the outer loop transfer function is given by the following:

L(s) =
N1s+N2

s3 +D1s2 +D2s
(4)

where

N1 = a2b1Kp

N2 = a2b1Ki

D1 = −a1 − a4(1 + λq) + b1Kq

D2 = a1a4(1 + λq)− a1b1Kq − a2a3(1 + λα)

Stability is enforced through constraints derived analytically by construction of the Routh-Hurwitz array.7

The Routh-Hurwitz array depends on coefficients in the characteristic polynomial of the closed-loop system,
and provides parameter dependent inequality constraints for stability. The characteristic polynomial is given
by the following relationship:

0 = 1 + L(s) (5)

0 = s3 +D1s
2 + (D2 +N1)s+N2 (6)

Satisfying the Routh-Hurwitz inequality constraints over the uncertain parameter space determines a re-
gion of robust stability. The stability requirement functions are shown in Equations (7 - 10). Alternative
approaches to describe robust stability are available.8

g1(λ,k) = −D1 (7)

g2(λ,k) = −D2 −N1 (8)

g3(λ,k) = −N2 (9)

g4(λ,k) = −D1(D2 +N1) +N2 (10)

Performance requirements are enforced by specifying limits at particular frequencies on the magnitude
of the outer loop transfer function. This approach to control design is often known as loopshaping. It is
possible to enforce each performance constraint over a range of frequencies. For simplicity in this analysis,
however, each requirement on the loop transfer function is prescribed at a single frequency point.

To ensure adequate reference tracking, the loop gain is lower bounded by c5 = 10 at ω5 = 0.7 rad/sec.
Noise attenuation is achieved by upper bounding the loop gain by c6 = 0.01 at ω6 = 40 rad/sec. Further, the
closed-loop response should have a bandwidth near 1 rad/sec and exhibit low overshoot. These requirements
imply that the outer loop transfer function should cross-over near 1 rad/sec, and that its slope should be
no lower than -30 dB/dec near that frequency. The slope limit is drawn from the Bode Gain-Phase formula
to ensure a satisfactory phase margin. In this case, however, it also ensures low overshoot. To satisfy the
cross-over and slope limits, the loop transfer function is upper bounded by c7 =

√
15 at ω7 = 1/

√
10 rad/sec

and lower bounded by c8 = 1/
√

15 at ω8 =
√

10 rad/sec.
The performance constraints must be expressed as polynomial inequalities for the application of SOS

analysis. When evaluated at s = jω, the magnitude squared of L(jω) is given by Equation (11). The
numerator and denominator have been split into their real and imaginary parts, and then squared.

|L(jω)|2 =
(N1ω)2 + (N2)2

(−ω3 +D2ω)2 + (−D1ω2)2
(11)

Each performance constraint is adapted to this format. Equations (12 - 15) show the requirement functions
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associated with the performance requirements:

g5(λ,k) = −[(N2)2 + (N1ω5)2] + c25[(−D1ω
2
5)2 + (−ω3

5 +D2ω5)2] (12)

g6(λ,k) = [(N2)2 + (N1ω6)2]− c26[(−D1ω
2
6)2 + (−ω3

6 +D2ω6)2] (13)

g7(λ,k) = [(N2)2 + (N1ω7)2]− c27[(−D1ω
2
7)2 + (−ω3

7 +D2ω7)2] (14)

g8(λ,k) = −[(N2)2 + (N1ω8)2] + c28[(−D1ω
2
8)2 + (−ω3

8 +D2ω8)2] (15)

Every inequality constraint gi(λ,k) is a function of the two uncertainty parameters in λ and the three
controller gains in k. The region of requirements satisfaction S for any fixed controller is represented by the
intersection of the sets gi(λ,k) ≤ 0 in the uncertain parameter space. This region indicates all admissible
parametric model uncertainty pairs that satisfy the requirements. Figure 4 on the left shows S for the
nominal controller as the unshaded region. The region of requirements violation is shaded. The nominal
controller satisfies all the requirements at the nominal value of uncertainty at the origin. Constraint function
g7(λ,knom), which primarily varies with λα, is dominant in the vicinity of the origin. On the right is the
corresponding Bode magnitude plot of the nominal outer loop transfer function along with control points
that prescribe the performance requirements. Although each constraint marker is over-sized for emphasis,
the control point occurs precisely at the marker center.

