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A design and analysis of a repair concept applicable to a stiffened thin-skin composite 

panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented.  The 

concept is a bolted repair using metal components, so that it can easily be applied in the 

operational environment.  The damage scenario considered is a midbay-to-midbay saw-cut 

with a severed stiffener, flange and skin.  In a previous study several repair configurations 

were explored and their feasibility confirmed but refinement was needed.  The present study 

revisits the problem under recently revised design requirements and broadens the suite of 

loading conditions considered.  The repair assembly design is based on the critical tension 

loading condition and subsequently its robustness is verified for a pressure loading case.  

High fidelity modeling techniques such as mesh-independent definition of compliant 

fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear 

solutions are utilized in the finite element analysis.  The best repair design is introduced, its 

analysis results are presented and factors influencing the design are assessed and discussed. 

Nomenclature 

d = fastener’s diameter 

E = Young’s modulus 

ε = strain 

G = shear modulus 

H = plastic modulus 

P = force 

t = thickness 

v = Poisson’s ratio 

σ = stress 

t = thickness 

X, Y, Z = global coordinates 

 

Subscripts 

B = bearing 

BP = bypass 

s = shell 

1, 2, 3 = local coordinates 

I. Introduction 

he primary structural concept being pursued as an important component of next generation airframe technology 

under the Environmentally Responsible Aviation (ERA) Program at NASA is the Pultruded Rod Stitched 

Efficient Unitized Structure (PRSEUS),
1-8

  illustrated in Figure 1.  This concept is being developed in a partnership 

between NASA and The Boeing Company for application to future transport aircraft with the goal of developing 

lighter structure so that the aircraft will require less fuel and produce fewer pollutants.  The PRSEUS structure is 

highly-integrated, weight-efficient, and has crack-arresting capabilities.  In this concept a stitched carbon-epoxy 

material system is used.  By stitching through the thickness of a dry material system, the labor associated with panel 
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fabrication and assembly can be significantly reduced.  When stitching through the thickness of pre-stacked skin, 

stringers and frames, the need for mechanical fasteners is almost eliminated.  In addition, stitching reduces 

delamination and improves damage tolerance, allowing for a lighter structure with more gradual failures than 

traditional composites without through-the-thickness reinforcement.  The PRSEUS concept consists of carbon-

epoxy panels fabricated from dry components and then infused in an oven while subjected to vacuum pressure.  

Skins, flanges and webs are composed of layers of carbon material forms that are pre-kitted in multi-ply stacks. 

A single stack contains seven plies (+45, -45, 0, 90, 0, -45, +45) where the 0-degree plies are approximately twice 

the thickness of the ±45 and 90-degree plies, resulting in a 0.052 in. stack thickness with percentage of the 0, 45 and 

90-degree fibers equal to 44.9, 42.9 and 12.2, respectively.  Several stacks of the pre-kitted material are used to build 

up the desired thickness and configuration.  As a naming convention, the 0-degree stack orientation coincides with 

the orientation of the dominant 0-degree plies.  Stiffener flanges are stitched to the skin and no mechanical fasteners 

are used for joining.  To maintain the panel geometry during fabrication, first stiffeners and then the skin are placed 

in a tool for stitching prior to moving the assembly to a curing tool for consolidation in the oven.  The stiffeners 

running in the axial direction consist of webs with unidirectional carbon fiber rods at the top of the web.  AS4 

carbon fiber overwraps surround the rod.  The stiffeners in the lateral direction are foam-filled hats.  The 

manufacturing process is described in detail in ref. [6]. 

 

                            

                                (a)                                                                                    (b) 
 

Figure 1. PRSEUS (a) sample flat panel and (b) general assembly concept.
6 

 While providing several unique advantages, the PRSEUS concept also presents some inherent challenges not 

shared by conventional metallic airframes.
9
  Among these challenges are design concepts of manufacturing joints 

and repair techniques for rod-stiffened panels.  While manufacturing joints and repair techniques should both be 

light-weight and meet ultimate load requirements, they are typically applied in different environments.  While in a 

factory environment a large component with extensive damage might be replaced in its entirety, the replacement of a 

large highly-integrated component with localized damage is often cost-inefficient and impractical in the operational 

environment.  In addition, composite technology-based repair such as bonding that requires a tightly controlled 

environment, perishable supplies, highly skilled workers and advanced tooling to produce a reliable bond may be 

acceptable in a factory environment but may not be in the field.  Since from a practical standpoint, basic repairs 

cannot depend on the availability of a factory-like environment, repair techniques applicable to PRSEUS panels in 

an operational environment must be developed.  This paper focuses on the development, design, and analysis of 

bolted repairs applicable to damaged PRSEUS panels. The proposed repair concept utilizes metallic fasteners rather 

than adhesive as the main load transfer mechanism. 

 Previous work
10

 focused on designing the repair for a tension loading condition.  The present study revisits the 

problem with revised tension loading levels and also extends analysis to verify that a new design is applicable under 

other loading scenarios.  While the design was verified for both compression and pressure loadings, only pressure 

and tension loadings are presented since these configurations are intended for experimental validation.  The repair 

technique, designated as Mohawk, assumes aluminum alloy components and titanium alloy fasteners so that 

X (Axial) 

Y (Lateral) 
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complications related to composite repair components are avoided.  A severe damage to the PRSEUS panel, 

involving both the skin and rod-stringer (i.e., flange, web, and pultruded rod) is considered. 

 The remainder of the paper is organized as follows.  Repair objective and its general concept are described first 

in section II.  Next, a brief introduction of computational tools used in the effort and their previous validation is 

summarized in section III.  The main activity focused on the repair of the tension panel is documented in section IV.  

This section is divided into three parts: subsection IV.A introduces the repair design, subsection IV.B describes its 

finite element (FE) modeling, and section IV.C presents obtained results and offers their critical assessment. 

Section V is dedicated to verification that a design dictated by the tension loading condition is robust enough so that 

it can be applied to PRSEUS panels under pressure loading.  Since a different FE analysis code is used in this 

verification effort, subsection V.A highlights specifics of the FE pressure panel modeling and the results are 

presented in subsection V.B.  Finally, concluding remarks are offered in section VI.  

