
WATER RESOURCES RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Assimilation of Terrestrial Water Storage from1

GRACE in a Snow-Dominated Basin2

B. A. Forman
1,2
, R. H. Reichle

1
, and M. Rodell

3

Index Terms: 1847 (Modeling); 1855 (Remote sensing); 1863 (Snow); 3315 (Data Assimila-3

tion); GRACE;4

B. A. Forman, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center,

Code 610.1, Greenbelt, MD 20771, USA. (Barton.A.Forman@nasa.gov)

R. H. Reichle, Global Modeling and Assimilation Office, NASA Goddard Space Flight Center,

Code 610.1, Greenbelt, MD 20771, USA.

M. Rodell, Hydrological Sciences Branch, NASA Goddard Space Flight Center, Code 614.3,

Greenbelt, MD 20771, USA.

1Global Modeling and Assimilation Office,

NASA Goddard Space Flight Center

2Oak Ridge Associated Universities

3Hydrological Sciences Branch, NASA

Goddard Space Flight Center

D R A F T October 21, 2011, 1:30pm D R A F T

https://ntrs.nasa.gov/search.jsp?R=20120007476 2019-08-30T19:59:10+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10567553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


X - 2 FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN

Abstract. Terrestrial water storage (TWS) information derived from5

Gravity Recovery and Climate Experiment (GRACE) measurements is as-6

similated into a land surface model over the Mackenzie River basin lo-7

cated in northwest Canada. Assimilation is conducted using an ensemble8

Kalman smoother (EnKS). Model estimates with and without assimilation9

are compared against independent observational data sets of snow water10

equivalent (SWE) and runoff. For SWE, modest improvements in mean11

difference (MD) and root mean squared difference (RMSD) are achieved as12

a result of the assimilation. No significant differences in temporal correla-13

tions of SWE resulted. Runoff statistics of MD remain relatively unchanged14

while RMSD statistics, in general, are improved in most of the sub-basins.15

Temporal correlations are degraded within the most upstream sub-basin,16

but are, in general, improved at the downstream locations, which are more17

representative of an integrated basin response. GRACE assimilation using18

an EnKS offers improvements in hydrologic state/flux estimation, though19

comparisons with observed runoff would be enhanced by the use of river20

routing and lake storage routines within the prognostic land surface model.21

Further, GRACE hydrology products would benefit from the inclusion of22

better constrained models of post-glacial rebound, which significantly af-23

fects estimationGRACE estimates of interannual hydrologic variability in the24

Mackenzie River basin.25

D R A F T October 21, 2011, 1:30pm D R A F T



FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN X - 3

1. Introduction

Snow is an important component of the hydrologic cycle that accounts for a large26

fraction of the available freshwater resources in many parts of the northern hemisphere27

[Barnett et al., 2005]. Accurate estimation of snow mass, or snow water equivalent (SWE),28

across space and time using point-scale, ground-based techniques is a difficult task. There-29

fore, in an effort to better quantify this potential freshwater supply, many researchers have30

turned to remote sensing estimates derived from space-based instrumentation used in con-31

junction with land surface models.32

Despite recent popularity in the utilization of passive microwave and visible spectrum33

imagery for the purpose of snow pack estimation (e.g., Andreadis and Lettenmaier [2006];34

Durand and Margulis [2006]; Dong et al. [2007]; Su et al. [2008]), satellite-derived measure-35

ment techniques possess significant limitations. Passive microwave estimates, for example,36

are prone to large errors for snow packs that are either wet, deep (> 1 m), or contain ice37

and/or depth hoar layers [Clifford , 2010]. Similarly, visible imagery often provides little38

information outside of the initial accumulation and final ablation periods of the snow39

season [Clark et al., 2006].40

An alternative to passive microwave and visible spectrum-based SWE estimation is the41

use of gravimetry. Gravimetric techniques focus on the measurement of gravitational42

anomalies associated with the accumulation (or loss) of mass near the Earth’s surface.43

In the context of snow, changes in the Earth’s gravitational field are associated with the44

accumulation of snow during the snow season and the subsequent ablation and runoff of45

the snow mass during the melt season. Gravimetry is capable of capturing snow mass46
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throughout the accumulation season, including peak accumulation when SWE information47

is most valuable to water resource managers. Unfortunately, the drawback of space-based48

gravimetry is its coarse spatial (∼hundreds of km) and temporal (∼monthly) resolution49

that limits its applicability for smaller domains. When satellite gravimetric measurements50

are combined with a land surface model as part of a data assimilation (DA) framework,51

however, there is the potential to effectively downscale gravimetric estimates in time and52

space while simultaneously providing useful information content when passive microwave53

and visible spectrum measurements cannot.54

2. Background

One such satellite gravimetry mission is the Gravity Recovery and Climate Experiment55

(GRACE). GRACE provides approximately monthly estimates of variations in terrestrial56

water storage (TWS), which includes snow, ice, surface water, soil moisture, and ground-57

water. The mission is a major step towards understanding regional TWS dynamics [Tang58

et al., 2010] and offers significant insight into regional- and continental-scale hydrologic59

processes [Syed et al., 2009; Rodell et al., 2009].60

Relatively few studies have been conducted that utilize GRACE measurements within a61

DA framework. The first study by Zaitchik et al. [2008] assimilated GRACE information62

into a land surface model of the Mississippi River basin. When compared against in-63

situ groundwater observations, Zaitchik et al. [2008] found reduced errors and increased64

temporal correlations as a result of the assimilation. Further, the results suggested the65

potential to downscale the coarse-scale GRACE measurements via use of a relatively fine-66

scale land surface model. However, due to the fact that snow contributes little to TWS in67
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the Mississippi River basin, there was limited opportunity to study the impact of GRACE68

data assimilation on snow pack characterization.69

More recently, Su et al. [2010] studied the impact of GRACE data assimilation on TWS70

estimates in North America for the express purpose of improved snow pack estimation.71

They found that GRACE assimilation improved SWE estimation in many of the North72

American basins where snowfall is a significant contributor to the hydrologic cycle. How-73

ever, Su et al. [2010] also found that many issues remain to be addressed, including: 1)74

the cause of model degradation in some high-latitude basins as a result of GRACE assim-75

ilation, 2) the impact of GRACE observational error on DA results, and 3) the impact of76