(a) Requirement satisfaction region S and its complement. (b) Nominal outer loop transfer function with constraints.

Figure 4. Graphical representation of performance and robustness requirements.

The ability of the controller to satisfy the requirements in the presence of uncertainty is examined
next. One approach entails locating the point along the requirements violation boundary that is closest to
the nominal parameter point. A ball centered at λ̄ having this distance as its radius defines a range of
uncertainties for which all the requirements are satisfied. However, solving this problem using nonlinear
optimization is unreliable because convergence to the global minimum distance cannot be guaranteed. In
other words, the nonlinear optimization may converge to a non-global minimum along the requirements
violation boundary, which would falsely indicate too large a region of compliance. The resulting uncertainty
set would be flawed since it could contain elements for which the closed-loop system violates a constraint.

The next section describes a formally verifiable SOS optimization to identify a range of uncertainties for
which the closed-loop system is requirement compliant. The analysis is formulated as a convex optimization
problem, which guarantees a globally optimal result. However, SOS optimization has several significant
drawbacks. The computational complexity of the problem grows rapidly with the number of uncertain
parameters and the polynomial degree of the requirements. Further, all system dynamics and constraints
are restricted to polynomial functions. Despite these challenges, SOS analysis can be successfully applied to
control systems of moderate size.
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IV. Sum-of-Squares Optimization

Sum-of-squares (SOS) optimization is used to determine if, given a fixed set of controller gains k, the
requirements are satisfied in a region of the uncertain parameter space. For simplicity in the presentation,
the single constraint SOS optimization is considered first. If g(λ) is a polynomial of degree less than or equal
to 2d in the variable λ ∈ Rv, where v is the number of uncertain parameters, its vectorial representation is

g(λ) = c>x(λ) (16)

where x is a vector of monomials in λ of degree less than or equal to 2d, and c is a vector of coefficients.
Equivalently, the Gram matrix representation of this polynomial is

g(λ) = z>(λ)Qz(λ) (17)

where z is a vector of monomials in λ of degree less than or equal to d, and Q is a symmetric matrix. The
Gram representation of g(λ) is not unique, and all possible representations can be parametrized. Define the
linear operator L that maps each symmetric matrix Q to the polynomial coefficients in c:

L(Q) = c (18)

A matrix representation of L can be computed since both its domain and its range are finite dimensional.
This transformation enables the parameterization of the family of symmetric matrices yielding Gram repre-
sentations via:

Q = Q0 +

m∑
i=1

piNi (19)

where Q0 is the symmetric matrix corresponding to a particular Gram representation (i.e., L(Q0) = c), the
set {N1, . . . Nm} is a basis of the null space of L (i.e., L(Ni) = 0 for i = 1, . . . ,m), and p is a vector of
multipliers. Note that any value of p in Equation (19) yields a valid Gram representation of g(λ).

The Gram representation of a polynomial is used to determine whether a polynomial is a sum-of-squares
(SOS). In general, the polynomial g(λ) is a SOS if there exist polynomials h1, . . . , hn such that g(λ) =∑n
i=1 h

2
i . A key property of SOS polynomials is that they are globally positive semi-definite. Further, the

polynomial g(λ) is a SOS if and only if there exists a positive semi-definite matrix Q, denoted Q � 0, that
satisfies Equation (17).2,9 The functions h1, . . . , hn that constitute the SOS representation of g(λ) result
from making Choleski or Schur decompositions of Q. Consequently, g(λ) is a SOS if and only if there exists
a p for which Q0 +

∑m
i=1 piNi � 0. Hence, the question of whether a polynomial is a SOS reduces to a

Linear Matrix Inequality (LMI) feasibility problem.
Numerical techniques for solving semi-definite programs can be used to find a solution to this LMI feasi-

bility problem. Publicly available software, such as SOSTOOLS,10 SOSOPT,11 YALMIP12 and SeDuMi13,14

automate the process of posing and solving this convex optimization. Unfortunately, its computational re-
quirements (e.g. the number of monomials that require representation and the dimension of the null space)
grow rapidly with the degree of the polynomials and the dimension of the parameter space v. For this
analysis, SOSOPT along with SeDuMi are used for the SOS optimization.