II. Repair Objective and General Concept 

 First and foremost, the repair assembly was required to restore the original load carrying capability of the 

pristine panel while incurring the smallest weight penalty possible.  In general, while not formulated as a 

quantitative requirement, it was also desired that the mechanical behavior and load paths of the repaired panel 

resemble that of the pristine panel.  Consequently, the repair design had to balance conflicting goals.  On one hand, 

an excessively compliant repair assembly would probably lead to an insufficient load carrying capability of the 

repair parts and/or excessive loads transferred into the undamaged sections of the panel when compared to the 

pristine configuration under the same loading.  On the other hand, a much stiffer repair assembly would lead to a 

larger than necessary weight penalty and significantly altered load paths underutilizing the undamaged sections of 

the panel.  An exact stiffness match of the repair assembly to compensate for the simulated damage under multiple 

loading scenarios would likely produce a one-of-a-kind repair configuration that is complicated from a 

manufacturing standpoint.  Such a configuration would likely involve features such as the dimensions of the cross-

sections of the repair parts continuously changing in the axial direction. 

 Based on previous experience, a tension loading was designated as a critical design condition.
6,8

  In addition, 

established design practices such as those regarding spacing requirements between metallic fasteners applied to a 

composite primary structure
11

 were followed.  Finally, operational factors, e.g. what is practical in the environment 

that the repair technique was intended to be applied, also influenced the design. 

 The general Mohawk repair concept was first proposed by The Boeing Company and initial exploration was 

conducted in a proprietary study.  The Mohawk concept incorporates previously outlined desired features and one of 

its early variations is presented in Figure 2.  The repair consists of two aluminum alloy upper repair pieces whose 

bottom ends rest on the panel’s top flange surface and the vertical portions are designed to accommodate the web 

with the pultruded rod.  The two upper pieces are bolted directly together above the rod, and if advantageous, may 

also be bolted together through the stiffener web below the rod.  The clearance between the two upper repair pieces 

and the pultruded rod ensures that the repair is not clamped on the rod.  The lower ends of the repair components are 

bolted through the flanges to an aluminum alloy strap (not visible in Figure 2).  The width of this lower strap is 

equal to or greater than the combined widths of the two upper repair pieces, as dictated by the extent of the damage 

being repaired.  Note, that by incorporating a stiff pultruded rod offset from the panel surface, the pristine PRSEUS 

panels are designed to efficiently carry not only in-plane but also bending loads.  Consequently, the Mohawk repair 

concept is designed such that the neutral bending axis of the three assembled repair pieces (the two upper pieces and 

the lower strap) coincides with the neutral bending axis of the pristine panel.  This way Mohawk can transfer 

combined in-plane and bending loads in a similar fashion as the pristine panel. 

 From an airframe certification standpoint,
12

 metallic components must remain in the elastic regime up to the 

limit load.  Above the limit load, a plastic regime is permitted if the metallic parts do not suffer or otherwise cause a 

catastrophic failure (the latter condition encompasses, e.g., jamming of control surfaces due to excessive plastic 

regime displacements, even though fracture does not occur).  Although not stemming from regulations, an additional 

conservativeness was imposed on the repair in the current design process.  Namely, that the repaired panel does not 

fail in the repair assembly before the panel itself suffers a failure in a location away from the repair.  Therefore, an 

additional loading level was introduced to the repair design process.  Apart from the limit loading (100% of the 

design value) and the ultimate loading (e.g., 150% of the design value when mechanical tension loading is 

considered), a loading condition of the ultimate level plus 10% (i.e., 165% of the design tension loading) was added.  

Thus, the PRSEUS panel was required to withstand the ultimate loading, but the repair assembly was required to 

withstand the ultimate loading plus 10%. 
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Figure 2. General Mohawk repair concept. 

 

III. Finite Element Analysis Tools and Their Validation 

Commercial FE packages Abaqus
13

 and Nastran
14

 were used in the analyses being presented.  The 

Abaqus/Standard (implicit) solver and Nastran Solution 106, both supporting material nonlinearity and 

geometrically nonlinear behavior were utilized.  Use of two distinct FE packages originated mainly from the fact 

that the tension panel model was developed first using Abaqus in the course of the repair design activity.  Pressure 

panel analysis was conducted after freezing the repair design, and to reduce FE model development effort, an 

existing Nastran model of the pristine pressure panel
7
 was obtained and modified to a damaged and repaired 

configuration.  In general, in the iterative process of arriving to the most efficient repair design, several FE model 

variations were developed in the course of the study based on the same methodology as described in the following 

section. 

Validation of the analysis approach was conducted by analyzing single-stringer and three-stringer PRSEUS 

panels and comparing results obtained from the FE analyses with the corresponding available test data.  Namely, the 

single-stringer panel was analyzed in a repaired configuration while the three-stringer panel was analyzed in a 

damaged but not repaired configuration. This validation was necessary to instill confidence in the methodology for 

predicting behavior of PRSEUS damaged structure and the Mohawk repair.  The results of the FE validation effort 

are detailed in ref. [10]. 

IV. Tension Panel Repair 

 A three-stringer dog-bone-shaped PRSEUS panel successfully tested by The Boeing Company in its NASA 

supported test effort
8
 to demonstrate the benefits of the across-thickness stitching in damage arrestment is presented 

in Figure 3.  Data acquired in this tension test, at the loading range below which the existing saw-cut initiated further 

damage propagation was used in the FE modeling validation effort mentioned in section III.  Use of the same panel 

and damage configuration was deemed consistent and beneficial for demonstration of the proposed repair concept.  

Furthermore, previous repair design and analysis work
10

 was also based on this configuration. 

 

A. Repair Design 

The PRSEUS tension panel with a saw-cut damage, as presented in Figure 3, was described in detail 

in refs. [6,8].  To recap briefly, the length of the test section of the panel between the foam-core frames was 20 in. 

and the spacing between rod-stringers was 6 in.  The frame height measured from the outer (unstiffened) side of the 

panel was 6 in. and the foam used in the frame’s core was 0.50-in. thick.  The total height of the stringer was 1.49 in. 

with the rod center offset of 1.25 in., both measured from the unstiffened side of the panel.  The rod diameter was 

0.375 in.  The lamination stacking sequences of different sections of the panel are presented in Table 1. 