GRACE assimilation on components of TWS other than snow.77

This study expands on the work by Zaitchik et al. [2008] and Su et al. [2010] via78

extended examination of GRACE DA performance within a snow-dominated hydrologic79

basin. Namely, additional verification activities using independent, ground-based data80

sets are explored, a number of different GRACE products are tested during assimilation,81

the impact of GRACE measurement error on DA results is investigated, an analysis of DA82

innovation sequences is included, and a longer period of record is utilized, which allows83

for a better assessment of inter-annual variability.84

The following sections introduce the methods used in the assimilation framework (sec-85

tion 3), highlight the study domain (section 4), discuss the GRACE measurements and86

forward model used during the assimilation (section 5), highlight the independent data87

sets used for model verificationvalidation (section 6), present modelassimilation results (section88

7), and conclude with summarized findings and implications (section 8).89
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3. Data Assimilation Framework

A DA framework is an effective means of merging model estimates with measurements90

that often yields an improved estimate beyond that of the model or measurements alone91

[McLaughlin, 2002]. Not only does DA provide a conditioned estimate that accounts92

for both model and measurement uncertainty, but it offers the potential to effectively93

downscale the measurements in space and time via utilization of the finer-scale information94

associated with the prognostic model formulation, its parameters, and its forcing data95

[Reichle et al., 2001; Zaitchik et al., 2008].96

Selection of the most appropriate DA system depends on feasibility, robustness, and97

computational efficiency. In that regard, we choose to employ an Ensemble Kalman98

Smoother (EnKS) in part because of its ability to handle non-linear models coupled99

with its flexible, modular structure [Dunne and Entekhabi , 2006] as well as the ability100

to leverage Zaitchik et al. [2008] as a precursor study. In general, an EnKS has two ba-101

sic components: 1) a physically-based, forward model to propagate the model states as102

an ensemble in order to provide background error covariances, and 2) an update scheme103

that combines the model states and the satellite measurements in a way that accounts104

for their respective uncertainties. The work conducted in this current study adapts the105

EnKS presented in Zaitchik et al. [2008] for a snow-dominated basin thereby contributing106

to the methodological development of GRACE DA (see section 5.3). The EnKS is first107

introduced below whereas the assimilated measurements and forward model are discussed108

in section 5.109
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3.1. Ensemble Kalman Smoother

The prior (unconditioned) estimate of the model states, x
i−

t
xi−
τ , is derived from a prog-110

nostic land surface model. This is illustrated in the left-hand side (i.e., Step 1) of Figure 1.111

The nonlinear model, Ft(·), propagates the posterior (conditioned) model states, x
i+

t−1
xi+
τ−1,112

forward in time, t, from t− 1 to tone month to the next (i.e., from τ − 1 to τ) using an113

ensemble of N realizations with prescribed model errors wi
t as114

xi−
τ = Ft

(

xi+
τ−1,w

i
t

)

for i ∈ N. (1)

We adopt the convention where bold lowercase symbols denote vectors, bold uppercase115

symbols denote matrices, non-bold symbols denote scalars, and calligraphic symbols rep-116

resent operators. Uncertainties in the model are defined by the model error term, wi
t with117

covariance Qt. In the ensemble framework, model errors are represented by perturbations118

that are applied to model states and forcings (section 5).119

Next, the prior model states are updated using the observations available for the time120

period of interest τ ∈ [to, tf ] (where to and tf are the beginning and end of the assimilation121

periodwindow, i.e., first and last day of the month in this application). This is illustrated122

in the right-hand side (i.e., Step 2) of Figure 1. The following linear update equation is123

employed as124

xi+
τ = xi−

τ +Kτ

[

yτ + vi −Hxi−
τ

]

, (2)

where Kτ is the Kalman gain matrix, yτ is the measurement vector, and H is the pre-125

dicted measurement model that linearly maps the model states into measurement space.126

Random perturbations, vi, representing measurement error are added to the measurement127
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vector [Burgers et al., 1998]. The Kalman gain, Kτ , is a weighted average between the128

uncertainty of the prior states and the measurements such that129

Kτ = P−

τ H
T
τ

(

HτP
−

τ H
T
τ +R

)

−1
, (3)

where P−

τ is the background error covariance computed from xi−
τ for i ∈ [1N ], andR is the130

measurement error covariance. The analysis increments, x+
τ − x−

τ , are applied evenly over131

each day of the month as illustrated in Step 2 of Figure 1. The update procedure ignores132

non-Gaussian characteristics and relies only on the first two moments of the distribution.133

In practice, however, it may only be feasible to accurately compute the first and second134

moments of the system state [Khare et al., 2008]. Additional details regarding the EnKS135

update procedure applied in Equation (2) are found in Figure 5 of Zaitchik et al. [2008]136

as well as in section 5.3 further below.137

4. Study Domain

The study domain used here is the Mackenzie River basin (MRB) located in north-138

western Canada (Figure 2) and consists of 4 individual sub-basins. Sub-basin delineation139

was based on topographic control and adhered to the topology of the river network. Each140

sub-basin was extracted from the original GRACE product in order to produce sub-basin-141

averaged TWS estimates. The smallest sub-basin is 280,000 km2, which is larger than the142

minimum area of roughly 150,000 km2 that can be resolved by GRACE at mid-latitudes143

[Rowlands et al., 2005; Swenson et al., 2006]. Additional details regarding the GRACE144

measurements and measurement preprocessing activities are found in section 5.1 and sec-145

tion 5.2, respectively.146
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As a whole, MRB is ∼1.8×106 km2 in drainage area (∼1.6×106 km2 for land areas only;147

see Table 1) with the main branch of the Mackenzie River running from the highlands in148

the southwestern corner of the domain northward toward the Arctic Ocean. The snow149

classification scheme of Sturm et al. [2010] suggests MRB snow type is dominated by taiga-150

type snow with smaller areas of tundra- and alpine-type snow found in the northwest and151

southern regions, respectively (see Figure 2b).152

5. Assimilated Measurements and Forward Model

5.1. GRACE Measurements Background

Several different GRACE hydrology products were investigated in this study. TWS153

anomalies from 1) the Space Geodesy Research Group (GRGS) product [Bruinsma et al.,154

2010; Horwath et al., 2011], 2) the Tellus product available from the NASA Jet Propul-155

sion Laboratory (Tellus) [Wahr et al., 2004; Swenson and Wahr , 2006], and 3) the mass156

concentration product generated at the NASA Goddard Space Flight Center (MasCon)157

