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It is probable that no two engine companies determine the life of their engines or their 
components in the same way or apply the same experience and safety factors to their 
designs. Knowing the failure mode that is most likely to occur minimizes the amount of 
uncertainty and simplifies failure and life analysis. Available data regarding failure mode 
for aircraft engine blades, while favoring low-cycle, thermal mechanical fatigue as the 
controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T–1 
blade sets were removed from commercial aircraft engines that had been commercially 
flown by a single airline and inspected for damage. Each set contained 82 blades. The 
damage was cataloged into three categories related to their mode of failure: (1) Thermal-
mechanical fatigue, (2) Oxidation/Erosion, and (3) Other. From these field data, the turbine 
blade life was determined as well as the lives related to individual blade failure modes using 
Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and 
reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). 
The resulting blade life attributed to oxidation/erosion equaled that attributed to thermal- 
mechanical fatigue. The category that contributed most to blade failure was “Other.” If 
there were there no blade failures attributed to oxidation/erosion and thermal-mechanical 
fatigue, the overall blade L10 life would increase approximately 11 to 17 percent. 

Nomenclature 
e = Weibull slope 
F = probability of failure, fraction or percent 
Fm    =  mean probability of failure 
k = life at operational condition, number of stress cycles or hr 
L = life, number of stress cycles or hr 
L = characteristic life or life at which 63.2 percent of population fails, number of stress cycles or hr  
L10 = 10-percent life or life at which 90 percent of a population survives, number of stress cycles or hr 
Lavg  = average life, total time divided by total number of components, number of stress cycles or hr 
LM    =  mean time to removal 
Lm = mean life of a population, number of stress cycles or hr 
M = total number of stress cycles at operating condition where M = pm 
N     = total number of engine operational condition changes over flight profile 
Neng    = total number of engines in overhaul in field data set 
m = number of stress cycles per interval 
n = number of blades in a set 
nblade   =  number of blade failures within a specified blade set of the population Neng 
p = number of intervals 
S = probability of survival, fraction or percent 
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t = time to blade set removal, cycles or hr 
V = volume, m3, (in3) 
X = fractional percent of components or blades failed from specific cause,  
  or operating variable (Appendix A) 
Xn = fractional percent of time at operational condition 
σ = stress, Pa (psi)  
σu = location parameter below which stress no failure will occur, Pa (psi) 
σβ = characteristic stress at which 63.2 percent of population fails, Pa (psi) 
 

Subscripts: 

avg = designation of average life 
blade   =  turbine blade of a blade set  
blade set = turbine blade set 
eng    =  engine 
fm = cataloged failure mode 
i = i-th component out of n 
k = k-th engine operational condition within flight profile  
m = designation of mean life or probability of survival at mean life 
n = n-th component of a set of blades; number of blades in blade set  
mis = mission or operational life 
ref = reference life or reference probability of survival 
sys = system probability of survival or system life 
V = volume 
β = designation of characteristic life 
1,2 = bodies 1, 2, etc.; failure mode 1, 2, etc. 

I. Introduction 

HE service life of an aircraft gas turbine engine is based on deterministic calculations of low-cycle fatigue 

and previous field experience with similar engines. It is probable that no two engine companies determine the 

life of their engines in the same way or apply the same experience and safety factors to their designs.1 Davis and 

Stearns2 and Halila et al.3 discuss the mechanical and analytical methods and procedures for turbine engine and 

high-pressure turbine design. The designs of the engine components are based on life predictions by using material 

test curves that relate life in cycles or time (hrs.) as a function of stress. Six criteria for failure were presented: (1) 

Stress rupture; (2) Creep; (3) Yield (4) Low-cycle fatigue (LCF); (5) High-cycle fatigue (HCF); and (6) Fracture 

mechanics. Not mentioned as probable failure modes and/or cause for removal of rotating engine components in 

Refs. 2 and 3 are oxidation, corrosion, and erosion (wear). 

Turbine blade metal temperatures frequently reach 1040 to 1090 °C (1900 to 2000 °F), only a few hundred 

degrees below the melting point of the alloys used. Only because of oxidation-protective coatings and internal 

forced cooling is it possible for metals to be used under such harsh conditions. All commercial aircraft gas turbine 

engines use some form of nickel- or cobalt-base superalloy that has been intentionally strengthened and alloyed to 

resist high stresses in a high-temperature oxidizing environment.4 

T 
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Aircraft engine turbine blades are not life-limited parts; that is, they can be used until they are no longer 

repairable, unlike limited life parts that must be removed after a specified amount of time or cycles, even if they 

appear new. The blades undergo regular inspections that result in no action, repair, or removal for cause. In this 

paper, a blade is considered failed when it is no longer fit for service and must be either repaired or replaced.  

It is believed that the primary failure mechanism in turbine blades is thermal-mechanical fatigue (TMF). TMF 

cracks usually appear along the leading or trailing edge of the first-stage high-pressure turbine (HPT) T–1 blade.5 

Also, because the turbine blades are exposed to highly corrosive and oxidizing combustion gases and the loss of 

metal by scaling, spalling, and corrosion can cause rapid failure.  

Turbine blade materials have creep-rupture resistance to minimize creep failure at high speed and temperature 

for extended periods. Initially, the time to removal of these blades is determined by a creep criterion that is 

deterministic or is not assumed to be probabilistic. Material test data are used to predict rupture life based on 

calculated stress and temperature. This criterion is dependent on time exposure at stress and temperature.1 

Blade coating life is another time-limiting criterion for removal and repair. The blades usually are removed when 

the engine is removed from service for other reasons, and, as necessary, the remaining coating is removed by 

chemical stripping or machining and is replaced. The coating life usually does not dictate blade replacement, only 

repair.1 

Besides the time-life limitation of creep, the limiting time for blade replacement is high-cycle fatigue (HCF) life. 

As with low-cycle fatigue (LCF), HCF is probabilistic. The blades are subject to vibratory stresses combined with 

mechanical stresses from centrifugal loads, gas aerodynamic loads, and thermal loads.1 

The failure modes for each blade in a turbine blade set are competitive. Knowing the blade failure mode that is 

most likely to occur minimizes the amount of uncertainty and simplifies failure and blade life analysis. Available 

data regarding failure mode, although favoring low-cycle, thermal-mechanical fatigue as the controlling mode of 

failure, are not definitive. 

There are several other major contributors besides the competing failure modes that contribute to turbine blade 

set life uncertainty. First the data are quantal-response data. This means that the data are either censored on the left 

(before failure occurs) or censored on the right (failure has not occurred by a defined time). This situation arises 

when each blade is inspected only once and is determined to have failed or not failed. For turbine blade data, this 
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type of information can be useful for reliability studies if the failed blades can be clustered by age (time to failure) at 

inspection (and the range of ages is large relative to the part life).6 

In 1939, W. Weibull7–9 is credited with being the first to suggest a reasonable way to estimate fracture strength 

with a statistical distribution function. He also applied the method and equation to fatigue data based on small 

sample (population) sizes. Leonard Johnson10 while with the GM Research Center in the 1950s and 60s is credited 

with coming up with a practical engineering analysis based on the Weibull distribution function.7–9 Johnson, using 

the Weibull distribution function to evaluate fatigue data, provides a means to evaluate censored data and to extract 

from these data the lives of the individual components that affect the system life.  