Given a system subject to parametric uncertainty, and a controller with gains k, it is desired to determine
if the closed-loop system satisfies a set of requirements for a range of uncertainty. The uncertainty range
is defined as E(λ) ⊆ Rv. SOS optimization is used to numerically prove that E(λ) (with a polynomial
boundary) is contained in the requirement satisfaction region S. The set containment problem is evaluated
using the following Theorem:15

Theorem 1 Assume e(λ, λ̄, r) is a polynomial function. Let E(λ, r) = {λ : e(λ, λ̄, r) ≤ 0} be a closed set
whose volume is proportional to r > 0 and has λ̄ as its geometric center. If there exist a function q(λ) such
that q(λ) ≥ 0 and q(λ)e(λ, λ̄, r)− g(λ) ≥ 0 for all λ, then E(λ, r) ⊆ S.

Theorem 1 can be generalized for multiple constraint functions gi(λ). Note that there are 2 positive
semi-definite (PSD) conditions per constraint function. PSD conditions are numerically difficult to solve.
However, by restricting the constraint functions gi(λ) to be polynomials, and by altering the PSD conditions
in Theorem 1 to be SOS conditions, set containment can be established efficiently. While all SOS polynomials
are PSD, not all the PSD polynomials are SOS. Therefore, satisfying SOS conditions is sufficient to prove
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the global non-negativity of the conditions in Theorem 1. In practice, the SOS polynomial multipliers qi(λ)
must be restricted to be in a fixed finite dimensional subspace of polynomials (e.g., quadratic polynomials).
This is achieved by prescribing a polynomial basis and using semi-definite programing to search for the
coefficients of the corresponding linear combination.

SOS optimization is used to determine if E(λ, r) ⊆ S for a fixed value of r. A bisection algorithm is used
to determine the largest r for which this condition holds. This yields a numerically proven lower bound on
the radius leading to a requirement violation. If r∗ is the resulting radius, the corresponding uncertainty
set, E(λ, r∗), is called the Maximal Set. Note that r∗ is a margin of robustness that indicates the separation
between the nominal parameter point λ̄ and the requirement violation region. While the LMI feasibility
problem searches over the coefficients of the polynomial multipliers of qi(λ) for a fixed value of r in an inner
loop, the bisection algorithm iterates over r in an outer loop. The corresponding formulation is given by

r∗ = argmax
r
{r : E(λ, r) ⊆ S} (20)

which is a robustness analysis formulation in which the controller gains in k are fixed.
This approach is applied to determine the largest region centered at the origin, i.e., e = λ2α+λ2q− r2 = 0,

for which the requirements gi(λ,knom) ≤ 0 for i = 1, . . . , 8 introduced above are satisfied. Figure 5 shows
the maximal set corresponding to the nominal controller.

Figure 5. Region of constraint satisfaction and maximal set from SOS optimization.

The circle in Figure 5 represents a numerically proven lower bound on region of constraint satisfaction.
The radius of this circle is r∗ = 0.037, which implies that for all uncertainty values inside the circle, the
closed-loop system is guaranteed to meet all performance and robustness requirements. It is important to
note that SOS analysis is not guaranteed to provide a lower bound that is as “tight” as the results in Figure 5.
Expanding the polynomial basis for q(λ) is a potential remedy in this case. Each SOS evaluation is computed
in about 2 seconds on a laptop with a dual-core processor and 4 GB of RAM. The SOS result shown in
Figure 5 is found using a bisection algorithm with 10 iterations. Hence, the entire optimization was executed
in about 20 seconds. The next section describes a method that takes advantage of SOS optimization to
design an optimally robust controller.