[Rowlands et al., 2005, 2010]. Each product utilizes the same Level 1 range-rate measure-158

ments from GRACE, but is processed in a different manner in order to yield mass change159

estimates in terms of equivalent water thickness.160

Each product is available as gridded TWS anomalies (i.e., deviations from the temporal161

mean at each location). The GRGS and Tellus products are provided on a ∼ 1◦ × 1◦162

grid whereas the MasCon product is provided on a ∼ 4◦ × 4◦ grid. Each product was163

subsequently converted into sub-basin-averaged total TWS values by adding the location-164

specific, temporal meanlong-term average TWS from the land surface model. More infor-165

mation on GRACE measurement preprocessing is provided in section 5.2 and the land166

surface model is provided in section 5.3.167

D R A F T October 21, 2011, 1:30pm D R A F T



X - 10 FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN

5.2. GRACE Measurement Preprocessing

Conversion of the GRACE TWS anomalies into sub-basin-averaged TWS estimates168

that are compatible with modeled TWS values begins with generating a single-replicate169

of the forward model for the period 1 September 2002 to 1 September 2009. No model170

errors are prescribed in this simulation unlike that shown in Equation (1). TemporallyLong-171

term (i.e., 2002-2009) averaged , sub-basin-averaged estimates of TWS derived from the172

forward model are subsequently added to the sub-basin-averaged monthly GRACE TWS173

anomalies, which yields monthly estimates of TWS for each modeled sub-basin that are174

eventually assimilated using Equation (2). Additional details on the utilization of the175

GRACE measurements in Equation (2) are found in Zaitchik et al. [2008].176

One notable aspect of GRACE preprocessing is the consideration of a secular trend177

associated with post-glacial rebound (PGR). The Tellus product accounts for PGR using178

the methods of Paulson et al. [2007]. However, the GRGS and MasCon products do not179

account for PGR. Therefore, model output from Paulson et al. [2007] is applied here to180

the GRGS and MasCon products in a similar manner as done for the Tellus product.181

Preliminary DA results suggest PGR is overestimated by the model of Paulson et al.182

[2007] in both the Slave and Peace+Athabasca sub-basins, but this cannot be verified183

as the exact amount of PGR in these regions is unknown. Unfortunately, PGR models184

are difficult to validate due to a lack of independent data, thus the errors are not well185

quantified. Therefore, in an effort to better understand the impacts of PGR estimates186

on GRACE DA performance within the MRB, two different versions of each GRACE187

product were used in the DA experiments: 1) PGR correction applied using Paulson et188

al. [2007] and 2) PGR correction not applied (i.e., PGR correction was removed from the189

D R A F T October 21, 2011, 1:30pm D R A F T



FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN X - 11

Tellus product). These two approaches effectively bound the extent of PGR impacts on190

GRACE DA performance.191

Finally, one requirement for optimal data assimilation is an accurate representation192

of measurement error. Given the multiple sources of error present within the GRACE193

measurements [Bruinsma et al., 2010; Horwath et al., 2011; Rowlands et al., 2005; Swenson194

and Wahr , 2006; Wahr et al., 2006], this task is not trivial. GRACE TWS errors arise195

from a combination of measurement errors, processing errors, and errors in the geophysical196

models used to de-alias the GRACEmeasurements [Wahr et al., 2004]. The error estimates197

used in this study generally agree withare based on those of Swenson and Wahr [2006] and198

Swenson [In Prep.], and are comparable to those used in Zaitchik et al. [2008]. Even199

though the spatially-distributed error estimates provided in Swenson [In Prep.] are only200

for the Tellus product, we believe they are fairly representative of the measurement error201

in all the GRACE products since each product utilizes the same Level 1 range-rate mea-202

surements. The time-invariant GRACE measurement error used in this study is less than203

that used in Zaitchik et al. [2008] due to the increased number of satellite overpasses near204

the poles. The measurement error covariance for each sub-basin of interest is provided205

in Table 1. The impact of measurement error covariance on DA performance is further206

discussed in section 7.4.207

5.3. Catchment Land Surface Model

The prognostic model used in this application is the Catchment Land Surface Model208

(Catchment) developed by Koster et al. [2000]. Catchment employs a catchment deficit209

prognostic variable rather than the more commonly-used soil water content variable to210

estimate subsurface water storage, and explicitly models sub-grid scale soil moisture vari-211
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ability and its effect on hydrological processes such as runoff and evaporation. Further, the212

inclusion of a three-layer snow model [Stieglitz et al., 2001] provides additional capability213

in the estimation of terrestrial water storage in areas where snow is a significant contrib-214

utor to the hydrologic cycle. These attributes create a unique capability for Catchment215

in the assimilation of terrestrial water storage data assimilation.216

The predicted measurement model, H, (see Equation (2)) maps the Catchment model217

states into the GRACE measurement space. H not only spatially aggregates the model218

states into the 4 sub-basins as described in section 5.1, but it also integrates the model219

states to yield a vertically integrated estimate of TWS. Catchment-based estimates of220

TWS include changes in the unconfined water table, root-zone soil moisture, surface221

soil moisture, SWE, and canopy interception. A schematic of Catchment-derived TWS is222

shown in Figure 3. Catchment-derived TWS was computed in a similar manner as done in223

Zaitchik et al. [2008] except with the additional consideration of canopy interception. Even224

though lake water storage can be a significant storage component of TWS, Catchment225

does not account for mass changes within surface water impoundments.226

The Goddard Earth Observing System Version 5.2.0 (GEOS-5) Modern Era Retrospective-Analysis for227

Research and Application (MERRA) product [Rienecker et al., 2011], of which Catchment is a228

part, was used to force the land surface model. MERRA is provided at an hourly temporal229

resolution and a 1/2◦ × 2/3◦ (latitude/longitude) spatial resolution. An alternative forcing230

data set by Reichle et al. [2011] was investigated for use, which is the same as MERRA231

except that the precipitation estimates have been corrected towards estimates from the232

Global Precipitation Climatology Project (GPCP) [Huffman et al., 1997] through rescaling of233

the MERRA precipitation such that the total amount of precipitation matched that found in the original GPCP. No234
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significant difference in the performance of the DA experiments was found between the two235

forcing data sets. Therefore, only the results utilizing the MERRA forcing are presented236

here.237

Perturbations to specified model states and forcings were prescribed in order to ade-238

quately represent model error. Both multiplicative and additive perturbations were uti-239

lized as listed in Table 2. Model state perturbations were applied every 20 minutes (i.e., at240

each model time step) whereas model forcing perturbations were applied every 60 minutes241