In view of the aforementioned, it becomes the objectives of the work reported herein to (1) determine turbine 

blade life from turbine engine field data using Johnson-Weibull analysis, (2) determine the turbine blade life related 

to individual blade failure modes, and (3) provide a simplified formula for determining turbine blade life from field 

data for engine turbine blade sets. 

II. High-Pressure Turbine T–1 Blade Sets 

A. Engine Operation and Repair  

When a new aircraft engine is introduced into an airline fleet, one of the first questions asked is what will be the 

average time (hr) between overhaul or refurbishment of the high-pressure turbine (HPT) T–1 blades. Typically, for a 

new engine program the airlines bring the engines in early for overhaul, for example, approximately at 10 000 hr. As 

the airlines gain experience and confidence with an engine type, the time to refurbishment is increased for first-run 

engines, for example, at 22 000 hr. After refurbishment, second-run engines probably get around 15 000 hr on the 

wing. The hot section is typically overhauled when the engine is removed from service.1 

The typical hour-to-cycle ratio depends on the airline operator. Short-haul airline operation typically runs 

between 1 to less than 4 hr/cycle. Long-haul, coast-to-coast airline operation in the continental United States 

typically runs between 4 to 6 hr/cycle. For other airline operations, the average can be 6 to 13 hr/cycle. These 

numbers play an important part in the overhaul process. It is expected that for the shorter cycle engines there will be 

more deterioration on the hot-section parts on the engines that have a shorter time cycle, implying that the 

deterioration is cycle dependent rather than time dependent.  
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When an aircraft engine is removed from service for cause and shipped to the refurbishment shop, the engine and 

the performance of its individual module are evaluated and the root cause of removal determined. If the engine is 

removed for performance or hardware deterioration or major part failure, the engine will be, in most cases, 

completely broken down into modules: for example, compressor, turbine, auxiliary gearbox, and so forth. Each 

module will then be refurbished.1 

B. HPT T–1 Blades 

A photograph of the blade type studied in this report is shown in Fig. 1(a). The blade is made from a single-

crystal nickel-based alloy and plated using plasma vapor deposition (PVD) to provide oxidation and corrosion 

resistance. The blade material and coating chemistries are given in Table 1.11 The blade section is approximately 

71 mm (2.8 in.) in height and has a cord length at the tip of approximately 37 mm (1.46 in.). The height from the 

blade root to the blade tip is approximately 118 mm (4.65 in.). The blade weighs approximately 277 g (0.611 lb). 

There are 82 blades in a T–1 blade set for the particular engine application studied.  

 

 

Figure 1. Comparison of unfailed and failed T–1 turbine blades used in study. (a) Example of 
unfailed T–1 turbine blade. (b) Example of failed T–1 turbine blade. 
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Table 1. T–1 Turbine Blade Material Chemistry11 
Chemical element, 

wt% 
Density, 
kg/m3 

(lb/in.3) 
Ni Cr Ti Mo W Re Ta Al Co Hf Si Y 8.94103 

(0.323) Bal. 5 0 2 6 3 8.7 5.6 10 0.1 --- --- 
Overlay (coating) 

x1 x3 --- --- --- --- --- x4 x2 x5 x6 x7 ---------- 

x elements of proprietary composition, x1 > x2 …etc 

 

A total of 82 blades is inserted around a T–1 turbine disk. The resulting tip-to-tip diameter of the blades is 

approximately 0.93 m (36.5 in.). The blades are spun at a speed of approximately 9126 rpm during cruise, or 

84.5 percent of the maximum speed of 10 800 rpm. Loading on the blades is due to centrifugal load, thermal loads 

from heating of the blades, aerodynamic loads from impingement of the hot combustion gases against the blade, and 

vibratory loads due to blade rotation. A load and stress analysis of these blades was beyond the scope of this paper. 

An engine is borescoped periodically to determine its health. It is not uncommon to find that the HPT blades 

deteriorate in service because of the extreme operating conditions they encounter. Even when an engine is operating 

properly, it can experience some form of hardware deterioration of the high-pressure turbine (HPT) T–1 blades. 

Such a failed blade is shown in Fig. 1(b). At the time of removal this blade had run 15 000 hr (2700 cycles). The 

condition is typical for this time period. 

C. Blade Failure Criteria. 

For the purpose of this report, blade failure is defined as the blade being no longer fit for its intended purpose but 

still capable of functioning for a limited time until being removed from service. Depending on the condition of the 

deterioration, an engine may be allowed to remain in service on a decreased-cycle inspection interval until it is 

determined that the deterioration is beyond limits (or its exhaust gas temperature (EGT) margin is too small) and the 

engine must be removed from service.1 Causes of blade failure and/or removal are as follows: 

 

1. Creep (Stress rupture) 

2. Yield 

3. Thermal-mechanical fatigue (TMF) 

a. Low-cycle fatigue (LCF) 

b. High-cycle fatigue (HCF) 
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4. Fracture mechanics (flaw initiated crack) 

5. Fretting (wear and fatigue) 

6. Oxidation 

7. Corrosion 

8. Erosion (wear) 

9. Foreign object damage (FOD) 

10. Wear (blade tip rub) 

 

For post-operation failure inspection of blade sets, the blade failures were cataloged under three categories: 

 

1. Thermal-mechanical fatigue 

2. Oxidation/Erosion 

3. Other (creep, yield, fracture mechanics, fretting, corrosion, FOD, and wear ) 

 

The blades removed from service can generally be repaired or refurbished two or more times. The blades can be 

stripped of their coatings and recoated. There is a minimum wall thickness and aerodynamic shape that must be met 

before the blade can be recoated. They can have minor blend repairs and new abrasive tips installed, and the roots 

can be shot peened. Of those T–1 blades that are scrapped, approximately 90 percent are due to under-platform 

stress corrosion.  

III. Procedure 

Sixteen high-pressure turbine (HPT) T–1 blade sets were removed from commercial aircraft engines that had 

been commercially flown by a single airline. These engines were brought to the maintenance shop for refurbishment 

or overhaul. The blades on each HPT T–1 blade set were removed and inspected for damage. The damage was 

cataloged into three categories related to their mode of failure: 

 

1. Thermal-mechanical fatigue (TMF) 

2. Oxidation/Erosion (O/E) 
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3. Other (O) 

The technician had a preset order in which to look for failure modes. The blades were first inspected for thermal-

mechanical fatigue (TMF). If cracks were evident on the blade, and even if other failure modes were also evident, 

the cause for removal was cataloged as TMF. The blades not failed from TMF were inspected for oxidation/erosion 

(O/E). As with those blades cataloged as being failed by TMF, those blades that exhibited O/E damage were so 

cataloged even where damage from other failure modes were manifested on the blade. The blades not failed for 

TMF or O/E were examined for damage for the other causes discussed previously. These other causes were not 

separately identified and were categorized and cataloged as “Other.”  

