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Technology Focus: Sensors

A digital architecture has been im-
plemented for a trace gas sensor plat-
form, as a companion to standard ana-
log control electronics, which
acc ommodates optical absorption
whose fractional absorbance equivalent
would result in excess error if assumed
to be linear. In cases where the absorp-
tion (1-transmission) is not equivalent
to the fractional absorbance within a
few percent error, it is necessary to ac-

commodate the actual measured ab-
sorption while reporting the measured
concentration of a target analyte with
reasonable accuracy. This requires in-
corporation of programmable intelli-
gence into the sensor platform so that
flexible interpretation of the acquired
data may be accomplished. 

Several different digital component
architectures were tested and imple-
mented. Commercial off-the-shelf digi-

tal electronics including data acquisi-
tion cards (DAQs), complex program-
mable logic devices (CPLDs), field-pro-
grammable gate arrays (FPGAs), and
microcontrollers have been used to
achieve the desired outcome. The most
completely integrated architecture
achieved during the project used the
CPLD along with a microcontroller. The
CPLD provides the initial digital de-
modulation of the raw sensor signal,
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This work relates to the generic prob-
lem of remote active imaging; that is, a
source illuminates a target of interest
and a receiver collects the scattered light
off the target to obtain an image. Con-
ventional imaging systems consist of an
imaging lens and a high-resolution de-
tector array [e.g., a CCD (charge cou-
pled device) array] to register the image.
However, conventional imaging systems
for remote sensing require high-quality
optics and need to support large detec-
tor arrays and associated electronics.
This results in suboptimal size, weight,
and power consumption. 

Computational ghost imaging (CGI)
is a computational alternative to this tra-
ditional imaging concept that has a very
simple receiver structure. In CGI, the
transmitter illuminates the target with a
modulated light source. A single-pixel
(bucket) detector collects the scattered
light. Then, via computation (i.e., post-
processing), the receiver can “recon-
struct” the image using the knowledge
of the modulation that was projected
onto the target by the transmitter. This
way, one can construct a very simple re-
ceiver that, in principle, requires no lens
to image a target. 

Ghost imaging is a transverse imag-
ing modality that has been receiving
much attention owing to a rich inter-

connection of novel physical character-
istics and novel signal processing algo-
rithms suitable for active computa-
tional imaging. The original ghost
imaging experiments consisted of two
correlated optical beams traversing dis-
tinct paths and impinging on two spa-
tially-separated photodetectors: one
beam interacts with the target and then
illuminates on a single-pixel (bucket)
detector that provides no spatial resolu-
tion, whereas the other beam traverses
an independent path and impinges on
a high-resolution camera without any
interaction with the target. The term
“ghost imaging” was coined soon after
the initial experiments were reported,
to emphasize the fact that by cross-cor-
relating two photocurrents, one gener-
ates an image of the target. In CGI, the
measurement obtained from the refer-
ence arm (with the high-resolution de-
tector) is replaced by a computational
derivation of the measurement-plane
intensity profile of the reference-arm
beam. The algorithms applied to com-
putational ghost imaging have diversi-
fied beyond simple correlation meas-
urements, and now include modern
reconstruction algorithms based on
compressive sensing. 

The physical principles underpinning
CGI are as follows: the transmitter, by use

of a spatial light modulator, projects a
spatiotemporally varying speckle pattern
on the target. The scattered light from
the target is collected with a simple
bucket detector offering no spatial reso-
lution. The photocurrent, whose fluctua-
tions in excess of the shot-noise floor are
proportional to the sum of the fluctua-
tions seen in the transmitter-generated
speckles, is then processed to resolve the
transverse profile of the object. This sig-
nal processing can take on a rather ele-
mentary linear form such as cross-corre-
lation, or can be more complex and
nonlinear, such as L1-norm minimiza-
tion. The latter form of ghost imaging is
known as compressive, as it utilizes tech-
niques developed for compressive imag-
ing. Turbulence near the target has neg-
ligible impact on ghost imaging. The
most restrictive source of speckle in re-
mote sensing is that induced by the dif-
fuse surface scattering from the target it-
self. It is evident from earlier analysis that
once the speckle is fully developed, no
additional gain is possible from integra-
tion, and de-correlated speckles must be
obtained by using angular, spectral, or
polarization diversity.

This work was done by Baris I. Erkmen of Cal-
tech for NASA’s Jet Propulsion Laboratory. For
more information, contact iaoffice@jpl.nasa.gov.
NPO-48157 

Computational Ghost Imaging for Remote Sensing 
Ghost imaging is used in encryption, remote sensing, and biomedical imaging applications. 
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and then communicates over a parallel
communications interface with a micro-
controller. The microcontroller ana-
lyzes the digital signal from the CPLD,
and applies a non-linear correction ob-
tained through extensive data analysis
at the various relevant EVA operating
pressures. The microcontroller then
presents the quantitatively accurate car-
bon dioxide partial pressure regardless
of optical density. 