(i.e., at each forcing time step). Temporal correlations were imposed using a first-order242

auto-regressive model (AR(1)) within the perturbed fields as discussed in Reichle et al.243

[2008]. Following the work of Reichle and Koster [2003], a horizontal error correlation244

length of 2.0◦ was applied. The root zone soil moisture excess prognostic variable was not245

perturbed to avoid the introduction of unwanted bias in the subsurface. Cross-correlations246

between perturbations were included in an analogous manner as conducted in Reichle et247

al. [2007].248

To better manage perturbations made to the Catchment ensemble, a number of mod-249

ifications were made to the DA framework from that originally used in Zaitchik et al.250

[2008]. Perturbations applied to the 3 snow layers were only applied to SWE and not to251

snow depth or snow heat content. Perturbed snow depth was subsequently recomputed252

as the perturbed SWE divided by the unperturbed snow density. Snow heat content was253

also recomputed such that the perturbed SWE yielded the same snow pack temperature254

as the unperturbed SWE. This was done to ensure physical consistency within the snow255

pack associated with the prescribed SWE perturbations. In addition, perturbations to256

the catchment deficit (subsurface) were modified based on the presence of snow in con-257
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junction with frozen soil conditions. More specifically, if snow is present and the surface258

(∼5 cm) soil temperature is below freezing, perturbations are applied to the SWE states259

only; if the surface soil temperature is at or above freezing, perturbations are applied to260

the SWE states as well as the catchment deficit. Conversely, if snow is absent and the261

surface soil temperature is below freezing, perturbations applied to the catchment deficit262

state were scaled by a factor <1 in order to mimic the attenuated soil moisture dynamics263

associated with reduced soil permeability; if the surface soil temperature is at or above264

freezing, perturbations were applied normally to the catchment deficit. Collectively, the265

changes better maintain physical consistency within the snow pack while better simulating266

an attenuated soil moisture response when frozen soil conditions persist.267

Model spin-up and initialization consisted of a two-step approach. The first step in-268

volved a repeated, one-year (i.e., May 2001 to May 2002) cycle of a single replicate without269

model perturbations for ten years to yield a reasonable estimate of TWS. The second step270

involved running the model as an open-loop (OL) ensemble from May 2002 to September271

2002 in order to yield a reasonable estimate of cross-correlations between different model272

states as well as to produce an adequate amount of uncertainty (spread) within the OL273

ensemble. From September 2002 to September 2009, the model was run in either OL274

mode or with GRACE DA enabled. Finally, an ensemble size of 16 was used based on275

the convergence of the TWS standard deviation of the prior ensemble. Ensemble sizes276

greater than 16 showed no significant change in ensemble standard deviation, hence it was277

determined that 16 replicates was sufficiently large.278

6. Validation Approach

D R A F T October 21, 2011, 1:30pm D R A F T



FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN X - 15

A variety of observational data sets were used to evaluate the GRACE DA output.279

However, due to the observation sparsity within the MRB, particularly in the northern280

regions, not all pertinent model states could be verified. Most notable amongst the obser-281

vational data gap is a lack of groundwater and soil moisture measurements. Despite the282

lack of some observational types, a series of modeled and measured estimates are avail-283

able that provide a reasonable assessment of the MRB hydrologic response as a function284

of space and time.285

6.1. CMC Daily Snow Analysis Product

Snow observations were based on the Canadian Meteorological Centre (CMC) daily286

snow depth product [Brasnett , 1999; Brown and Brasnett , 2010] obtained via ftp server287

at sidads.colorado.edu . The CMC product yields snow depth estimates throughout288

the northern hemisphere at a horizontal resolution of ∼24 km for the period of March289

1998 to the present, and is often considered the best available snow product for evaluating290

model output [Su et al., 2010]. It is based on optimal interpolation of in situ daily snow291

depth observations and aviation reports with a first-guess field generated from a simple292

snow model driven by analyzed temperatures and forecast precipitation from the Canadian293

forecast model [Brasnett , 1999]. SWE estimates were derived from the CMC daily snow294

depth estimate in conjunction with the climatological snow density parameterization of295

Sturm et al. [2010] as a function of snow depth, day of year, and snow class (Figure 2b).296

6.2. INAC Snow Surveys

An additional set of ground-based observations was made available by the Indian and297

Northern Affairs Council (INAC). This observational dataset consists of snow surveys at298
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42 different locations, predominantly within the Slave Basin (Figure 2b). Each survey299

consisted of snow depth and snow water equivalent measurements at ∼10 different points300

that were then averaged together to yield a single survey estimate at each of the 42 different301

survey locations. In general, surveys were conducted annually when the snow pack reached302

peak accumulation. Therefore, these ground-based observations are only available once303

per year and only within a small portion of the MRB. Between the CMC measurement304

product and the INAC observational dataset, however, a reasonable comparison of SWE305

estimates may be conducted over the entire MRB domain throughout the course of the306

snow season with particular emphasis placed on peak accumulation.307

6.3. GRDC Runoff Observations

Runoff estimates were provided by The Global Runoff Data Center (GRDC) via http:308

//www.bafg.de/GRDC/EN/Home/homepage__node.html. GRDC estimates are available309

at hundreds of locations within the MRB at a daily timescale. However, only a handful310

of stations were selected based on a minimum upland drainage area of ≥250,000 km2
311

and a minimum of six (6) years of measurements (Figure 2a). Daily estimates were312

subsequently aggregated to a monthly timescale for comparison against the DA results313

utilizing monthly GRACE observations. Table 3 lists the stations used in this study314

along with the approximate sub-basin aggregation (in terms of integrated upland area)315

in accordance with the sub-basins shown in Figure 2a. GRDC discharge estimates in316

the MRB are, in general, based on measurements of river stage height, which were then317

converted into volumetric flux using assumptions of river cross-sectional area and flow318

velocity. During the winter time when ice floes are common in the MRB, river discharge319

measurement error likely increases.320
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6.4. Validation Metrics