A list of the engine blade sets, their time at removal, their respective number of failures, and their failure modes 

are given in Table 2. Of a total of 1312 blades contained in the Neng = 16 blade sets, 111 were considered to have 

failed, or approximately 8.5 percent of the population. Although each of these blade sets were to have been 

comprised of all new blades when installed in the engine, three blade sets had a mix of new blades with previously 

run (older) blades. The failures that were reported for the mixed blade sets did not distinguish between the older and 

newer blades. 

Table 2. Data Set for T–1 Turbine Blade Sets Including Estimated Time 
to First Blade Failure in a Set and Causes of Failure 

[Number of Turbine Blades in Set, 82] 
Engine 
number 

Time of removal  
of blade set 

Number 
of 

failures 

Observed failure mode Estimated time 
to first blade 

failure, 
cycles 

hr cycles Oxidation/erosion Thermal/mechanical Other 
Number of blades failed 

1B 5 898 1327 1 --- --- 1 1327 
2B 7 318 1404 5 3 2 --- 1017 
3B 8 188 1675 2 --- --- 2 1443 
4B a8 333 1747 3 --- 1 2 1391 
5B 9 049 1827 4 3 --- 1 1379 
6B 8 717 1843 41 --- 1 40 886 
7B 9 600 1924 10 --- 10 --- 1228 
8B 10 113 2043 4 1 1 2 1542 
9B 7 770 2047 7 7 --- --- 1394 
10B 10 675 2091 2 --- --- 2 1801 
11B 7 690 2115 4 1 1 2 1596 
12B 11 051 2175 2 --- 1 1 1873 
13B 10 398 2184 12 4 --- 8 1348 
14B 11 614 2292 5 1 1 3 1660 
15B 10 238 2295 3 3 --- --- 1827 
16B 14 083 2847 6 --- 4 2 1994 
Total 111 23 22 66  

Lavg 9 421 1990  1482 
aEstimated     

 



DRAFT 

 9  
 American Institute of Aeronautics and Astronautics 

Ideally, the time to failure for each blade in a set should be known. More specifically, the time at which the first 

blade fails in a set should be known based on the assumption that at the time of the first failure, the entire set is no 

longer fit for its intended purpose. For these type data, these times are not available and will have to be estimated. 

However, once the time to first failure in a set is determined or estimated, the distributive lives of the blades can be 

determined as well as the resulting lives from each failure mode. 

IV. Statistical Analysis  

A. Weibull Analysis 

In 1939, W. Weibull8,9 is credited with being the first to suggest a reasonable way to estimate fracture strength 

with a statistical distribution function. He also applied the method and equation to fatigue data based on small 

sample (population) sizes. The probability distribution function identified by Weibull is as follows: 

 10;0whereln
1

lnln 


















SL
L

L
e

S 
 (1) 

This form of Eq. (1) is referred to as the 2-parameter Weibull distribution function. The derivation of this 

equation is given in Ref. 12, and in Appendix A. 

The variable S is the level of survivability being considered. For example, if 15 percent of the samples have 

failed, then the survivability would be 0.85. L is the life in cycles or hours at which the fraction (1 – S) of samples 

have failed. In the case of S equaling 0.9 (90 percent), L is the life at which 10 percent of the samples have failed—

typically referred to as the L10 life. L is the characteristic life of the material, defined as the life at which 

63.2 percent of the samples have failed. Finally, e is the Weibull parameter or slope, which is an indicator of the 

scatter or distribution in the data—the larger the slope, the smaller the amount of scatter.  

When plotting the ln ln [1/S] as the ordinate against the ln L as the abscissa, fatigue data are assumed to plot as a 

straight line (Fig. 2). The ordinate ln ln [1/S] is graduated in statistical percent of components failed or removed for 

cause as a function of ln L, the natural log of the time or cycles to failure. The tangent of the line is the Weibull 

parameter or slope e, which is indicative of the shape of the cumulative distribution or the amount of scatter of the 

data. A Weibull slope e of 1.0 is indicative of an exponential distribution of the data, 2.0 is a Rayleigh distribution, 
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and 3.57 is approximately that of a normal distribution of data. 

For convenience, the ordinate is graduated as the “statistical 

percent of components failed.” 

There are many examples of the use of the Weibull 

distribution function to determine the life and strength of 

materials, structural components, and machines. The first use of 

the Weibull distribution function outside of W. Weibull’s 

original reported work8,9 was by G. Lundberg and A. Palmgren13 

for predicting the life of ball and roller bearings. 

Burrow et al.14 used Weibull analysis to determine the 

reliability of tensile strength measurements on dental restorative 

materials. Ellis and Tordonato15 used Weibull analysis in their failure analysis and life assessment studies of boiler 

tubes. The fatigue life associated with corrosion fatigue cracking of welded tubing was predicted. 

Tomimatsu et al.16 used Weibull analysis in their determination of the fracture toughness of two steels used in 

reactor pressure vessel fabrication. Weibull analysis and dynamic fatigue slow-crack-growth parameters were used 

by Osborn et al.17 to demonstrate a significant difference in the high-temperature behavior of two silicon nitrides 

(SN–88 and NT164). Ostojic and Berndt18 demonstrated that Weibull parameters such as slope and characteristic 

life were meaningful parameters when determining the variability of bond strengths of thermally sprayed coatings. 

Holland and Zaretsky19 used Weibull statistics to determine the fracture strength of two different batches of cast 

A357–T6 aluminum. The mean fracture strengths for the two batches were found to differ by an insignificant 

1.1 percent. However, using a Weibull analysis they determined at the 99.9999 percent probability of survival (one 

failure in a million) that the actual fracture strengths differed by 14.3 percent. 

Weibull analysis can also be used to evaluate preventive maintenance practices. Williams and Fec20 studying 

reconditioned railroad roller bearings determined with Weibull analysis that the current practice of inspecting 

bearings at 200,000 miles was an acceptable practice. Summer-Smith21 applied Weibull analysis to the service life 

obtained from maintenance records that identified the cause of failure of a hydrodynamically lubricated thrust 

bearing and a rolling-element bearing, and increased production reliability. Similarly, Vlcek et al.22 used Weibull 

analysis to rank the relative fatigue lives of PVC coatings used in a printing process. The fatigue life of one PVC 

Figure 2. Generic Weibull plot where
(Weibull) slope of line is e; probability of
survival, Sβ, is 36.8 percent at which L = Lβ

or L/Lβ = 1. 
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coating over another was demonstrated using L10 lives, and the ratio of the L10 life of a developed PVC coating to 

the original was found to be 2.3.  

The method of using the Weibull distribution function for data analysis for determining component life and 

reliability was developed and refined by Johnson.10 The Johnson10 method was used to analyze the data reported 

herein. 

B. Strict-Series System Reliability Blade Life 

System life prediction or the life of a single blade set can be determined using “strict-series system reliability” 

derived in Appendix B.12,23 The reliability (or probability of survival), S, and the probability of failure, F, are related 

by F = (1 – S). For a given time or blade set life, the reliability of an individual blade set Ssys of independent blades 

making up the blade set is the product of the independent reliabilities of each individual blade in the blade set Si (i = 

1, 2, ..., n), as shown in Eq. (2): 

 nSSSS  21sys  (2) 

Where Ssys is the blade set reliability, and S1, S2…Sn is the reliability of each blade in the blade set. If all 

components have the same reliability S1 = S2…= Sn (as is assumed here), then Eq.(2) reduces to  

 n
nSS sys  (3) 

Where n is the number of blades in the blade set. For our case, each engine blade set has a total of 82 blades. 