The material properties of the panel and the repair assembly, details of which are yet to be introduced, are presented 

in Table 2. 
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(a) 

 

 

 

 

 

 

 

 

      
 

          (b) 
 

 

Figure 3.  Three-stringer PRSEUS panel with saw-cut damage (a) test specimen in fixture, 

(b) test section close-up. 

 

Table 1.  PRSEUS panel lamination stacking sequence. 

 

Panel Component 

Stack Orientation 

from the Unstiffened Side of the Panel, 

0° Along the X-Axis (Panel’s Length) 

Skin (90) 

Skin w/Flange (90, 0, 0) 

Skin w/Frame Cap (90, 90, 90, 90) 

Skin w/Flange and Frame Cap (90, 90, 0, 0, 90, 90) 

Web (0, 0) 

Frame (0, 0, foam, 0, 0)
*
 

                   *
0° Along Y-Axis (Frame’s Length) 

Bottom Lug 

Top Lug 

Saw-Cut 

Y 

X 

Load 

Load 

Y 

X 

Z 

Frames 

Stringers 
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Table 2. Material properties, room temperature.
8,11

 

 

Material 

 

E1, Msi 

(H1, ksi) 

 

E2, Msi 

(H2, ksi) 

 

ν12 

 

G12, Msi 

Tensile (Compression) 

Strain Allowable 

1-direction, µin./in. 

Limit     |     Ultimate 

Tensile (Compression) 

Stress Allowable, 

1-direction, ksi 

  Limit      |    Ultimate 

Rod Toray 

T800/3900-2B 
16.1  0.30 6.19 

11,200 

(8,700) 

16,800 

(13,000) 

260.0 

 

390.0 

 

AS4-VRM34 

(Stack Properties) 
9.74 4.86 0.40 2.37 

7,000 

(5,800) 

10,500 

(8,700) 

70.1 

 

105.1 

 

Foam Core 

Rohacell 110WF 
0.021 0.021 0.32 0.008   

0.294 

 

0.441 

 

Aluminum Alloy 

7075-T6 

10.3 

(60.5) 

10.3 

(60.5) 
0.33 3.87   

69.0 

(69.0) 

78.0 

(78.0) 

Titanium Alloy 

Ti-6Al-4V Grade 5 
16.5 16.5 0.342 6.38   

128.0 

(128.0) 

138.0 

(138.0)  

 

Loading levels considered for the tension panel were derived from a pristine panel assumed allowable average 

axial stress of 60 ksi for the composite material system in the -65  F environment.
11

  After multiplying the pristine 

cross-section area of the panel at its narrower width (2.769 in
2
) by the allowable stress, the ultimate load of 166.1 

kip was obtained at -65  F.  Next, accounting for the environmental correction factor of 0.93, i.e., effectively 

increasing the loading by a factor of 1/0.93 = 1.075 to account for the analysis and upcoming validation testing 

being conducted in the room temperature rather than in -65 °F, the ultimate load in the room temperature was 

determined to be 178.7 kip.  Consequently, its value increased by 10%, for the reasons discussed in section II, 

resulted in 195.5 kip.  Finally, by dividing the ultimate loading by a factor of 1.5, the limit loading of 119.1 kip was 

determined. 

An exploded plot of the proposed repaired panel is presented in Figure 4.  The panel was subjected to some 

preparation before installing the repair assembly.  This preparation can be regarded as a part of the repair design, 

since it was intended to improve the way the repair assembly itself accepts and bears a desired portion of the panel’s 

loading.  The details of the panel prepared for installation of the repair assembly are shown in Figure 4.  Panel 

preparation includes tapering the panel’s center web and pultruded rod in the vicinity of the saw-cut damage.  All 

the other sections of the panel remain unchanged with respect to the configuration used in the damage arresting 

demonstration test.  The originally assumed simulated damage, i.e. 6-in. long and 1/4-in. wide midbay-to-midbay 

saw-cut, as seen in Figure 3b, remained unchanged only in the skin and flange sections of the panel.  The web 

section, including the pultruded rod, is machined on both sides of the saw-cut such that the web is completely 

terminated above its bottom stitch line (refer to dashed lines in Figure 1b for locations of the stitch lines) over the 

span of 3.8 in. from the center, followed by 45-degree taper extending to the bottom of the pultruded rod.  The rod 

itself is further tapered at 15-degree angle, i.e. over the additional distance of approximately 1.4 in.  While FE 

modeling discussion is reserved for section IV.B, two remarks helpful in understanding of Figure 4, which is based 

on the FE model, are warranted here.  First, note that the rod taper would have a different shape in the actual repair 

but it was simplified to be axially symmetric in the FE model.  Also note, that rod overwrap sections of the webs are 

not explicitly modeled as the beam elements rendered in red are visible. 

The most efficient repair assembly design selected from several configurations analyzed within the course of the 

study is presented in Figure 4 as the grey-colored parts.  Aluminum alloy 7075-T6 was used for all the inner- and 

outer-mold line (IML and OML) components of the repair assembly except titanium alloy Ti-6Al-4V fasteners.  The 

thicknesses of the main sections of the machined repair assembly parts are labeled in red.  General cross-section 

thicknesses of the repair parts were dictated primarily by ensuring that the yielding stress level is not exceeded at the 

limit loading and the ultimate strength is not exceeded at the ultimate loading +10%.  Thinner OML strap ends were 

designed to reduce bearing stress peaking in the panel in the vicinity of the end fastener joints (to be discussed 

momentarily).  In addition to this requirement, end sections of the IML repair pieces were tailored such that the 

PRSEUS panel IML thickness variations in the vicinity of the flange-frame cap intersections can be accommodated. 

Fastener patterns used to install the repair assembly are shown in Figure 5a with the red squares.  Locations of 

some of the fasteners installed in the IML repair pieces which are not visible in Figure 5a are presented in Figure 5b.  