Using the independent, ground-based observations described above, a number of valida-321

tion metrics were computed. Mean difference (MD) was computed asMD = 1
T

∑T

t=1(Mt−322

Ot) where Mt is the modeled ensemble mean and Ot is the ground-based observation, re-323

spectively, at time t and where T is the total number of time steps. Similarly, root mean324

squared difference (RMSD) was computed as RMSD = 1
T

√

∑T

t=1(Mt −Ot)2. Finally,325

the anomaly correlation coefficient (R) was computed by first determining the climato-326

logical seasonal cycle over the course of the simulation period, then the anomaly time327

series is computed by subtracting the climatological seasonal cycle from the original time328

series, and finally the anomaly R is computed as the correlation coefficient between the329

modeled ensemble mean anomalies and the corresponding anomalies of the ground-based330

observations. For all 3 metrics, the modeled values are obtained from either the open-loop331

(OL) or data assimilation (DA) simulations. In addition, only times and locations with332

values Mt > 0 or Ot > 0 were used in the computation. That is, coincident zeros were333

excluded (e.g. omitting summertime values when no snow is present in both the model334

and observations).335

Statistical significance of R is determined using the Hotelling-Williams Test, which336

investigates the equality of two dependent correlations [Steiger , 1980]. In this study, the337

dependent correlations are between: 1) the ground-based observations and the OL results338

(R12), and 2) the ground-based observations and the DA results (R13). It begins with the339

hypothesis that the two dependent correlations are equal (i.e., Ho : R12 = R13). Next, a340

t-statistic is computed as341
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tN−3 ∼ (R12 −R13)

√

(N − 1) (1 +R23)

2N−1
N−3

|R|+R
2
(1−R23)

3
, (4)

where N is the approximate number of degrees of freedom, R = R12+R13

2
, R23 is the342

correlation between the OL and DA results, and |R| = 1−R2
12−R2

13−R2
23+2R12R13R23.343

If the computed t-statistic is greater than the corresponding Student t-statistic for a given344

N at a given confidence level, then one can reject the null hypothesis, Ho, and in turn345

say that the computed correlation coefficients are statistically different. It is important to346

note that the t-statistic computed here is only an approximation and likely overestimates347

the value because of the presence of serial error correlations, which imply that the actual348

number of degrees of freedom is less than the number of data points.349

7. Results and Discussion

7.1. Terrestrial Water Storage (TWS)

Comparison of model results begins with a comparison against the assimilated GRACE350

TWS measurements used during the conditioning phase. Theory predicts that if informa-351

tion transfer from the GRACE observations into the model estimates takes place during352

conditioning, then a better agreement between the conditioned estimates and the GRACE353

observations should occur. If not, the lack of change is either due to a near-zero covari-354

ance structure in K or is due to close agreement between the GRACE TWS and the355

model-predicted TWS.356

Figure 4 shows the ensemble OL and DA simulations relative to the GRGS (without357

PGR correction) GRACE TWS observations for the 4 assimilated sub-basins along with358

the MRB as a whole. The dark gray and light gray regions represent the range of the OL359

and DA ensembles, respectively. The GRACE observations are shown as solid, black dots360

D R A F T October 21, 2011, 1:30pm D R A F T



FORMAN ET AL.: GRACE-DA IN A SNOW-DOMINATED BASIN X - 19

with the error bars representing the time-invariant standard deviation of the observation361

error. The thick dashed and solid lines represent the ensemble means for the OL and DA362

ensembles, respectively.363

In general, there is good agreement between the OL ensemble mean and the GRACE364

measurements with the exception of the Slave basin during 2002-2004. When DA is365

enabled, the ensemble mean moves toward the GRACE observations as a result of con-366

ditioning. The presence of positive, non-zero covariances in K coupled with differences367

between the GRACE observations and the model-based TWS estimates allows for a signif-368

icant correction in the DA ensemble toward the GRACE observations. However, it should369

also be noted that significant differences exist between the model estimates (OL and DA)370

and the GRACE observations near the annual minimum of TWS. This is in part due to371

a bias in the variability between the OL model and the observations. That is, the Catch-372

ment model has a tendency to “dry out” beyond what the GRACE measurements would373

suggest. As is discussed in more detail in section 7.3 and 8, a lack of hydraulic routing374

and lake storage routines in Catchment leads to a more rapid hydrologic response, which375

results in a more variable (i.e., larger dynamic range) estimate of TWS. Assimilation of376

the GRACE measurements serves to constrain some of this variability. In addition, when377

the snow melts and subsequently runs off, the model-derived background error variance378

is smaller (due to a lack of snow and snow errors) than the prescribed measurement er-379

ror variance, which ultimately leads to a significant reduction in the Kalman gain (see380

Equation (4)) and hence a relatively smallsmaller update towards the GRACE measurements.381

After conditioning, another notable feature is that the ensemble spread is significantly382

reduced between the OL and DA simulations. This is indicative of the DA procedure383
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having an impact on the model-derived ensemble and suggests increased confidence in the384

TWS estimates via assimilation. Collectively, these findings compose a useful sanity check385

on the efficacy of the assimilation framework and lends some credibility to its ability to386

model TWS in a snow-dominated basin.387

7.2. Snow Water Equivalent (SWE)

7.2.1. Comparison to CMC Product388

Monthly-averaged CMC values of SWE for each of the four sub-basins as well as the389

entire MRB are compared against the OL and DA simulations. As discussed in section 5.2,390

multiple versions of each GRACE product were generated that include PGR corrections391

as well as exclude PGR corrections using the model of Paulson et al. [2007]. For brevity392

only the GRGS product is discussed herein as it is representative of the other GRACE393

products and because it yields the most complete timeseries (i.e., fewest monthly gaps) for394

the study simulation period. Further, only the results for the GRGS product excluding395

PGR corrections are shown in Figure 5. The sensitivity to the PGR corrections will be396

discussed later.397

Differences in Figure 5 between the OL and DA simulations are apparent, most no-398

tably the reduction in ensemble spread (uncertainty)standard deviation (spread) associated399

with GRACE assimilation. In general, the conditioning procedure moves the DA en-400

semble mean closer to the CMC estimates relative to the OL simulation. This is more401

apparent in the Liard basin where the snowfall accumulation is greatest, particularly in402

2005-2007 and 2009 when the model has a tendency to overestimate SWE. Changes are403

less apparent in the other sub-basins because less snow is present, hence the changes are404

much smaller in magnitude, and because in general, the OL does a reasonable job of esti-405
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mating SWE. This is further discussed in section 7.5 where it is shown that the updates406

to SWE are near-zero during much of the accumulation phase, hence differences in OL407

and DA SWE are relatively small.408

Figure 6 shows statistics of MD, RMSD, and anomaly R for each of the sub-basins.409