Thus, for one blade set, Eq. (3) can be written as  

 82
nSS sys  (4) 

From Eq. (2), the lives of each of the blades at a specified reliability can be combined to determine the calculated 

system Lsys life of the set using the two-parameter Weibull distribution function (Eq. (1)) for the blades comprising 

the system and strict-series system reliability13 as follows: 
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where Lsys is the life of individual blade set and L1 , L2…Ln are the lives of the individual blades. The derivation for 

Eq. (5) is given in Appendix B.12 

In this work, the 82 blades in a set are each assumed to have the same life, L, where L1 = L2 = ...= Ln and 

Weibull slope, e = e1 = e2 = ... = en. Accordingly, Eq. (5) can be written for the 82 blades in a single blade set as  

 












nn ee LL

821

sys

 (6) 

The calculated system life is dependent on the resultant value of the system Weibull slope e.  

C. Linear Damage Rule 

The blade set life is calculated using Eq. (6) for each operating condition of its engine operating profile. In 

Appendix C is a representation of a short-duration flight profile (Fig. C.1). In order to obtain the operational life of 

the blade set, the resulting system lives for each of the operating conditions (illustrated in Fig. C.1) are combined in 

Eq. (7) using the linear damage (Palmgren-Langer-Miner) rule discussed in Appendix C24–27 where 
k

Lsys  is the life 

for condition k and Xk is the time fraction spent at condition k, (k = 1, 2, …N). 

 
Nk

L

X

L

X

L

X

L

X

L
Nk

syssyssyssysmis

 ...
1

21

21   (7) 

It is assumed that each of the blade sets in Table 2 have the same operational cycle. N = 16 changes in engine 

operational conditions over the flight profile for Fig. C.1. (Operational cycle N is not to be confused with Neng , the 

number of engine overhaul blade repairs of Table 2, which also has 16 entries). The most damaging condition is at 

take-off (TO) with the Cruise condition being the dominate time on the engine. 

V. Results and Discussion 

Sixteen high-pressure turbine (HPT) T–1 blade sets (Neng = 16) were removed from commercial aircraft engines 

that had been commercially flown by a single airline. These engines were brought to the maintenance shop for 

refurbishment or overhaul. The blades for these turbines were manufactured from a single-crystal nickel alloy whose 

chemical composition together with the chemical composition of the blade coating are given in Table 1. The blades 
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on each HPT T–1 blade set were removed and inspected for damage. The damage was cataloged in three categories 

related to their mode of failure: 

 

1. Thermal-mechanical fatigue (TMF) 

2. Oxidation/Erosion (O/E) 

3. Other (O) (creep, yield, fracture mechanics, fretting, corrosion, FOD, and wear ) 

 

The blades were first inspected for thermal-mechanical fatigue (TMF). If cracks were evident on the blade even 

if other failure modes were also evident, the cause for removal was cataloged as TMF. The remaining blades were 

inspected for oxidation/erosion (O/E). As with those blades cataloged as being failed by TMF, those blades that 

exhibited O/E damaged were so cataloged even where damage from other failure modes were manifested on the 

blade. The remaining blades were examined for damage for the other causes. These other causes were not identified 

and categorized and cataloged as “Other.” The time of removal of the blade sets together with the cataloged failure 

mode of those blades in each set that failed is summarized in Table 2.  

D. Field Data Analysis 

Weibull plots of these data for Neng = 16 based on the time of removal in flight hours and flight cycles are shown in 

Fig. 3. 
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Theoretically, the time to failure of a turbine blade set is the time at which the first blade in the set fails regardless 

of the cause. This is analogous to a weak link in a chain. The chain is failed when the first link fails. The problem is 

that we do not know when the first blade failed nor do we know for sure the time when the most recent blade failure 

in a particular blade set has occurred. For purpose of the analysis, assume that the most recent blade that has failed 

in a set fails at the time the set is removed from the engine (Table 2, Time of removal, cycles). From this 

assumption, we need to determine the time at which the first blade has failed. We assumed the following scenario:  

 

The set starts out with all new (unused) blades. 

The reliability, S(t), of the last blade that fails is  

  S(t) = 1 – F(t)  (8) 

In this calculation, the reliability, S(t) was estimated from the median rank of the failures, according to Eq. (9),21 

where i is the failure number and n is the number of individual blades in a set (in this case, n = 82): 

 
4.0

3.0





n

i
F  (9) 

 
Figure 3.  Weibull plots of turbine blade set removal time for high-pressure turbine T–1 blade  

sets from field data where Neng = 16. Number of T–1 turbine blades to a set, n = 82. (a) Flight 
hours. (b) Flight cycles. 
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Although  the time of the last failure in a blade set cannot be known with any reasonable certainty, it can be 

assumed to have occurred at or shortly before the blade set is removed from service. The time of removal of a blade 

set is obtained from Table 2. Also, the number of failures in each engine blade set is given in Table 2. As an 

example, for engine number 2B, the time of removal L is 1404 cycles and there are nblade = 5 failures within the 

blade set.  

It is assumed for purposes of calculation that when the first blade failure in a blade set occurs, the blade set is no 

longer fit for its intended purpose even though it is still functioning. Accordingly, estimation of the time of the first 

failure in the blade set is a precondition for determining turbine blade life. In order to accomplish this task, it is first 

necessary to determine the probability of failure out of a large blade population that the most recent failure in the 

blade set represents. For engine number 2B, solving for F in Eq. (9), where i = 5 and n = 82,  

 F = (5 – 0.3)/(82 + 0.4) = 0.057 (10a) 

From Eq. (8), 

 S = 1 – 0.057 = 0.943 (10b) 

From the field data (Table 2, engine 2B), the time of removal of the blade set is 1404 cycles. From the Weibull 

plot of Fig. 3(b), a Weibull slope e equal to 5.984 is obtained. These Weibull parameters are substituted in Eq. (1) to 

solve for the characteristic life, Lβ , of the blades for engine 2B, which is Lβ = 2255 cycles.  

Again referring to Eq. (9), the value for F of the first failure in that blade set is determined. For i = 1, F = 

0.0085. From Eq. (8), S = 0.9915. Substituting the value for S together with the Weibull slope e = 5.984 and Lβ = 

2255 in Eq. (1), the estimated time to the first failure is determined to be 1017 cycles. These calculations were 

repeated for each engine blade set. The resulting values are summarized in the last column of Table 2.  