Due to a smaller size of the IML pieces of the repair assembly in Figure 4, its more detailed representation is also 

offered in Figure 5b.  Most of the fasteners used to install the repair assembly are 3/16-in. diameter lockbolts, unless 

otherwise noted in Figure 5.  Specifically as shown in Figure 5a, to take advantage of the thicker flange-frame cap 
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intersection of the panel (six stacks, 0.312 in.-thick) four 1/4-in. fasteners are used at the locations circled with a 

blue dashed line.  Their increased stiffness permits larger load being transferred from the panel to the repair without 

exceeding allowable bearing stress levels in the composite.  Note, that some of the effect of the increased fastener 

stiffness, and therefore higher loading, is compensated by the increased bearing area as the bearing stress 

 

   
  

   
               (1) 

 

relates the bearing force PB to the bearing area calculated as a composite shell thickness ts multiplied by fastener 

diameter d.  In contrast, to reduce the loading and, therefore, bearing stress peaks in the direct vicinity of the 

simulated damage, the four fasteners closest to the saw-cut are 5/32-in. diameter to make them more compliant.  

Opposite to the larger diameter fastener argument presented above, a portion of the bearing stress reduction 

originating from a reduced loading in a more compliant fastener is diminished by a reduced bearing area.  The 5/32-

in. fasteners are also used above the PRSEUS panel stringers to attach together the two IML repair pieces.  A 

smaller fastener diameter is selected for that location due to minimal loading that this row of fasteners is carrying.  

All 5/32-in. fastener locations are circled with a dashed black line in Figures 5a and 5b.  Finally note, that fasteners 

seen in Figure 5a over the grey area of the IML repair assembly are double-shear fasteners as each penetrates the 

IML repair piece, PRSEUS panel and OML strap.  All other fasteners are single shear fasteners as they penetrate 

only the PRSEUS panel and the OML strap, as seen in Figure 5a, or two IML repair pieces through the top row of 

fasteners, as seen in Figure 5b.  A total of 129 fasteners is used in the repair, including 106 3/16-in., 19 5/32-in. and 

four 1/4-in. diameter fasteners.  Per composite structure design guidelines,
11

 the fasteners are spaced no closer than 

the quadruple of their diameter apart, and no closer than triple of their diameter plus 0.06 in. from any free edge, 

e.g., from the saw-cut damage. 

 

 
 

 

 

 

 

Figure 4.  Exploded view of the saw-cut tension PRSEUS panel with Mohawk-type repair. 
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(a) 

 

 

 
 

 

 

 

(b) 
 

Figure 5.  Location of fasteners (a) top view, including IML assembly and OML strap contour with  

1/4-in. and 5/32-in. fasteners circled, (b) IML piece with fastener holes and 5/32-in. fasteners circled. 

 

B. Finite Element Modeling 

The Abaqus FE model of the PRSEUS panel was discretized using four-node S4R5 shell elements for all of its 

components except the pultruded rods which were modeled using two-node B31 beam elements.  The section of the 

web overwrapping pultruded rods was not explicitly modeled.  Instead, the entire web was modeled as a planar 

surface and one line of shell element edges and beam elements were collocated sharing the same subset of nodes.  

The repair assembly parts were also discretized using primarily S4R5 shell elements and few three-node S3 

elements.  A typical element edge length was approximately 0.2 in.  Holes to accommodate fasteners were not 

modeled per customary global modeling practices.
11,13,14

  Fasteners were modeled using two-node CONN3D2 

connector elements with their stiffness components computed externally using the Huth Hi-Lok formulation 

available in Nastran
14

 and assigned to afore-mentioned connector element property definitions.  Note, that in Abaqus 

automated fastener stiffness computation is not available, so the above step was undertaken to make tension and 

pressure panel modeling as consistent as possible.  Furthermore, note that a single fastener element models a 

connection between two surfaces, and consequently suffices to model a single-shear fastener.  When one fastener 

joins together three surfaces, i.e., acts as a double-shear fastener, two connector elements defined in series are 

needed.  Therefore, to model the total of 129 fasteners, 36 of which are double shear fasteners as illustrated in 

Figure 5, the total number of required connector elements is 165. 

Per aircraft certification requirements in the transport category
12

 cited in section II, a metallic structure is expected 

to remain in the elastic regime below the limit load, but the plastic regime is permitted at loads greater than the limit 

load.  Consequently, aluminum alloy elastic-plastic material properties, modeled as a bi-linear stress-strain 

relationship, were utilized in the Mohawk repair assembly.  All composite material properties were modeled as 

elastic only.  Titanium alloy fasteners were not permitted to exceed their yield stress values, so they were also 

assigned only elastic material properties. 

As presented in Figure 4, only the 50-in. center section of the repaired panel, away from the installation lugs was 

modeled, as the original pristine panel was designed to produce a uniform in-plane displacement across the panel 

width at the ends of this section.  Consequently, force distribution across the panel width at its end stations could not 

be known a priori.  Thus, by constraining one end of the repaired panel and applying a uniform in-plane 

displacement at the other end, and interrogating the resultant reaction force at the boundary, the desired enforced in-

plane displacements were determined in the iterative fashion.  For the three prescribed loadings levels of 119.1 kip, 

178.7 kip and 196.5 kip discussed before, the corresponding uniform in-plane displacements of 0.2042 in., 0.3048 

in. and 0.3353 in. were found, respectively. 
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C. Results and Critical Design Assessment 

Results obtained at the limit loading level of 119.1 kip are illustrated in Figure 6 through Figure 9.  In-plane 

displacement field in the direction of the loading (i.e., the X-axis direction) for the entire repaired panel is presented 

in Figure 6.  It is seen that a smooth and uniform displacement across-the-width of the panel (i.e., in the Y-axis 

direction) was obtained in the section between the frames and no excessive disruption of the displacement field 

occurs due to the presence of the repair assembly.  Maximum axial strain in the panel is presented in 

Figure 7 where the repair assembly is not plotted.  The color bar legend in this plot is terminated at the stack 

0-degree tension limit allowable strain of 7000 με,
8
 therefore all the locations exceeding this value are plotted in 

grey.  It is seen that only small areas in the vicinity of the frame cap edges and at the tips of the saw-cut (as 

indicated) exceed the allowable strain value.  However, in both cases the global FE model lacks enough fidelity to 

accurately compute local strain levels and tends to overestimate them.  In the actual panel a more gradual cross 

section change exists where, e.g., a single-stack skin (0.052 in. thickness) transitions into a four-stack frame cap 