Metrics are shown for the open loop (white), and for assimilation of GRGS GRACE TWS410

without (light gray) and with (dark gray) PGR correction. In terms of MD and RMSD411

without PGR correction, the greatest improvement is witnessed in the Liard basin. MD412

relative to the CMC product is reduced through assimilation by ∼30% (MD=13.2 mm413

for OL and MD=9.3 mm for DA) with a >15% reduction in RMSD (RMSD=24 for OL414

and RMSD=19.6 for DA). The other sub-basins, including the MRB as a whole, contain415

less snow and receive a much smaller amount of correction compared to the Liard basin.416

In general, the other sub-basins receive a small reduction in MD with little or no change417

to RMSD. Changes in MD and RMSD of SWE are essentially the same no matter which418

GRACE product is assimilated and no matter whether PGR correction is or is not applied419

(results not shown).420

Unlike MD and RMSD, changes to anomaly R are typically degraded as a result of421

the assimilation. When excluding PGR correction, the differences are not statistically422

significant at the 5% level based on the Hotelling-Williams Test, but there are apparent423

reductions in the ability to capture the inter-annual variability of SWE when invoking the424

DA procedure. These results suggest the DA simulations do a reasonable job of estimating425

the amount of SWE in each basin but that the timing of the accumulation/ablation426

phases are slightly degraded when incorporating information from GRACE. When PGR427

correction is applied to the GRACE observations, the anomaly R degradation becomes428
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much more pronounced, particularly in the Slave basin where PGR is most prominent in429

the model of Paulson et al. [2007] (R=0.70 for DA without PGR correction and R=0.64430

for DA with PGR correction). More specifically, assimilation of the GRGS product with431

PGR correction yields the lowest anomaly R values among basins in both the Slave sub-432

basin and the MRB as a whole with values that are statistically different from the OL433

results via the Hotelling-Williams test.434

7.2.2. Comparison to INAC Surveys435

On average both the OL and DA simulations underestimate SWE when compared436

against the INAC ground-based observations with MD=-28 mm for OL and MD=-33437

mm for DA estimates (Table 4). Each comparison was conducted by first comparing all438

of the surveys at a given location in space against the model output collocated in time.439

Then, the MD and RMSD was computed across time and subsequently presented in Table440

4. The assimilation of GRACE data typically removes snow mass near peak accumula-441

tion thereby further increasing the negative bias. The INAC observations are in direct442

contrast to the CMC product results, which suggest a positive bias in the OL and DA443

results. However, given that the CMC product is conditioned on snow depth observations444

collected in open areas such as airports that are subject to wind-blown snow redistribu-445

tion, there is a potential to introduce a negative bias into the CMC estimates (relative to446

the truth). Snow at the stations used in the CMC optimal interpolation routine tends to447

be shallower and melt earlier than in surrounding terrain [Brown et al., 2003]. Hence, the448

disparity between the CMC product and the INAC observations within the Slave basin449

can be partly explained by the CMC negative bias (relative to the truth) as well as by450
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the differences in the sampling domain between point-scale observations and the ∼24-km451

pixel resolution of the CMC product.452

7.3. Runoff

Comparison against GRDC runoff measurements were conducted in a similar manner453

as with the CMC SWE estimates. However, rather than comparing by sub-basin, runoff454

estimates are compared against individual gauging stations. Table 3 lists the upland area455

and approximate sub-basin integration for each station of interest. Results are displayed456

in Figure 7. One notices many distinct features. Namely, all simulations (OL or DA)457

suffer from a significant negative bias relative to the runoff observations. This is mostly458

due to insufficient baseflow runoff within the model for all but the smallest of sub-basins.459

This is clearly demonstrated in Figure 7 at the downstream observation locations dur-460

ing the winter when melt flux and overland flow are near-zero because the surface water461

(e.g. SWE) is restrained in solid phase. Hence, the baseflow component is the dominant462

contributor to winter runoff. Since the observed runoff at the downstream locations is463

considerably larger than the modeled runoff, it is reasonable to assume that the model464

generates an insufficient amount of baseflow at these locations during the winter season465

when overland flow is minimized. One also notices an overestimation of annual peak flow,466

particularly during the spring freshet. This is partly due to a lack of runoff routing and467

lake storage routines, which contributes to a more rapid runoff response within the model.468

No discernible difference between the OL and DA ensemble means is witnessed in Figure469

7 as the DA line effectively overlaps the OL line. However, a small (∼5-10%) reduction470

in ensemble standard deviation (spread) is witnessed in most sub-basins as a result of the471

assimilation procedure.472
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Figure 8 shows the corresponding computed statistics of MD, RMSD, and anomaly473

R at a monthly timescale at each of the gauging stations. In general, MD is slightly474

more negative as a result of assimilation, but to a lesser degree when PGR correction475

is excluded (light gray) relative to the inclusion of PGR correction (dark gray). The476

decrease in negative MD results from the removal of SWE during peak accumulation,477

which results in less runoff production during ablation. The removal of SWE is essentially478

counter-balanced by an increase in subsurface storage (further discussed in section 7.5),479

but does not translate into any significant increase in baseflow production or infiltration480

excess runoff, hence the slightly more negative MD. RMSD, in general, is reduced or481

remains unchanged in all of the sub-basins and is effectively the same between the different482

GRACE products (results not shown).483

The greatest discord between the different assimilation experiments is found in the484

anomaly R values. The GRGS product without PGR correction, in general, yielded the485

best results. However, 2 out of 6 station locations are degraded as a result of GRACE486

assimilation relative to the OL results. Station number 4 (S+L+P+A in Figure 8c)487

undergoes a statistically significant level of improvement (R=0.25 for OL and R=0.30488

for DA without PGR correction), but at the cost of statistically significant degradations489

at the first station (L in Figure 8c; R=0.71 for OL and R=0.64 for DA without PGR490

correction) and fifth station (S+L+P+A+B in Figure 8c; R=0.50 for OL and R=0.46491

for DA without PGR correction). When PGR correction is included, more stations are492

degraded than are improved with most station degradations being significant at the 5%493

level. These results, in conjunction with the SWE results, suggest assimilation of the494
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GRGS product excluding PGR correction yields the greatest amount of improvement495

