

NASA Occupant Protection Standards Development

Jeffrey Somers,¹ Michael Gernhardt,² Charles Lawrence³

¹Wyle Science, Technology and Engineering Group, ²NASA Johnson Space Center, ³NASA Glenn Research Center

Corresponding Author: Jeff Somers Wyle Science, Technology & Engineering Group Jeff.somers@nasa.gov 281-483-6010

ATD

Numerica

Models

Human

Numerica

Models

Background

Historically, spacecraft landing systems have been tested with human volunteers, because analytical methods for estimating injury risk were insufficient. These tests were conducted with flight-like suits and seats to verify the safety of the landing systems.

Currently, NASA uses the Brinkley Dynamic Response Index to estimate injury risk, although

BODY Natural Damping 나 Frequency

SEAT

a(t)

DR_Limit __DR

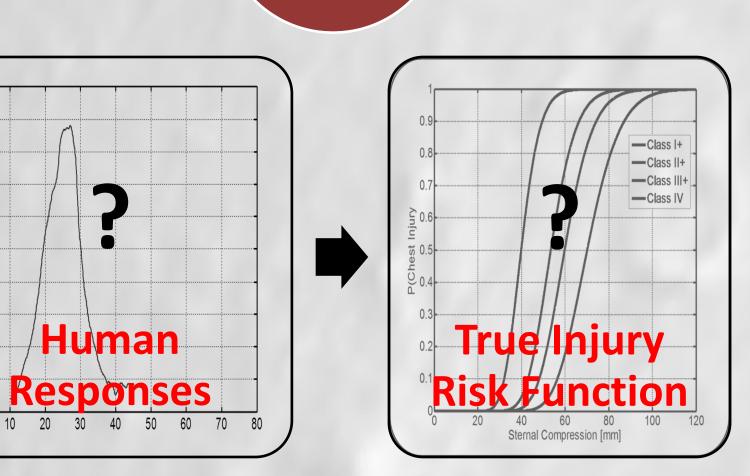
Acceptable Risk Definition

An expert panel was convened to determine what level of injury would be acceptable for NASA. The team used a systematic approach to buy down the risk to an acceptable level for nominal and off-nominal scenarios. To provide context, the team considered other analogous environments such as previous spaceflight, military aircraft, and automotive race cars. To assist in understanding the consequences of injury, the team considered generic tasks that crewmembers would be required to perform after landing.

Once the team reviewed this information, the highest risk that would be acceptable was determined. This risk was then bought down using driving criteria, such as: ethical, medical, political, and programmatic considerations

Data Mining

Cadaveri


Testing

Human

Exposure

Data

Human surrogates (e.g. ATDs) are used to estimate risk since injury risk often cannot be measured directly with live humans. For this study, we have chosen to focus on human data from Anima multiple sources, and Testing numerical and physical ATDs.

Humar

/oluntee

Data

Estimated

Human

Injury Risk

Physical

ATDs

applying it to the NASA environment has drawbacks:

- Does not indicate **severity** or anatomical location of injury
- Unclear if model applies to NASA applications

Because of these limitations, a new validated, analytical approach was desired.

New Approach

Leveraging off of the current state of the art in automotive safety and racing, a new approach was developed. The approach has several aspects:

- Define the acceptable level of injury risk by injury severity • Determine the appropriate human surrogate for testing and modeling
- Mine existing human injury data to determine appropriate Injury Assessment Reference Values (IARV). Rigorously Validate the IARVs with sub-injurious human testing

Injury Description	Injury Class	Nominal Probability of Injury	Off-Nominal Probability of Injury				
Minor	\sim	4.8%	19.1%				
Moderate		1.0%	3.9%				
Severe	HI	0.27%	1.1 %				
Life-Threatening	IV	0.03%	0.11%				

Critical Injury De

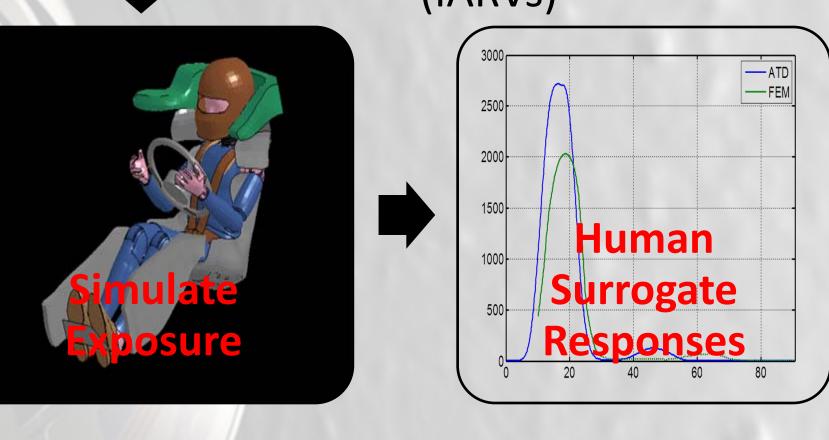
Working with experts within Reaior NASA, the team developed a list of "critical" injuries. This Head list of injuries is not all inclusive, nor is it a list of "expected" injuries. Instead, the list is intended to be comprehensive, such that Chest if the risk for each injury is mitigated, then the risk for Upper ather related injuries would