A Weibull plot of the estimated time to first failure of each of the Neng = 16 blade sets is shown in Fig. 4 and is 

compared with the time of blade set removal from Fig. 3(b). The Weibull parameters for Fig.4, “Time to first blade 

failure” are summarized in Table 3. The mean time of the turbine blade set, Lm  blade set, of 1482 cycles (7016 hr), is 

based on the first turbine blade failure and is approximately 26 percent less than the average blade set removal time.  
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Table 3. Summation of Lives of T–1 Turbine Blade Sets and Individual Blades 
Based on Failure Mode Using Johnson-Weibull Analysis 

Weibull 
Parameters 

Blade set life 
(from Table 2 data) 

Individual blade life based on failure mode,  
cycles 

Time of removal Estimated 
time to first 

blade failure, 
cycles 

All failure 
modes 

Oxidation/erosion Thermal-mechanical 
fatigue 

Other 
hr cycles 

L1 life 4 337 993 668 1550 2093 2113 1717 
L5 life 5 873 1304 912 2116 2857 2884 2343 
L10 life 6 714 1471 1046 2427 3278 3309 2688 
L50 life 9 529 2015 1499 3478 4698 4742 3852 
Mean life b9 406 c1987 d1482 d3434 d4638 d4582 d3803 
aL 10 201 2142 1608 3731 5039 5086 4132 
Weibull slope 5.379 5.984 5.235 5.235 5.235 5.235 5.235 
aLife at a 63.2 percent probability of failure, characteristic life 
bLife at a 47.6 percent probability of failure 
cLife at a 47.2 percent probability of failure 
dLife at a 47.7 percent probability of failure  
 

These lives are summarized in Table 3. There is an insignificant difference in the Weibull slopes between the two 

Weibull plots. For purposes of comparison, the slope of 5.984 derived from the time of removal in cycles was used.  

Figure 4. Estimated time to first blade failure in 
set compared to blade set removal time. Number of 
T–1 turbine blades to a set, 82. 
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E. Turbine Blade Life  

Knowing the life of the blade set based on the estimated time to the first failure on each blade set, it is 

possible to determine the distributive lives of the individual blades from Eq. (6). It is assumed that the Weibull 

slope for each of the individual blades is identical to the Weibull slope for the blade sets based on the time to first 

failure from Fig. 4 and equals 5.235. 

Based on the characteristic life, Lβ, for the blade set of 1608 cycles (see Table 3 column, “Estimated time to first 

blade failure”), the calculated characteristic life, Lβ, for the individual blade is 3731 cycles (see Table 3 column, 

“All failure modes”). 

From Eq. (1) all the other blade lives for each 

probability of failure (survival) can be calculated. 

These results are summarized in Table 3 and are 

represented by the Weibull plot in Fig. 5 labeled 

“Individual blade life.” The mean individual blade 

life, Lm blade, is 3434 cycles (16256 hr), or 

approximately 2.3 times the mean life of the blade set, 

Lm blade set, of 1480 cycles (7008 hr). The L10 

individual blade life calculated from Johnson-Weibull 

analysis is 2427 cycles (11077 hr) compared to 1046 

cycles (4774 hr) for the blade set. The life of the blade 

set will always be less than the life of an individual 

blade at the same probability of survival (failure). 

F. Failure Mode 

The time of removal of the blade sets together with the cataloged failure mode of those blades in each set that 

failed is summarized in Table 2. As previously discussed, the blades were first inspected for thermal-mechanical 

fatigue (TMF). If cracks were evident on the blade even if other failure modes were also evident, the cause for 

removal was cataloged as TMF. The remaining blades were inspected for oxidation/erosion (O/E). As with those 

blades cataloged as being failed by TMF, those blades that exhibited O/E damaged were so cataloged even where 

Figure 5.  Calculated individual turbine T–1 blade
life from estimated time to first blade failure in
blade set. Number of T–1 turbine blades to a set, 82.
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damage from other failure modes were manifested on the blade. The remaining blades were examined for damage 

for the other causes. These other causes were not identified; the cause was categorized and cataloged as “Other.” 

The “Other” category can include creep (stress rupture), yield, fracture mechanics (flaw initiated crack), fretting 

(wear and fatigue), corrosion, foreign object damage (FOD), and wear (blade tip rub). 

There were 111 cataloged blade failures out of a total of 1312 blades (Table 2). The failed blades comprised 

8.5 percent of the total number of blades in the 16 blade sets. Thermal-mechanical fatigue accounted for 

approximately 20 percent of the failures, or 1.7 percent of the blade population. Oxidation/erosion accounted for 

approximately 21 percent of the failures, or 1.75 percent of the blade population. The highest accounting for blade 

failures occurs under the “Other” category. This is approximately 59 percent of the failures, or 5 percent of the blade 

population. 

With reference to the strict-series system reliability equation (Eq. (5)), the resulting blade lives associated with 

the various failure modes with respect to the actual blade life can be derived from the Lundberg-Palmgren model for 

system failure13 and are expressed by Johnson10 as follows: 

 
e

e

L

L
X

fm

blade  (11) 

where X is the fractional percent of components failed from a cataloged failure mode, Lblade is the individual blade 

life, and Lfm is the individual blade life resulting from a 

cataloged failure mode (fm). If each blade failure due to a 

cataloged failure mode is known as a percentage of the 

total number of failed blades, then the life of the blade 

related to that failure mode can be determined from 

Eq. (11) and vice versa. However, a condition precedent 

for using Eq. (11) is that the individual Weibull slopes 

must be known or assumed with reasonable engineering 

and statistical certainty.  

The results of this analysis are shown in Fig. 6 and 

summarized in Table 3. The resulting blade life attributed Figure 6. Turbine T–1 blade life based on failure mode.
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to oxidation/erosion equaled that attributed to thermal-mechanical fatigue. The category that contributed most to 

blade life was “Other.” In other words, if for any reason there were no blade failures attributed to oxidation/erosion 

and thermal-mechanical fatigue, the overall blade L10 life would increase from 2427 cycles to 2688 cycles, or 

approximately 11 percent. Because of statistical variance, this increase in life would probably never be noticed in an 

actual application. 

Referring to engine number 6B in Table 2, there are 40 failures attributed to “Other” and a single failure 

attributed to thermal-mechanical fatigue. Assume for purposes of discussion that at a time of 1843 cycles (from 

Table 2, engine 6B) a single blade failed from thermal-mechanical fatigue and broke loose, causing secondary 

damage to 40 other blades in the set. The estimated time to first blade failure for engine 6B would change from 886 

cycles to 1843 cycles.  

A Weibull analysis of the data was performed with the revised life value (1843 cycles) for engine blade set 6B. 

From recalculation of the data, the Weibull slope was increased from 5.235 to 6.237 and the blade L10 life was 

decreased from 2427 cycles to 2339 cycles. These changes are considered insignificant.  

If the 40 blade failures cataloged under “Other” for engine blade set 6B in Table 2 are discarded, the number of 

failed blades categorized under “Other” for engine blade set 6B is reduced from 66 to 26. This will reduce the total 

number of failed blades in Table 2 from 111 to 71. The failed blade fractions for 71 failed blades for the three 

categories become 0.324, 0.31, and 0.366, for Oxidation/Erosion (O/E), TMF, and “Other,” respectively.  