(0.208 in. thickness) while in a FE model a step change of the cross section is effectively introduced.  The skin-to-

frame cap transition area was the subject of a separate proprietary study using refined local analysis utilizing 

StressCheck software
15

 and concluded that this area should not yield critical strain values.  Also an array of testing 

conducted thus far
6-8

 supports this conclusion.  Similarly, a typical 0.2-in. element size used in the global FE model 

is insufficient to accurately represent a 0.125-in. radius at the saw-cut tip.  Furthermore, while stop-drills may be 

introduced to mitigate strain concentration at the saw-cut tips,
10

 this step is likely not required, as some design 

manuals, e.g., ref. [11], recommend verifying allowable values at certain distances (called characteristic lengths) 

away from the cut-out edges due to the presence of the stress relief in composites.  Due to proprietary nature of ref. 

[11] the specific characteristic length value is not cited here. 

 

 

 

 

 

Figure 6.  In-plane (X-axis) displacement (in.) at limit 

loading of 119.1 kip. 

 

 

 

Figure 7.  Maximum axial strain (με) at limit loading 

of 119.1 kip. 

 

Maximum principal stress fields in the OML repair strap and the IML assembly are presented in Figure 8 and 

Figure 9, respectively.  It is seen that the repair assembly does not exceed the allowable yielding stress level 

of 69 ksi.  The maximum stress levels in the OML strap are found to be 50.5 ksi and are located in the ‘tongue’ areas 

of the strap near the fastener joints.  The maximum stress levels in the IML assembly are higher, reaching 63.3 ksi, 

and occur at the ends of the IML repair pieces in the fillets between the flange and web sections of the repair.  Note, 

that the design of this section of the IML assembly exemplifies a compromise between the two conflicting factors 

inherent to this repair design.  On one hand, increased thickness of the end sections of the IML repair piece allows 

distribution of a load over an increased cross section area, and therefore may reduce stress levels.  At the same time, 

increased thickness means increased stiffness and results in higher loads being transferred into the IML assembly 

from the damaged panel.  Consequently, passed certain thickness value, stress level reduction may be diminished or 

even not achievable.  This in turn, not only adversely affects the repair assembly itself, but also may lead to 

undesirably high fastener loads and/or fastener-generated bearing stress levels in the composite holes 

accommodating these fasteners.  Furthermore, over-stiff repair assembly alters the overall load paths in the repaired 

panel, potentially making them very different from those of the pristine panel. 
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Figure 8.  OML strap maximum principal stress (ksi) 

at limit loading of 119.1 kip. 

 

Figure 9.  IML repair assembly maximum principal 

stress (ksi) at limit loading of 119.1 kip. 

Results obtained at the ultimate loading level (178.7 kip) for the panel and the ultimate loading +10% level 

(196.5 kip) for the repair assembly are illustrated in Figure 10 through Figure 15.  The in-plane displacement field 

for the entire repaired panel is presented in Figure 10.  Similar to in-plane displacement field obtained for the limit 

load level presented in Figure 6, a smooth and uniform panel displacement field across-the-width was obtained in 

the section between the frames.  Maximum axial strain in the panel is presented in Figure 11 where again, the repair 

assembly is not plotted.  The color bar legend in this plot is terminated at the stack 0-degree tension ultimate 

allowable strain of 10,500 με, therefore all the locations exceeding this value are plotted in grey.  Again, similar to 

the results presented before in Figure 7, it is seen that only small areas in the vicinity of the frame cap edges and at 

the tips of the saw-cut are exceeding allowable values.  Per argument presented before when discussing Figure 7, 

strain levels in these areas are judged to be likely overestimated, and should not cause a premature failure of the 

panel. 

 

 

 

 

Figure 10.  In-plane (X-axis) displacement (in.) at 

ultimate loading of 178.7 kip. 

 

 

 

 

Figure 11.  Maximum axial strain (με) 

at ultimate loading of 178.7 kip. 

 

Maximum principal stress fields in the OML repair strap and the IML assembly are presented in Figure 12 and 

Figure 13, respectively.  It is seen that the repair assembly does not exceed the allowable tensile strength level of 

78 ksi.  Maximum stress levels in the OML strap are found to be 74.7 ksi and are located in the ‘tongue’ areas of the 

strap in the vicinity of the second row of fasteners.  The maximum stress levels in the IML assembly are higher, 

reaching 77.3 ksi, and occur at the ends of the IML repair pieces in the fillets between the flange and web sections of 

the repair.  For both OML and IML repair pieces, the maximum stress levels at the ultimate loading +10% coincide 
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with the corresponding locations identified for the limit loading condition.  Note, that the red areas are indicative of 

a plastic response regime, i.e., when stress level exceeds the yielding stress of 69 ksi.  It is seen that apart from the 

locations discussed before when identifying the highest stress level locations, plastic response regime is also present 

in both OML and IML repair pieces in the vicinity of the saw-cut damage, i.e., at the mid-span of the OML strap and 

the mid-span of the IML repair assembly.  Overall, the plastic response regime is an important factor when localized 

highly-stress sections of the repair assembly are of interest.  Specifically, a plastic response results in stress 

relaxation, absence of which would otherwise result in significantly overestimated stress levels in the localized areas 

where the yielding stress is exceeded.  Since these areas, however, are limited to relatively small sections of the 

overall repair assembly, their impact on the global response is minimal.  When the in-plane force versus in-plane 

displacement plot was produced, the relationship (not shown here for brevity) exhibited virtually linear dependency.  

The above observation also points to the fact that no significant geometric nonlinearity was present in the analysis.  

Considering application of the inplane loading only and the fact that the neutral bending axis of the repair assembly 

coincided with the neutral bending axis of the pristine panel, this result comes as no surprise.  

 

Figure 12.  OML strap maximum principal stress 

(ksi) at ultimate loading +10% of 196.5 kip. 

 

Figure 13.  IML repair assembly maximum principal 

stress (ksi) at ultimate loading +10% of 196.5 kip. 