This technique could extend the lin-
ear dynamic range of typical absorption

spectrometers, particularly those whose
low end noise equivalent absorbance is
below one-part-in-100,000. In the EVA
application, it allows introduction of a
path-length-enhancing architecture
whose optical interference effects are
well understood and quantified without
sacrificing the dynamic range that allows
quantitative detection at the higher car-
bon dioxide partial pressures. The digi-
tal components are compact and allow
reasonably complete integration with
separately developed analog control

electronics without sacrificing size, mass,
or power draw. 

This work was done by Paula Gonzales,
Miguel Casias, Andrei Vakhtin, and Jeffrey
Pilgrim of Vista Photonics, Inc. for Glenn Re-
search Center. Further information is con-
tained in a TSP (see page 1).

Inquiries concerning rights for the commer-
cial use of this invention should be addressed to
NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steven Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleveland,
Ohio 44135. Refer to LEW-18730-1.
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Dispersed Fringe Sensing (DFS) is a
technique for measuring and phasing
segmented telescope mirrors using a dis-
persed broadband light image. DFS is
capable of breaking the monochromatic
light ambiguity, measuring ab solute pis-
ton errors between segments of large
segmented primary mirrors to tens of
nanometers accuracy over a range of
100 micrometers or more. 

The DFSA software tool analyzes DFS
images to extract DFS encoded segment
piston errors, which can be used to meas-
ure piston distances between primary
mirror segments of ground and space
telescopes. This information is necessary
to control mirror segments to establish a
smooth, continuous primary figure
needed to achieve high optical quality. 

The DFSA tool is versatile, allowing
precise piston measurements from a vari-
ety of different optical configurations.
DFSA technology may be used for meas-

uring wavefront pistons from sub-aper-
tures defined by adjacent segments (such
as Keck Telescope), or from separated
sub-apertures used for testing large opti-
cal systems (such as sub-aperture wave-
front testing for large primary mirrors
using auto-collimating flats). An experi-
mental demonstration of the coarse-phas-
ing technology with verification of DFSA
was performed at the Keck Telescope. 

DFSA includes image processing,
wavelength and source spectral calibra-
tion, fringe extraction line determina-
tion, dispersed fringe analysis, and wave-
front piston sign determination. The
code is robust against internal optical
system aberrations and against spectral
variations of the source. In addition to
the DFSA tool, the software package
contains a simple but sophisticated
MATLAB model to generate dispersed
fringe images of optical system configu-
rations in order to quickly estimate the

coarse phasing performance given the
optical and operational design require-
ments. Combining MATLAB (a high-
level language and interactive environ-
ment developed by MathWorks),
MACOS (JPL’s software package for
Modeling and Analysis for Controlled
Optical Systems), and DFSA provides a
unique optical development, modeling
and analysis package to study current
and future approaches to coarse phasing
controlled segmented optical systems. 

This work was done by Norbert Sigrist,
Fang Shi, David C. Redding, Scott A.
Basinger, Catherine M. Ohara, Byoung-Joon
Seo, Siddarayappa A. Bikkannavar, and
Joshua A. Spechler of Caltech for NASA’s Jet
Propulsion Laboratory. For more informa-
tion, contact iaoffice@jpl.nasa.gov.

This software is available for commercial li-
censing. Please contact Daniel Broderick of
the California Institute of Technology at
danielb@caltech.edu. Refer to NPO-48019. 

Indium Tin Oxide Resistor-Based Nitric Oxide Microsensors
Applications for these sensors include engine emission and environmental monitoring.
John H. Glenn Research Center, Cleveland, Ohio

A sensitive resistor-based NO mi-
crosensor, with a wide detection range
and a low detection limit, has been de-
veloped. Semiconductor microfabrica-
tion techniques were used to create a
sensor that has a simple, robust struc-
ture with a sensing area of 1.10 × 0.99
mm. A Pt interdigitated structure was
used for the electrodes to maximize the
sensor signal output. N-type semicon-
ductor indium tin oxide (ITO) thin film
was sputter-deposited as a sensing mate-
rial on the electrode surface, and be-

tween the electrode fingers. Alumina
substrate (250 µm in thickness) was se-
quentially used for sensor fabrication.

The resulting sensor was tested by ap-
plying a voltage across the two elec-
trodes and measuring the resulting cur-
rent. The sensor was tested at different
concentrations of NO-containing gas at
a range of temperatures. Preliminary re-
sults showed that the sensor had a rela-
tively high sensitivity to NO at 450 °C
and 1 V. NO concentrations from ppm
to ppb ranges were detected with the

low limit of near 159 ppb. Lower NO
concentrations are being tested.

Two sensing mechanisms were in-
volved in the NO gas detection at ppm
level: adsorption and oxidation reac-
tions, whereas at ppb level of NO, only
one sensing mechanism of adsorption
was involved.

The NO microsensor has the advan-
tages of high sensitivity, small size, sim-
ple batch fabrication, high sensor yield,
low cost, and low power consumption
due to its microsize. The resistor-based