The respective blade L10 life for each failure category in Table 3 was recalculated using Eq. (11) based on a 

Weibull slope e = 6.237 and the revised blade L10 life of 2339 cycles. For the blade life based on oxidation/erosion, 

the L10 life decreased from 3278 cycles to 2802 cycles. For thermal-mechanical fatigue, the L10 life decreased from 

3278 to 2748 cycles. However, for the failure modes cataloged under “Other,” the L10 life increased from 2688 to 

2822 cycles. In this scenario, if the failure modes related to oxidation/erosion and thermal-mechanical fatigue are 

eliminated, the blade L10 life would be increased from 2339 to 2748 cycles, or approximately 17 percent. Again, as 

before, this increase in life would probably never be noticed in an actual application.  

G. Simplified Life Formula 

As previously discussed, there are competing failure modes that affect turbine blade life. Because of this, there 

was no attempt to analytically perform a life analysis based on any single failure mode to compare with the results 

presented. We are unaware of any published analysis of the turbine blades discussed in this paper. However, it is 
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possible based on the work presented herein to develop a simplified equation that will allow the user airline to 

estimate the life of their turbine blades for purpose of maintenance and replacement. 

Of the failure modes discussed, it is our opinion that only the failure mode associated with low-cycle fatigue 

(i.e., thermal-mechanical fatigue (TMF)) can be measured in terms of cycles to failure with reasonable engineering 

certainty. High-cycle fatigue is related to the frequency of cycling, which is variable based upon gas velocity and 

thermal fluctuation. Also, the rate of cycling cannot be assumed with any reasonable engineering certainty much less 

measured. A prudent approach to the problem of high-cycle fatigue as it relates to a turbine blade application would 

be to assume that it is time dependent for a given engine application and operating profile. All the other failure 

modes discussed are also assumed to be time dependent for a given engine application and operating profile. 

From Johnson10 the mean time to failure or removal is a function of the Weibull slope e. From the Weibull 

analysis summarized in Table 3, for a Weibull slope e of 5.379, the mean time to blade set removal (Lm blade set) is 

9406 (1987 cycles). This occurs at a 47.6 percent probability of failure. The mean time per cycle is equal to 4.74 

hr/cycle (9406 hr, or 1987 cycles). 

For purposes of comparison, as the dispersion or scatter in the data increases, the Weibull slope e decreases.10 As 

an example, for a normal distribution where the mean time to failure occurs at a 50 percent probability of failure, the 

Weibull slope e equals 3.57. For a Rayleigh distribution where the Weibull slope e equals 2, the probability of 

failure is 54.4 percent. For an exponential distribution, the probability of failure is 63.2 percent at a Weibull slope e 

equal to 1. From this trend, an empirical formula can be derived as follows: 

  Fm ≈ 0.621e-0.172  (12a) 

where Fm is the mean probability of failure as a fractional percent and e is the Weibull slope. From Eq. (1), 
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where LM is the mean time to removal and Lβ is the characteristic life or the life at a 63.2 percent probability of  
 
failure. 
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From Table 2, the summation of the time of removal of the blade sets divided by the number of blade sets equals 

the numerical average of the time of blade set removal (Lavg-blade set) where Lavg-blade set = 9421 hr (1990 cycles). This 

numerical average of 9421 hr (1990 cycles) correlates to the mean value from the Weibull analysis of 9406 hr 

(1987 cycles) summarized in Table 3. Accordingly, the numerical average of the blade set removal time  

(Lavg-blade set) can be substituted for the mean time to blade set removal (Lm blade set ) from the Weibull analysis in 

further calculations.  

From Table 3 (column, “Estimated time to first failure”), the mean time to first blade failure in a set is 1480 

cycles, or 7015 hr (1480 cycles  4.74 hr/cycle). The mean time, Lm blade to first blade failure in a set in terms of the 

average blade set time to removal is 

 Lm blade = (7015 hr/9406 hr) Lavg-blade set = 0.742 Lavg-blade set (13) 

An acceptable failure rate needs to be established for blade removal. As discussed, 111 blades (8.5 percent) 

failed of the 1312 blades comprising the 16 blade sets. It is therefore assumed that that a 10-percent failure rate (L10) 

would be acceptable as an upper failure limit. From Fig. 2 and Eq. (1), 
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 (14a) 

This reduces to 

 [ln (1/S1)/ln (1/S2)] = [L1/ L2]
e (14b) 

In Eq. (14b), let 

 S1 = S90 = 0.90 

 S2 = Sm = (1 – 0.477) = 0.523 

 L1 = L10 

and from Eq. (12) 

 L2 = Lm = 0.742 Lavg-blade set  
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where  

 Lavg-blade set = (Sum of time to removal of blade sets)/(number of blade sets) (14c) 

Substituting the above values into Eq. (14b) and solving for the L10 blade set life for time to first blade failure in 

a set where Weibull slope e = 5.235 (from Fig. 4), 

 L10 blade set = 0.742 Lavg-blade set [ln (1/S1)/ln (1/S2)]
1/e  

 = 0.742 Lavg-blade set [ln (1/0.90)/ln (1/0.523)]1/5.235 (15) 

 = 0.524 Lavg-blade set 

Combining Eqs. (3) and (14), the following empirical equation for the L10 individual blade life can be written: 

 L10 blade = 0.524 Lavg-blade set (n)1/e = 0.524 Lavg-blade set (n)0.191 (16a)  

Equation (16a) can be further simplified where 

 L10 blade ≈ (Lavg-blade set /2) (n)0.2 (16b) 

Substituting Lavg-blade set = 1989 cycles and n = 82 into Eqs. (15a) and (15b), L10 blade = 2418 and 2401 cycles, 

respectively. This correlates to the individual blade L10 blade life from Table 3 of 2427 cycles. Assuming a Weibull 

slope of 5.235, the value of the characteristic life Lβ for individual blades can be calculated from Eq. (1). Knowing 

Lβ, the individual blade life at any reliability (probability of survival, S) can be calculated from Eq. (1). 

VI. Summary of Results 

Sixteen high-pressure turbine (HPT) T–1 blade sets were removed from commercial aircraft engines that had 

been commercially flown by a single airline. Each blade set contained 82 blades. These engines were brought to the 

maintenance shop for refurbishment or overhaul. The blades on each HPT T–1 blade set were removed and 

inspected for damage. The damage found was cataloged into three categories related to their mode of failure. These 

were (1) Thermal-mechanical fatigue, (2) Oxidation/Erosion, and (3) Other. From these field data, the turbine blade 

life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. 
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From these data and analysis, a simplified formula for calculating turbine blade life and reliability was formulated. 

The following results were obtained: 

 

1. The following empirical equation for the L10 individual blade life was formulated: 

 L10 blade ≈ (Lavg-blade set /2) (n)0.2 

 where Lavg-blade set = (Sum of time to removal of blade sets)/(number of blade sets) and n is the number of 

blades in a set. 

2. The individual blade life, L10 blade , calculated from Johnson-Weibull analysis is 2427 cycles (11 077 hr) 

compared to L10 blade set life of 1046 cycles (4774 hr). The life of the blade set (blade set life is defined as 

the failure time of first blade in a blade set) will always be less than the life of an individual blade at any 

given probability of survival (failure). 

3. The resulting individual blade life attributed to oxidation/erosion equaled that attributed to thermal 

mechanical fatigue. The category that contributed most to individual blade failure was “Other” that 

includes creep (stress rupture), yield, fracture mechanics (flaw initiated crack), fretting (wear and fatigue), 

corrosion, foreign object damage (FOD), and wear (blade tip rub). 