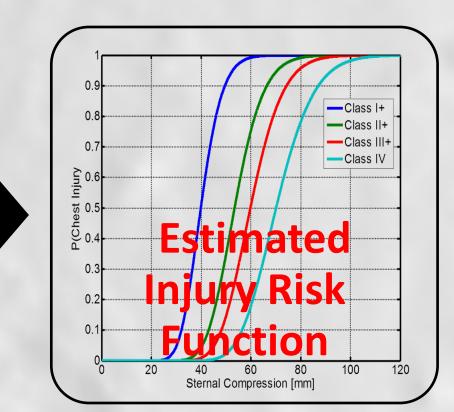
Dof	Iead Concussion w/o LOC Concussion w/ LOC Skull Fracture TBI Eye										
DEI											
Region	Injury										
	Concussion w/o LOC										
Defin Region Head Face Face Chest Upper ctremity Lower ctremity Spine	Concussion w/ LOC										
	Skull Fracture										
	TBI	1									
1-1	Eye	-									
Face	Ear										
-	Fracture										
/	Lung Contusion	Det									
	Rib Fracture										
Chest	Hemothorax										
<u> </u>	Pneumothorax										
	Hemopneumothorax										
Unner	Shoulder Dislocation										
	Joint Injury	K									
Clenney	Skeletal Fracture										
Lower	Joint Injury										
ktremity	Fracture										
	Brachial Plexus injury										
	Cord Contusion	-									
Spine	Fracture	1º									
	Herniated Disc										
	Disc Rupture										

No Injury

Class | Iniu

Dynamics and


Injury Data


The goal of this task is to develop injury risk functions for each of the injury metrics for the THOR-NT ATD. Several datasets are available to US:

NASCAR

IndyCar

 Historical Human Volunteer Testing • Data available in the Literature These injury risk functions will then be combined with the acceptable risk levels to determine Injury Assessment Reference Values (IARVs)

• Use validated IARVs to update standards and vehicle requirements

other related injuries would	EXT
also be mitigated.	
The list of injuries was also	Ext
divided anatomically to	
ensure that every region of	S
the body was represented.	

Human Volunteer Testing

Once the IARVs are determined, they will still need to be validated in the spaceflight configuration. Because each of the datasets used to develop the IARV sets are not exactly analogous to spaceflight, rigorous validation by sub-injurious human testing is needed. Human subjects will be recruited to allow a 95% confidence of a less than 5% risk of any injury. Given no injuries during testing (as anticipated), approximately 60 subjects would be

Operationally Relevant Injury Scale

The Operationally
Relevant Injury
Scale (ORIS) was
developed to
address NASA's
unique operational
environment.
Because the
Abbreviated Injury
Scale (AIS) was
developed for
passenger car

lly	Injury	Severit	t y					1					
пу	0	1	2	3	4	5	6						
	None	Minor	Moderat	e Serious	Severe	Critical	Maximal						
_													
S	Self-E	gress Ca	apability	V									
	0		1	2	3		4						
	No Impac	t Able w	ith Minor	Able with Majo	or Unat	ble	Unable,						
		Im	pact	Impact	with	out req	uires rescue						
		(with	nin req)	(not within red	q) assista	ance	and/or						
nal						st	abilization	/					
	Return	n to Flig	ght Stati	us Estimate	•								
	0	1	L	2	:	3	4						
	No Delay	Short D	elay in Int	termediate Del	ay Long D	elay in E	nded Flight						
	in Return	Return	(<3mo.)	in Return (<1y)	Return	n (>1y) St	tatus/ DQ'd						
ury													
	Operationally Relevant Injury Class												
	0	I		II	III		IV						
	No Injury	Minor	Injury Mo	derate Injury	Severe Injury		hreatening atal Injury						

Standards Framework

Collaborating with experts within NASA, the FAA, and NHTSA, the team developed a table mapping critical injuries to various injury metrics available for Anthropomorphic Test Devices (ATDs or crash test dummies). Using this framework, the THOR-NT ATD was selected for use.

H – Hybrid III

T – THOR-NT

W - WorldSID

20

incidents, it was determined that a new injury classification system was needed for NASA. The new scale combines the injury severity from the AIS, a measure of a crewmember's ability to self-egress, and a measure to estimate the time to return to flight status. All three factors are used to calculate the final classification of the injury.

Example: A clavical fracture (AIS=2) could prevent crewmembers from egressing (SE = 3), so it would be classified as a Class III Injury using the ORIS

X – Design Constraint	He	Fac	Cervical	Blu	Lung	Rik	Hemo/F	Upper Extr	Upper Ex	Thoraci	Lumbar	Lower Extr	Lower Ex
HIC36	Т/Н												
BRIC	T/H												
Neck Axial Tension			Т/Н										
Neck Axial Compression			Т/Н										
Max Chest Deflection					Т	Т	Т						
Lateral Shoulder Force (Deflection)					T/W	T/W	T/W	T/W	T/W				
Lumbar Axial Compression										т/н	т/н		
Ankle Moments								9				Т	
Contact Limits / Restraints (Design Constraint)		Х		Х				Х	Х			Х	Х

needed. Subjects will be selected to

represent the astronaut corps (height, weight, gender, age)

Subjects will be tested at several acceleration levels culminating in testing at expected Orion nominal landing loads. The testing will be conducted with flight-like Orion seats and suits, and each subject will be tested with and without suits to allow investigation into the effects of

the suit on the human response.

Finally, each test will have a matched ATD run to allow a correlation between the subject responses and the ATD responses.