(and least amount of degradation) in terms of inter-annual variability.496

Finally, in order to investigate the potential impact of a river routing scheme, an analysis497

was conducted in which runoff estimates (OL or DA) were computed using a simple,498

fixed-lag smoother. For a given month, the fixed-lag smoother computed the runoff as499

the average of the given month and the preceding n months preceding. This effectively500

delays the hydrologic runoff response in a manner analogous to that of a runoff routing501

scheme. Based on the anomaly R and RMSD statistics between the GRDC observations502

and the runoff computed from the fixed-lag smoother (results not shown), the greatest503

improvements typically occur with a temporal lag of 1-2 months. However, the general504

conclusions with or without application of the fixed-lag smoother remain the same in that505

the runoff response with GRACE assimilation is improved, albeit by a small amount.506

Therefore, even though the results displayed in Figure 8c do not account for hydraulic507

routing, the results serve as a good proxy of the impact of GRACE assimilation on runoff508

estimation.509

7.4. Normalized Innovation Sequence

A filter innovation is the difference between the ensemble mean observation and model510

forecast, yt −Hx−

t , at a given time, t. Investigation of filter innovations is a useful tool511

for assessing whether or not measurement (Table 1) and model (Table 2) error parameters512

have been appropriately selected. If a model is linear and all errors are Gaussian, then the513

normalized innovations, NI, should appear similar in form to white noise (i.e., zero mean,514

unit variance, and temporally uncorrelated). Even though the application used here is a515

smoother rather than a filter and the forward model is non-linear, the investigation of the516
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normalized innovations can provide useful information as to the performance of the DA517

procedure.518

The normalized innovation may be written as519

NIt =
yt −Hx−

t
√

HP−

t H
T +R

, (5)

where the numerator represents the difference between the assimilated measurement and520

the predicted measurement, and the denominator represents a combination of the back-521

ground error covariance and the measurement error covariance. Normalized innovations522

are collected as a function of time and then the mean is computed as NI = 1
T

∑T

t=1NIt523

while the standard deviation computed as σNI =

√

1
T

∑T

t=1

(

NIt −NI
)2
.524

Figure 9 plots the mean versus the standard deviation of the normalized innovations525

for each of the four (4) sub-basins using the GRGS product excluding PGR correction.526

The different colors represent different amounts of measurement error standard deviation527

used during the DA experiments relative to the nominal values listed in Table 1. The528

most striking feature is that all of the mean innovations are negative regardless of the529

sub-basin or the measurement error. This suggests the DA procedure attempts to correct530

a systematic bias where the model contains too much water relative to the GRACE531

observations during certain times of the year. This can be seen via inspection of Figure532

4e where the individual sub-basin GRACE updates effectively remove mass most years at533

peak accumulation, particularly after January 2005. During the ablation and runoff phase,534

GRACE DA attempts to add mass in the subsurface, but the amount of mass added is, in535

general, less than the amount of SWE removed. Hence, the result is a posterior ensemble536
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with less TWS. This behavior is further discussed in the following section via inspection537

of the analysis increments.538

The second feature of note in Figure 9 is the wide range in σNI resulting from changes539

to the measurement error standard deviation. As expected, an increase in measurement540

error causes an increase in the denominator of Equation (5), which causes a corresponding541

reduction in the spread (or standard deviation) of the normalized innovation sequence.542

If the design of HP−

t H
T is assumed reasonable, Figure 9 suggests that 2× the nominal543

measurement error standard deviation of Table 1 is too large. A large measurement error544

variance (relative to the background error variance) results in a small value of the gain545

K (Equation (3)), which leads to only minimal assimilation updates. Conversely, a value546

of 0.5× the nominal measurement error standard deviation is too small, which causes547

the assimilation to overly “trust” the measurement quality and effectively make too large548

of an update toward the GRACE measurements. Based on σNI , application of 1.0× to549

1.5× the estimated measurement error appears reasonable and is similar to the GRACE550

measurement errors used in Zaitchik et al. [2008] and Su et al. [2010].551

7.5. Analysis Increments

Investigation of the analysis increments (i.e., difference between x+
t and x−

t ) can provide552

valuable insight into the behavior of the assimilation procedure. It enables one to track553

mass within the relevant TWS components in order to see how much and at what time554

mass is being added to or removed from the system. Figure 10 shows the analysis incre-555

ments from the assimilation of the GRGS product excluding PGR correction. The thin,556

solid line shows the increments made to the subsurface TWS component as the negative557

of the catchment deficit prognostic variable. Assimilation updates were not applied to the558
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surface soil excess or root zone soil excess states. However, this is inconsequential as the559

efficacy with which Catchment redistributes water in the subsurface is overwhelmingly560

dominated by the catchment deficit variable [Zaitchik et al., 2008]. Averaged over time561

and space the increments are positive for a total of 12.5 mm, which means assimilation562

results in increasing the amount of water in the subsurface. This is most evident during563

the spring and summer. The thick, dashed line shows the increments for SWE summed564

across the three individual SWE layers. Averaged over time and space SWE is removed565

during the accumulation phase with a small amount added back during the ablation and566

runoff phase for a total SWE increment of -45.1 mm. Collectively, the analysis increments567

to the catchment deficit and SWE serve to reduce mass during snow accumulation and568

then increase the mass during ablation and runoff. These two phenomena essentially con-569

strain the amplitude of the modeled TWS dynamics such that better agreement with the570

GRACE observations is achieved.571

8. Conclusions

GRACE-derived estimates of TWS were assimilated into a land surface model for the572

purpose of improved snow pack characterization in northwestern Canada. It was shown573

that the conditioning procedure, in general, could reduce MD and RMSD in the SWE esti-574

mates (prior versus posterior) when compared against the CMC snow product. However,575

anomaly R values were typically degraded as a result of the assimilation. Even though576

the anomaly R differences were not statistically significant at the 5% level, they suggest577

some degree of reduced skill at simulating inter-annual variability when using the DA578

procedure. A comparison of model results against GRDC runoff observations suggested579

relatively little change to runoff MD and RMSD statistics. Anomaly R values for runoff,580
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however, were improved at several locations and remain essentially unchanged at the basin581

outlet. Improvements to anomaly R values for runoff are mostly attributable to a more582

delayed runoff response with assimilation.583

These results are encouraging, but it is important to highlight shortcomings and discuss584

potential improvements that could be made in future developments. For example, the585

land surface model used in this study does not contain a river routing scheme. Runoff is586

effectively routed to the outlet instantaneously. However, given the size and extent of the587