4. If there were no blade failures attributed to oxidation/erosion and thermal/mechanical fatigue, the overall 

individual blade life, L10 blade , would increase approximately 11 to 17 percent. 

VII. References 

1Zaretsky, E. V., Hendricks, R. C., and Soditus, S. M., “Weibull-Based Design Methodology for Rotating Structures in 

Aircraft Engines,” International Jour. Rotating Machinery, Vol. 9, 2003, pp. 313–325. 

2Davis, D. Y., and Stearns, E. M., “Energy Efficient Engine Flight Propulsion System Final Design and Analysis,” NASA 

CR–168219, 1985. 

3Halila, E. E., Lenahan, D. T., and Thomas, T. T., “Energy Efficient Engine High Pressure Turbine Test Hardware: Detailed 

Design Report,” NASA CR-167955. 1982. 

4Manson, S. S., and Halford, G. R., Fatigue and Durability of Structural Materials, ASM International, Materials Park, Ohio, 

2006, p. 401. 

5Sawyer, J. W., ed., Gas Turbine Engineering Handbook, Gas Turbine Publications, Inc., Stamford, CT, 1966. 



DRAFT 

 24  
 American Institute of Aeronautics and Astronautics 

6Nelson, W., Applied Life Data Analysis, John Wiley & Sons, NY, 1982., p. 407. 

7Weibull, W., A Statistical Theory of the Strength of Materials, Ingeniors Vetenskaps Akademien-Handlinger, No. 151, 1939. 

8Weibull, W., The Phenomenon of Rupture in Solids, Ingeniors Vetenskaps Akademien-Handlinger, No. 153, 1939. 

9Weibull, W., “A Statistical Distribution of Wide Applicability,” J. Appl. Mech., ASME Trans., Vol. 18, No. 3, 1951, 

pp. 293–297. 

10Johnson, L. G., The Statistical Treatment of Fatigue Experiments, Elsevier Publishing Co. Amsterdam, The Netherlands, 

1964. 

11Cetal, A. D., and Duhl, D. N., “Second-Generation Nickel-Based Single Crystal Superalloy,” Proc. Sixth International 

Symposium Superalloys, High Temperature Alloys Committee, The Metallurgical Society, Sept. 18–22, 1988, Seven Springs 

Mountain Resort, Champion, PA.  

12Melis, M. E., Zaretsky, E.V., and August, R., “Probabilistic Analysis of Aircraft Gas Turbine Disk Life and Reliability,” J. 

Propulsion and Power, AIAA Trans., 15, Sept.–Oct. 1999, pp. 658–666. 

13Lundberg, G., and Palmgren, A., “Dynamic Capacity of Rolling Bearings,” Acta Polytechnica, Mechanical Engineering 

Series, Vol. 1, No. 3, Stockholm, 1947. 

14Burrow, M. F., Thomas, D., Swain, M. V. and Tyas, M. J., “Analysis of Tensile Bond Strengths Using Weibull Statistics,” 

Biomaterials, Vol. 25, No. 20, 2004, pp. 5031–5035. 

15Ellis, F. V., and Tordonato, S., “Failure Analysis and Life Assessment Studies for Boiler Tubes,” ASME Pressure Vessels 

and Piping Division Publication, Vol. 392, 1999, pp. 3–13. 

16Tomimatsu, M., Sakai, M., and Kikuchi, M., “Fracture Toughness Evaluation Based on Master Curve Procedure,” ASME 

Pressure Vessels and Piping Division Publication, Vol. 390, 1997, pp. 343–348. 

17Osborne, N. G., Graves, G. G., and Ferber, M. K., “Dynamic Fatigue Testing of Candidate Ceramic Materials for Turbine 

Engines to Determine Slow Crack Growth Parameters,” Jour. Engr. for Gas Turbine and Power, ASME Trans., Vol. 119, No. 2, 

Apr. 1997, pp. 273–278. 

18Ostojic, P., and Berndt, C. C., “Variability in Strength of Thermally Sprayed Coatings,” Surf. Coat. Technol., Vol. 34, 

No. 1, 1987, pp. 43–50. 

19Holland, F. A., and Zaretsky, E. V., “Investigation of Weibull Statistics in Fracture Analysis of Cast Aluminum,” Jour. 

Mech. Des., ASME Trans., Vol. 112, No. 2, 1990, pp. 246–254. 

20Williams, S., and Fec, M. C., Weibull Analysis of Reconditioned Railroad Roller Bearing Life Test Data, ASME Rail 

Transportation Division Publication, Vol. 5, 1992, pp. 83–87. 

21Summers-Smith, J. D., Fault Diagnosis as an Aid to Process Machine Reliability,” Quality and Reliability Engineering 

International, Vol. 5, No. 3, 1989, pp. 203–205. 



DRAFT 

 25  
 American Institute of Aeronautics and Astronautics 

22Vlcek, B. L., Hendricks, R. C., Zaretsky, E. V., and Savage, M., Comparative Fatigue Lives of Rubber and PVC Wiper 

Cylindrical Coatings,” Tribology. Trans., Vol. 46, No. 1, 2003, pp. 101–110. 

23Poplawski, J. V., Peters, S. M., and Zaretsky, E. V., Effect of Roller Profile on Cylindrical Roller Bearing Life Prediction – 

Part I: Comparison of Bearing Life Theories, STLE Tribology Trans., Vol. 44, No. 3, 2001, pp. 339-350. 

24Palmgren, A., "Die Lebensdauer von Kugellagern (The Service Life of Ball Bearings)," Zectsckrift des Vereines Deutscher 

Ingenieure, Vol. 68, No. 14, 1924, pp. 339–341. (NASA TT-F-13460, 1971.) 

25Langer, B.F., "Fatigue Failure From Stress Cycles of Varying Amplitude," J. Appl. Mech., ASME Trans, Vol. 59, 1937, 

pp. A160–A162. 

26Miner, M.A., "Cumulative Damage in Fatigue," J. Appl. Mech., ASME Trans., Vol. 12, No. 3, 1945, pp. A159–A164. 

27Kapur, K. C. and Lamberson, L. R., Reliability in Engineering Design, John Wiley and Sons Inc., New York, 1977. 



DRAFT 

 26  
 American Institute of Aeronautics and Astronautics 

Appendix A 
Derivation of Weibull Distribution Function 

 
According to Weibull7-9 and as presented in Ref. 12 (see also Ref. 23), any distribution function can be written as 

      XXF fexp1   (A1) 

where F(X) is the probability of an event (failure) occurring and f(X) is a function of an operating variable X. 

Conversely, from Eq. (A1) the probability of an event not occurring (survival) can be written as 

      XXF fexp1    (A2a) 

or 

    XF fexp1    (A2b) 

where F = F(X) and (1 – F) = S, the probability of survival. 