 

The center flange was found to be the critical location when the bearing stress and bypass strain levels were 

considered.  Bearing stress and bypass strain distributions along the length of the panel’s center flange at the 

ultimate loading level +10% (196.5 kip) are presented in Figure 14.  Note, that due to symmetry about the axial and 

lateral direction (as depicted with dash-dotted lines in Figure 4), distributions on both sides of the center stringer and 

both sides of the saw-cut are also symmetric.  In Figure 14 span station of -10 in. corresponds to the location of the 

center of the left frame, and 0 in. span station to the center of the saw-cut.  Vertical black dashed lines highlight the 

width of the frame cap and the edge of the saw-cut damage, as annotated.  Bearing stresses are computed per Eq. (1) 

from the fastener force output, while the bypass strains are directly available from the FE analysis, e.g., as presented 

in Figure 11.  Note however, that Figure 11 was obtained at the ultimate load level, and consequently as mentioned 

before, it is intended for evaluation of the panel away from the fastener attachments.  The strain results used in 

Figure 14 are obtained at the ultimate level +10% as they are intended for the repair assembly evaluation. 

The highest value of the bearing stress is reached at the row of fasteners closest to the saw-cut, as seen in 

Figure 14, even though the diameter of these fasteners was reduced from 3/16-in. used elsewhere to 5/32-in. to 

reduce their stiffness.  Other locations where the bearing stress levels are also high include the first row of fasteners 

at the end of the OML ‘tongue,’ which is a typical peaking effect associated with a doubler termination.  Similar 

effect is also seen in the fourth and fifth rows of fasteners from the left, which are the first two rows of fasteners that 

attach the IML assembly (the first three fasteners from the left attach the OML strap only).  The effect is stretched 

over the two consecutive fastener rows because the IML repair pieces have variable thickness in this region and, 

therefore, resemble a staggered two-step termination.  Note, that when the third row of fasteners is excluded from 

the discussion, the overall variation of the bearing stress ranges from approximately 60 to 100 ksi.  While the ideal 

distribution would be constant, such a design is not practical to be defined and manufactured.  The presented design 

is a compromise between simplicity and a desired bearing stress distribution.  It needs to be underscored, that the 
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bearing stress distribution was significantly enhanced by the center web and pultruded rod tapers described before in 

section IV.A.  These features were specifically tailored to flatten the bearing stress distribution by promoting early 

transfer of the loading from the stringer into the repair assembly, before the saw-cut stringer termination is reached.  

Also note, that the afore-mentioned third row of fasteners from the left, which produces the lowest bearing stress 

values, has a limited ability to be re-designed more efficiently to transfer higher load levels.  Recall from section 

IV.A, that this fastener has already a larger diameter of 1/4 in. which, due to spacing limitations, cannot be further 

increased. 

The bypass strain distribution presented in Figure 14 displays a gradual, almost monotonic decay from its peak 

value at the beginning of the OML strap ‘tongue’ to its lowest value in the vicinity of the saw-cut.  Such a 

distribution is expected, since away from the saw-cut, all three stringers are expected to carry approximately the 

same loading.  As the saw-cut is approached, the loads from the center stringer are gradually transferred through the 

fasteners into the repair assembly.  In the limit, i.e., on the edge of the saw-cut, bypass strain should asymptote to 

zero, as the center flange is unable to support any X-axis load component at this location. 

The bearing stress versus bypass strain envelope is presented in Figure 15.  While it presents the same data as 

Figure 14, and the spatial distribution information is lost, it is an important format for a bolted joint result 

representation as the allowable values of bearing stress and bypass strain are not independent.  While the allowable 

envelope cannot be plotted in Figure 15 due to its proprietary nature,
11

 a minimum required envelope encompassing 

the results of the FE analysis is plotted with a red dashed line.  Annotated in Figure 15 are points that are critical in 

the current design or may become critical in a further effort to tune the design.  As indicated before, the point 

labeled as ‘saw-cut vicinity fastener’ was already subject to refinement of the fastener diameter to reduce its bearing 

stress value.  Therefore, any further reduction in the bearing stress level there is judged difficult.  On the other hand, 

the other two highlighted points are associated with the OML strap ‘tongue’ and improvement in this section of the 

repair assembly is deemed more plausible.  Specifically, elimination of the ‘tongues’ can be considered leaving the 

OML strap as a rectangular contour with rounded corners.  In the most desirable scenario it may yield a reduction in 

the envelope that approaches the green dashed line in Figure 15.  Certainly, the bearing stress and bypass strain 

levels are not independent of each other along the flange span.  Examination of Figure 14 and Figure 15, however, 

seem to hint that the most substantial bearing stress increase when the ‘tongues’ are eliminated should result at the 

third fastener from the left.  This fastener, however, is none of those that span the green dashed-line envelope, so 

even a significant movement of this data point in Figure 15 can still be accommodated within the boundaries of the 

desired shrunk envelope. 

 

 

Figure 14.  Center flange spanwise bearing stress and 

bypass strain distributions at ultimate loading +10% 

of 196.5 kip. 

 

Figure 15.  Center flange bearing stress versus 

bypass strain envelope at ultimate loading +10% 

of 196.5 kip. 

  

In conclusion, the presented repair configuration satisfies all the material allowables, design requirements, 

guidelines, and objectives.  Introduction of some minor modifications enhancing the safety margins of the current 

design may, however, still be possible. 
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V. Pressure Panel Repair 

 Following successful development of a metallic repair applicable to the PRSEUS tension panel, its suitability to 

repair a pressurized PRSEUS panel was evaluated.  Since a robust repair concept applicable across a range of 

distinct loading conditions was sought, no effort was made to modify the repair designed for the tension panel, and it 

was applied ‘as is’ to the pressure panel with the same saw-cut damage. 