MRB, runoff residence times near the basin outlet can be conservatively estimated to be588

on the order of a couple of months. The improvements to runoff anomaly R values are589

generally associated with a delayed runoff response that effectively retains water within590

the basin for a longer period of time. That is, the assimilation acts to correct some of the591

limitations in the model physics that could likely be addressed via inclusion of a runoff592

routing routine. Similarly, the land surface model does not contain a lake storage routine.593

Changes in lake storage can be a significant contributor to TWS and can also be an594

important factor in attenuating hydrologic runoff response at the basin outlet. Analogous595

to a runoff routing routine, inclusion of a lake level storage routine could likely improve596

runoff timing relative to the GRDC observations. Development and testing of runoff597

routing and lake storage routines are beyond the scope of this current study, but would598

be worthwhile addressing in future work.599

In addition, another limitation of this study is a lack of subsurface observations (i.e., soil600

moisture and groundwater) to evaluate model results. Updates to the catchment deficit601

prognostic variable can only be discussed in a qualitative sense without a valid dataset602

to make quantitative comparisons. Unfortunately, soil moisture and groundwater level603
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measurements are not readily available in hydrologic basins located in the high latitudes604

thereby making such a comparison difficult if not impossible. The lack of subsurface605

observations severely limits the conclusions that can be made about the ability of the606

assimilation to effectively disaggregate TWS into snow, soil moisture, and groundwater607

components.608

Despite these shortcomings, the GRACE DA procedure did improve MD and RMSD609

statistics of SWE in the MRB as well as improved some runoff estimates in terms of inter-610

annual variability. These preliminary findings are encouraging and suggest the potential611

for further improvements via merger with passive microwave and visible spectrum remote612

sensing products to further downscale the GRACE observations in time and space while613

simultaneously disaggregating the GRACE observations into individual, vertical compo-614

nents of TWS. Finally, additional improvements could be achieved through refining the615

GRACE measurement error model, investigating the effects of different horizontal error616

correlation lengths within the land surface model forcings, determining a more optimal617

GRACE measurement scale, utilizing a more optimal GRACE averaging kernel, and bet-618

ter constraining of PGR model estimates used during GRACE preprocessing.619
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Table 1. Sub-basin characteristics for the MRB (land areas only) along with applied GRACE

measurement error covariance, R.

Sub-basin Name Land Area [km] R [mm2]

Peel+Bear 4.1 × 105 182

Slave 3.6 × 105 162

Liard 2.8 × 105 172

Peace+Athabasca 5.7 × 105 162

Entire Mackenzie 1.6 × 106 172
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Table 2. Parameters for perturbations to meteorological forcing inputs and model prognostic

variables.

Perturbation Type Standard Deviation Units L [deg] AR(1) [day]

Precipitation M 0.5 - 2 3
Shortwave Radiation M 0.5 - 2 3
Longwave Radiation A 50 W m−2 2 3
Snow Water Equivalenta M 0.0004 - 2 1
Catchment Deficit A 0.05 mm 2 1
Surface Soil Excess A 0.02 mm 2 1
aPerturbations made to all three (3) snow layers; M=Multiplicative; A=Additive;
L=spatial correlation length; AR(1)=first-order auto-regressive temporal correlation
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Table 3. GRDC runoff measurement characteristics.

Station Station Upland
Number ID Area [km2]

Sub-basin Aggregation

1 4208271 2.75 × 105 Liard
2 4208450 2.93 × 105 Peace
3 4208400 6.06 × 105 Peace+Athabasca
4 4208005 1.27 × 106 Slave+Liard+Peace+Athabasca
5 4208150 1.57 × 106 Slave+Liard+Peace+Athabasca+Bear
6 4208025 1.66 × 106 Entire Mackenzie
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Table 4. Statistics for the OL and DA experiments relative to the INAC snow surveys.

Ensemble MD [mm] RMSD [mm]

OL -28 39
DA -31 41
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Figure 1. Simplified flowchart of EnKS application.
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Figure 2. Map of Mackenzie River Basin including a) GEOS-5 topography, sub-basin delin-

eation, and GRDC observation locations (solid dots), and b) Sturm et al. [2010] snow type with

INAC snow survey locations (hollow diamonds).
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Figure 3. Conceptual representation of the components of Catchment model terrestrial water

storage where 1=catchment deficit, 2=root zone excess, 3=surface soil excess, 4-6=individual

snow layers, and 7=canopy interception.
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Figure 4. TWS estimates for the OL (dark gray), DA (light gray), and GRACE (dots) for

the GRGS product without PGR correction. Each line represents the respective ensemble mean

whereas the error bars represent the standard deviation of the GRACE observations.
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Figure 5. SWE estimates from OL (green), DA (red), and CMC (black dots) for the GRGS

product without PGR correction. Solid lines represent the ensemble means (left axis) and dashed

lines represent the ensemble standard deviations (right axis). CMC SWE estimates were derived

from CMC snow depths using Sturm et al. [2010] snow densities.
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Figure 6. SWE statistics of a) MD, b) RMSD, and c) anomaly R for open-loop (white), DA

without PGR correction (light gray), and DA with PGR correction (dark gray) results relative

to CMC-derived SWE estimates via Sturm et al. [2010]. For anomaly R values, asterisks indicate

statistically significant differences between the OL and DA.
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Figure 7. Runoff from OL (green), DA (red), and GRDC observations (black dots) at 6 dif-

ferent locations for the GRGS product without PGR correction. Upland drainage area increases

from the upper-left subplot through the lower-right subplot (see Table 3 for definitions). Solid

lines represent the ensemble means (left axis) and dashed lines represent the ensemble standard

deviations (right axis).
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Figure 8. Runoff statistics of a) MD, b) RMSD, and c) anomaly R for open-loop (white), DA

without PGR correction (light gray), and DA with PGR correction (dark gray) results relative to

GRDC runoff estimates for the GRGS product without PGR correction. For anomaly R values,

asterisks indicate statistically significant differences between the OL and DA.
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Figure 9. Innovation statistics for the GRGS product without PGR correction for the 4 sub-

basins shown as different marker shapes. The different marker colors represent varying amounts

of GRACE measurement error standard deviation relative to the nominal values shown in Table

1.
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Figure 10. Analysis increments for the entire MRB using the GRGS product without PGR

correction. The thin, solid line represents the subsurface increments (displayed as the negative of

the catchment deficit increments) whereas the thick, dashed line represents the increments from

the summation of the three individual SWE layers.
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