V. Optimally Robust Control Design

A natural progression of the SOS optimization is to extend the method to controller synthesis. SOS
optimization is useful in finding the maximal uncertainty set. Nonlinear optimization can be used in sequence
with SOS analysis to identify the optimal gains yielding the largest maximal set. Nonlinear optimization
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has the potential downside of converging to a non-global optimum. In this case, however, the consequence
of such a result is less significant than in the uncertainty analysis case. The validity of the corresponding
maximal set is guaranteed by the SOS optimization, although the gains may not correspond to the most
robust controller allowed by the control structure. The formulation leading to the optimally robust controller
gains is given by

k∗ = argmax
k
{r∗(k)} (21)

where r∗ is defined in Equation (20). The solution entails solving a nested optimization problem where the
inner loop is an SOS problem in the coefficients of qi(λ), the middle loop is an optimization problem in the
scalar radius r, and the outer loop is a nonlinear optimization in the controller gains k.

This approach is used to tune the gains Kq and Ki of the controller in the X-15 aircraft example. The
gain Kp is fixed at −1 to ensure that the PI controller only has an integral effect at low frequency. The
optimal gains are found as Kq = −1.26 and Ki = −1.58, which (along with Kp = −1) constitute k∗.
Classical robustness in the outer loop is characterized by an infinite gain margin and a phase margin of 88.55
degrees. The revised gains have thus had little impact on the traditional metrics of robustness.

Figure 6 shows results corresponding to the optimally robust control design. The plot on the left shows
the region of constraint satisfaction/violation in the uncertainty parameter space as well as the maximal
set. The optimal radius of r∗(k∗) = 0.361 is about 10 times larger than the nominal controller radius
r∗(knom) = 0.037. Note that the maximal set is limited by two conflicting requirements. In this case, the
conflicting requirements are given by the tracking constraint g5(λ,k∗) ≤ 0 and the cross-over constraint
g7(λ,k∗) ≤ 0. The cross-over constraint g8(λ,k∗) ≤ 0 is located nearby, although it is not active on the
surface of the maximal set. The nonlinear optimization used to obtain this result converged in 729 seconds
on the same laptop as described above, with 19 iterations and a total of 45 SOS bisections completed.

The plot on the right in Figure 6 shows the value of r∗ as a function of the controller gains. The location
of the peak on this plot corresponds to k∗. This figure was obtained by solving the uncertainty analysis
problem for a grid of points in the controller gain space. Due to the simplicity of the example, it is possible
to grid the controller gain space and perform an SOS optimization at each grid point. The grid is refined
near the peak to evaluate the convergence of the control design optimization. These results indicate that the
manually tuned controller has significantly inferior robustness characteristics in comparison to its optimally
robust counterpart.

(a) Region of constraint satisfaction and maximal set. (b) Topography of r∗(k).

Figure 6. Graphical representation of the optimally robust control design.

The improved robustness of the optimal control design can also be examined in the frequency domain.
For this analysis, uncertainty pairs are randomly selected from the maximal set corresponding to k∗. Outer
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loop transfer functions are generated with the selected uncertainty values for both the nominal and robust
controller designs. Families of frequency responses are then generated accordingly. The results are shown in
Figure 7, with the optimal control design on the left and the nominal on the right. Note that uncertainty
values for which the optimally robust controller satisfies the requirements make the nominal controller
violate constraint g7(λ,knom) ≤ 0. As indicated previously by the results in Figure 5, constraint function
g7(λ,knom) is violated if the radius of a candidate compliance region exceeds 0.037. The result on the
left confirms that the optimally robust controller complies with the requirements for all the samples within
E(λ, r∗ = 0.361).

(a) Optimal outer loop transfer function with constraints. (b) Nominal outer loop transfer function with constraints.

Figure 7. Robustness of optimal design vs. nominal design with uncertainties from optimal maximal set.

VI. Conclusions

Sum-of-squares optimization is used to identify a range of parametric uncertainty for which a closed-loop
system satisfies a set of stability and performance requirements. Nonlinear optimization is used in sequence
with sum-of-squares analysis to obtain controllers that exhibit maximal robustness to parametric uncertainty.
This method provides a novel approach for improving the robustness of controllers subject to parametric
uncertainty and requirements that depend polynomially on the uncertainty.
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