 Similar to the tension panel effort, an existing pressure panel test article configuration
7
 was adopted in the 

studies.  The overall test set up of a recent pristine pressure panel test
7
 is presented in Figure 16.  The coordinate 

system presented in Figure 16 is consistent with the one presented in Figure 1a and throughout the tension panel 

discussion in that sense that stringers are oriented along the X-axis and frames along the Y-axis.  Since the pressure 

panel is mounted on the pressure vessel such that the panel substructure faces to the inside of the pressure vessel, the 

Z-axis is oriented to the outside of the pressure vessel, i.e., an elevated pressure inside the vessel causes a positive 

out-of-plane panel deformation.  The dimensions of the opening at the top of the pressure vessel to which the panel 

was mounted were 100 in. by 40 in. and can be regarded as equal to the test section dimensions of the pressure 

panel.  The substructure of the panel comprised of 15 stringers spaced 6 in. apart and two frames spaced 20 in. apart, 

i.e., the same substructure spacing as for the tension panel was maintained.  Also unchanged, when compared with 

the tension panel, were the lamination stacking sequences and material properties, as introduced before in Table 1 

and Table 2, respectively. Note that unlike the tension panel, the pressure panel longer direction is aligned with 

frames rather than stringers. 

 The 6 in. by 1/4 in. midbay-to-midbay saw-cut damage was modeled as in the tension panel, i.e., in the middle of 

the center stringer which is the eighth stringer counting from either edge of the panel.  The same panel preparation 

for the repair assembly installation as for the tension panel was assumed, i.e., the web and pultruded rod tapers were 

introduced as illustrated in Figure 4.  Also unchanged were the locations and sizing of all the fasteners attaching the 

repair assembly, as illustrated in Figure 5. 

 

A. Finite Element Modeling 

 As indicated before, an existing Nastran FE model of the pressure panel used in its pristine configuration studies
7
 

was made available and, to expedite FE analysis development, served as a precursor for developing the repaired 

panel model.  By analogy to the previously detailed Abaqus model, four-node and three-node shell elements 

CQUAD4 and CTRIA3 were used instead Abaqus S4R5 and S3 elements, respectively.  Similarly, beam elements 

CBAR were used instead of B31 and the same approach neglecting explicit modeling of the pultruded rod overwraps 

was applied to stringers.  A typical element size for the PRSEUS panel was approximately 0.25 in. and the 

discretization of the repair assembly matched exactly the one of the tension panel.  Abaqus two-node CONN3D2 

connector elements were substituted with Nastran CFAST elements with Huth Hi-Lok stiffness evaluation 

procedure.  The same CFAST connector elements were utilized not only for the repair assembly attachment to the 

panel, but also to model installation of the entire panel to the pressure vessel along its perimeter.  The pressure 

vessel was also modeled with shell elements but with much coarser discretization when compared to the PRSEUS 

panel and the repair assembly.  While the repair was intended to restore pressurization capability of the panel, the 

sealant that is typically used to achieve this objective was not modeled, as it was not intended to carry any 

appreciable mechanical loadings. 

 The loading level selection to be considered in the pressure panel analyses followed the logic applied for the 

tension panel load selection.  Therefore, apart from the limit and ultimate loadings, also the ultimate loading + 10% 

level was considered.  Pressure loadings are typically selected based on the cruise flight level certification 

objectives.  For the PRSEUS panel the following values were set: limit loading of 9.2 psi, ultimate loading 

of 18.4 psi and ultimate loading + 10% of 20.24 psi.  The first two values matched exactly the levels used in the 

pristine panel testing.
7
  Note, that for pressure loadings it is customary to designate double of the limit load as the 

ultimate load, while for tension loadings the ratio between the two loading levels is typically 1.5. 

 

B. Results 

A solution was first obtained at the limit load level of 9.2 psi but for brevity these results are not presented, as all 

the obtained strain and stress levels were judged insignificant when compared with their corresponding allowables. 

Results obtained at the ultimate loading level of 18.4 psi are illustrated in Figure 17 through Figure 19.  The out-

of-plane displacement field for the entire repaired panel is presented in Figure 17, where the location of the OML 

repair strap and the contour of the saw-cut damage are identified.  It is seen that a smooth displacement field was 

obtained and no excessive disruption of the displacement field occurs due to the presence of the repair assembly.  

Small displacement variations corresponding to substructure spacing are visible (so called ‘pillowing’) and a slight 
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suppression of the out-of-plane displacement within the area coved by the OML strap is also noticeable.  

Consequently, the maximum out-of-plane displacement of 0.586 in. occurs to the side of the OML strap while for 

the pristine panel
7
 the maximum out-of-plane displacement occurred in the area now covered with the OML strap 

and had a slightly higher value of 0.608 in.
7
  It is worth mentioning that while no significant geometrically nonlinear 

behavior was noted for the tension panel, a stiffening nonlinearity was indentified under the pressure loading.  This 

nonlinearity was expected since pressure loading acting on a thin-walled structure typically has a potential for 

producing out-of-plane displacements that are large enough to cause appreciable in-plane stretching, which in turn 

tends to suppress the out-of-plane deformation.  For the maximum loading level considered (i.e., the ultimate 

loading +10% of 20.24 psi) and after verifying that no plastic response regime was present, a linear solution 

(Nastran solution 101) yielded the maximum out-of-plane displacement of 0.734 in, whereas the nonlinear solution 

(Nastran solution 106, used throughout the repaired pressure panel analysis) resulted in the maximum displacement 

of 0.639 in.  Thus, the linear out-of-plane displacement solution was overestimated by 14.9%.  Note, that for the 

pristine panel under 18.4 psi loading, the linear and nonlinear maximum out-of-plane displacements were found to 

be 0.666 in. and 0.608 in., respectively.
7
  Thus, the linear out-of-plane displacement solution was overestimated by 

9.5%.  Considering a slightly different loading levels and locations of the maximum out-of-plane displacement, the 

effect of nonlinearity can be regarded as comparable for the pristine and repaired panels.  Finally, as expected, when 

inspecting the displacement results no appreciable deformation of the pressure vessel was noted. 

 

 
 

 

 
Figure 16. Test set up of the pristine pressure 

panel.
7
 

 

Figure 17. Repaired pressure panel out-of-plane 

displacement (in.) under ultimate loading of 18.4 psi. 

 

Maximum and minimum principal strain fields of the panel obtained at the ultimate loading level of 18.4 psi are 

presented in Figure 18 and Figure 19, respectively (repair assembly not shown).  For a pressure loading scenario 

both maximum and minimum principal strain fields are presented because the two are yielding comparable strain 

levels, while in the previously considered tension loading case, the tension axial strain was clearly dominant. 