If there are n independent components, each with a probability of the event (failure) not occurring (1 – F), the 

probability of the event not occurring in the combined total of all components can be expressed from equation (A2b) 

as 

      XnF n fexp1    (A3) 

Equation (A3) gives the appropriate mathematical expression for the principle of the weakest link in a chain or, 

more generally, for the size effect on failures in solids. The application of Eq. (A3) is illustrated by a chain 

consisting of several links. Testing finds the probability of failure F at any load X applied to a “single” link. To find 

the probability of failure Fn of a chain consisting of n links, one must assume that if one link has failed the whole 

chain fails. That is, if any single part of a component fails, the whole component has failed. Accordingly, the 

probability of nonfailure of the chain (1–Fn), is equal to the probability of the simultaneous nonfailure of all the 

links. Thus, 

  nn FF  11   (A4a) 

or 
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 n
n SS   (A4b) 

Where the probabilities of failure (or survival) of each link are not necessarily equal (i.e., S1  S2  S3 …), 

Eq. (A4b) can be expressed as 

 ...321  SSSS n  (A4c) 

This is the same as Eq. (18) of the main text. 

From Eq. (A3) for a uniform distribution of stresses  throughout a volume V, 

    fVFV  exp1  (A5a) 

or 

    fVFS V  exp1  (A5b) 

Equation (A5b) can be expressed as follows: 

   V
S

lnln
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lnln 



 f  (A6) 

It follows that if ln ln (1/S) is plotted as the ordinate and ln f() as the abscissa in a system of rectangular 

coordinates, a variation of volume V of the test specimen will imply only a parallel displacement but no deformation 

of the distribution function. Weibull6 assumed the form 
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Where e is the Weibull slope,  is a stress at a given probability of failure, u is a location parameter below 

which stress no failure will occur, and  is the characteristic stress at which 63.2 percent of the population will fail. 

Eq. (A6) becomes 
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If the location parameter u is assumed to be zero, and V is normalized whereby ln V is zero, Eq. (A8) can be 

written as 

  u























ln
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lnln e
S

  where 0 <  <   and  0 < S < 1       (A9) 

 

Equation (A9) is identical to Eq. (17) of the main text. 

The form of Eq. (A9) where u is assumed to be zero is referred to as “two-parameter Weibull.”  

Where u is not assumed to be zero, the form of the equation is referred to as “three-parameter Weibull.” 
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Appendix B—Derivation of Strict Series Reliability 

As discussed and presented in Refs. 12 and 23, G. Lundberg and A. Palmgren13 in 1947, using the Weibull 

equation (Appendix A) for rolling-element bearing life analysis, first derived the relationship between individual 

component lives and system life. The following derivation is based on but is not identical to the Lundberg-Palmgren 

analysis. 

Referring to Fig. 2, from Eq. (A9) in Appendix A, the Weibull equation can be written as 
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where L is the number of cycles to failure. 

Figure B.1 is a sketch of multiple Weibull plots where each Weibull plot represents a cumulative distribution of 

each component in the system. The system Weibull plot represents the combined Weibull plots 1, 2, 3, and so forth. 

All plots are assumed to have the same Weibull slope e.12 The slope e can be defined as follows: 

 
ref

refsys

LL

SS
e

lnln

1
lnln

1
lnln

























  (B2a) 

or 

 
e

L

L

S

S






























ref

ref

sys

1
ln

1
ln

 (B2b) 

From Eqs. (B1) and (B2b), 
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where Ssys = S in Eq. (B1). For a given time or life L, each component or stressed volume in a system will have a 

different reliability S. From Eq. (A4c) for a series reliability system 

 ...321  SSSSsys  (B5) 

Combining Eqs. (B4) and (B5) gives 
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 (B6a) 

 
Figure B.1. Sketch of multiple Weibull plots where each numbered plot represents cumulative distribution of 
each component in system and system Weibull plot represents combined distribution of plots 1, 2, 3, etc. (all 
plots are assumed to have same Weibull slope e).12 
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It is assumed that the Weibull slope e is the same for all components. From Eq. (B6b) 
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Factoring out L from Eq. (B7a) gives 
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 (B7b) 

From Eq. (B3) the characteristic lives L1, L2, L3, etc., can be replaced with the respective lives L1, L2, L3, etc., at 

Sref (or the lives of each component that have the same probability of survival Sref) as follows: 
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where, in general, from Eq. (B3) 
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Factoring out ln (1/Sref) from Eq. (B8) gives 
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or rewriting Eq. (B10) results in 
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Equations (B10) and (B11) are identical to Eq. (5) of the text. 

Equation (B10) can also be rewritten as follows: 
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From Eq. (B12) and according to Johnson10 the fraction of failures due to each cataloged failure mode of a 

component is expressed as 
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 (2) Percent fraction of failures resulting from cataloged failure mode 2,  
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 (3) Percent fraction of failures resulting from cataloged failure mode 3,  
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The form of Eq. (B13) is the same as Eq. (11) of the text. Substituting Eq. (B13) into Eq. (B12), 

 X1 + X2 + X3 + … = 1 (B14)  
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From Eqs. (B13a) to (B13c), if the life of the component and the percent fraction of the total failures represented by 

each cataloged failure mode are known, the life of the component related to each cataloged failure mode can be 

calculated. Hence, by observation, it is possible to determine the failure modes of a component population and 

determine the components life related to each cataloged failure mode. (Refer to Eq. (11) of the text.)  
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Appendix C—Linear Damage Rule 

 
Most machine components are operated under combinations of variable loading and speed. Figure C.1 shows an 

example of a typical flight profile for a commercial flight with the time of each segment given.  

Palmgren24 working with ball and roller bearings recognized that the variation in both load and speed must be 

accounted for in order to predict component life. Palmgren24 reasoned: “In order to obtain a value for a calculation, 

the assumption might be conceivable that (for) a bearing which has a life of k million revolutions under constant 

load at a certain rpm (speed), a portion M/k of its durability will have been consumed. If the bearing is exposed to a 

certain load for a run of M1 million revolutions where it has a life of k1 million revolutions, and to a different load 

for a run of M2 million revolutions where it will reach a life of k2 million revolutions, and so on, we will obtain 
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In the event of a cyclic variable load we obtain a convenient formula by introducing the number of intervals p 

and designate m as the revolutions in millions that are covered within a single interval. In that case we have 
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where k still designates the total life in millions of revolutions under the load and rpm (speed) in question (and 

M = pm).” 

Equations (C1) and (C2) were independently proposed for conventional fatigue analysis by B. Langer25 in 1937 

and M. Miner26 in 1945, 13 and 21 years after Palmgren24, respectively. The equation has been subsequently referred 

to as the linear damage rule or the Palmgren-Langer-Miner rule. For convenience, the equation can be written as 

follows: 
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and 
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 1321  kXXXX    (C4) 

where L is the total life in stress cycles or race revolutions, L1…Lk is the life at a particular load and speed in stress 

cycles or race revolutions, and X1…Xk is the fraction of total running time at load and speed. From Eq. (C1) 

 M1 = X1L, M2=X2L, M3=X3L, … Mk= XkL (C5) 

Because the flight profile is repeatable, e.g., Fig. C.1, it is reasonable to use the percent of time in each segment to 

determine engine component life using Eq. (C3). 

Equation (C3) is the basis for most variable-load fatigue analysis and is used extensively in bearing life 

prediction.  

 
 

 

 
Figure C.1. Example typical flight profile. 

 