A close-up of a corner section of the panel away from the saw-cut is shown in Figure 18 because the maximum 

principal strain occurs in this region at the intersection of a stringer and a frame.  Both figures also include a close-

up section of the panel over which the repair assembly is installed.  It is seen in the close-up of Figure 19 that the 

minimum principal strain occurs where the tapered section of the damaged stringer terminates at the flange.  Overall, 

it is seen in Figure 18 that the maximum principal strain level is 3790 με and the minimum principal strain in 

Figure 19 is -5270 με, both well within allowable values per Table 1. 

Maximum and minimum principal stress fields in the IML repair assembly at the ultimate loading +10% level 

of 20.24 psi are presented in Figure 20 and Figure 21, respectively.  It is seen that the repair assembly does not 

exceed the yielding stress level of 69 ksi, therefore remains in the elastic regime.  The maximum principal stress 

levels in the IML pieces are found to be 61.9 ksi and are located in the vicinity of the end fasteners, as seen in 

Figure 20.  The minimum principal stress levels are found to be -63.6 ksi and are located close the ends of the IML 

pieces in fillet areas between the flange and web sections of the repair pieces, as seen in Figure 21.  The maximum 

principal stress levels in the OML strap at the ultimate loading +10% level of 20.24 psi are presented in Figure 22.  
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Very modest maximum stress levels of 18.2 ksi are identified in the area where the fourth and fifth rows of the 

center flange fasteners are installed (when counting them from the saw-cut location).  The minimum principal stress 

levels in the OML strap were found even less significant when compared with the maximum principal stress levels, 

and for brevity are not presented. 

Finally, the bearing stress distribution due to the fasteners installed in the center panel flange is presented in 

Figure 23 at the ultimate loading +10% level of 20.24 psi.  As expected, the center flange again produced the highest 

bearing stress levels as was the case for the repaired tension panel.  The maximum bearing stress of 21.7 ksi is 

identified at the sixth row of fasteners when counting from the saw-cut location.  This value represents less than 

22% of the maximum bearing stress identified for the tension panel.  While the bypass strain level distribution at the 

ultimate load level +10% is not explicitly presented for brevity, the overall strain levels in the center flange are also 

significantly lower when compared to the repaired tension panel.  The principal strain levels at a slightly lower 

loading of 18.4 psi shown in Figures 18 and 19 can be regarded as an indirect but corroborating evidence for the 

above statement.  Therefore, a plot of bearing stress versus bypass strain is also omitted for brevity, as it is certain 

that its envelope would be contained within the envelope produced based on the tension panel analysis.  

In summary, the design adopted from the tension panel repair is sufficient to support the pressurized panel repair 

and, overall, achieves this objective with larger margins of safety.  Therefore, analysis of the repaired pressure panel 

does not indicate a need to revise the design tailored to the tension loading condition. 

 

 

 

 

 

          
  

 

 

 

 

 

Figure 18.  Maximum principal strain (με) under ultimate loading of 18.4 psi. 
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Figure 19.  Minimum principal strain (με) under ultimate loading of 18.4 psi. 

 

 

            

Figure 20.  IML repair assembly maximum principal 

stress (ksi) at ultimate + 10% loading of 20.24 psi. 

            

Figure 21.  IML repair assembly minimum principal 

stress (ksi) at ultimate + 10% loading of 20.24 psi. 
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Figure 22.  OML strap maximum principal stress 

(ksi) at ultimate + 10% loading of 20.24 psi. 

 

 
 

Figure 23.  Center flange bearing stress distribution 

at ultimate + 10% loading of 20.24 psi. 

 

VI. Concluding Remarks 

Applicability of metallic repairs to panels fabricated using the PRSEUS concept and containing severe but 

localized damage was considered.  The design effort was based on tension loading requirements.  While a successful 

design was found feasible, it also presented challenges, largely stemming from the fact that repair requirements, in 

general, were not considered in the pristine panel design.  Furthermore, a metallic repair was imposed as an 

additional constraint in this study because of its ease of application in the current operational environment.  This 

restriction further complicated the design, as it may be perceived as an effort to apply a less efficient structural 

concept to restore full functionality of a more advanced and efficient structure that suffered severe damage. 

The successful metallic repair design was achieved by tailoring not only the sizing of the main repair assembly 

components, but also by refinements of its bolted joints and specific preparation of the damaged panel.  The above 

steps, in general, were intended for the repaired panel to resemble the pristine panel load paths and stiffness as 

closely as possible, while still requiring the overall design to be easily manufacturable and simple to install.  

Once the design based on the tension loading panel was frozen, its robustness was verified for a pressure loading 

scenario, where panel bending becomes more significant.  Overall, larger design safety margins were found under 

the pressure loading, consistent with the initial assumption to focus the design effort on the tension loading.  Both 

tension and pressure loading configurations are intended for testing to validate the FE analysis approach and tune it, 

if needed.  While certification requirements include also combined loading conditions (e.g. pressure and tension), 

the current study was limited to individual loading conditions because these are currently available for validation 

testing.  Analysis, possible redesign and validation testing under combined loading conditions should be considered 

in future work related to repair concepts. 

The study utilized advanced FE modeling techniques, such as the use of compliant fasteners defined using 

connector elements with a node-independent placement in the model.  Geometrically nonlinear analysis runs were 

utilized and the metallic repair assembly accounted for a nonlinear elastic-plastic material behavior.  In the tension 

panel analysis small sections of the repair assembly exceeded the yielding stress when the repaired panel was loaded 

above the limit loading level.  However, panel deformation remained dominated by the in-plane displacement, i.e., 

no significant geometrically nonlinear behavior was triggered.  The opposite was found for the pressure panel where 

appreciable stiffening due to geometric nonlinearity was identified stemming from larger out-of-plane displacement 

causing significant in-plane stretching.  In this case, however, the yielding stress was never reached in the repair 

assembly.  Note that accounting for material and geometric nonlinearity in the analysis supporting the design effort 

often leads to a leaner, more efficient design, as plasticity introduces stress relaxation and geometric nonlinearity 

also suppresses stress levels.  In the present effort application of linear analysis yields over-conservative design. 
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