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This invention introduces a methodol-
ogy and associated software tools for auto-
matically learning spacecraft system mod-
els without any assumptions regarding
system behavior. Data stream mining tech-
niques were used to learn models for criti-
cal portions of the International Space Sta-
tion (ISS) Electrical Power System (EPS).
Evaluation on historical ISS telemetry data
shows that adaptive system modeling re-
duces simulation error anywhere from 50
to 90 percent over existing approaches.

The purpose of the methodology is
to outline how someone can create ac-

curate system models from sensor
(telemetry) data. The purpose of the
software is to support the methodology.
The software provides analysis tools to
design the adaptive models. The soft-
ware also provides the algorithms to ini-
tially build system models and continu-
ously update them from the latest
streaming sensor data. The main
strengths are as follows:
• Creates accurate spacecraft system

models without in-depth system knowl-
edge or any assumptions about system
behavior.

• Automatically updates/calibrates sys-
tem models using the latest streaming
sensor data.

• Creates device specific models that
capture the exact behavior of devices
of the same type.

• Adapts to evolving systems.
• Can reduce computational complexity

(faster simulations).
This work was done by Justin Thomas of

Johnson Space Center. For further infor -
mation, contact the JSC Innovation Partner-
ships Office at (281) 483-3809. MSC-
24419-1
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The purpose of Hazard Relative Nav-
igation (HRN) is to provide measure-
ments to the Navigation Filter so that it
can limit errors on the position esti-
mate after hazards have been detected.
The hazards are detected by processing
a hazard digital elevation map
(HDEM). The HRN process takes lidar
images as the spacecraft descends to
the surface and matches these to the
HDEM to compute relative position
measurements. Since the HDEM has
the hazards embedded in it, the posi-
tion measurements are relative to the
hazards, hence the name Hazard Rela-
tive Navigation. 

HRN processing starts with an initial
elevation map from the Hazard Detec-
tion and Avoidance (HDA) phase. This
map is generated by mosaicking the
lidar over the Hazard Map Area (HMA).
A feature selector is applied to the map
to find a reference surface point that is
surrounded by significant terrain relief
and is therefore easier to identify in sub-
sequent lidar images. This reference
point does not have to be the landing
site, and it probably won’t be because
the landing site should be free of ter-
rain relief. 

Next, the gimbal points the lidar sen-
sor at the reference point and a lidar
image is taken. The lidar image is con-
verted to 3D points and these points are
transformed into the local level coordi-
nate frame using the current knowledge
of the spacecraft position and attitude.
These points are re-gridded into an eleva-
tion map. This elevation map is spatially
correlated with the HDEM to determine
the position change of the reference
point in the local level frame between
where it was predicted to be given the
current state and its observed position
when the HDEM was constructed. 

The reference point is not actually
moving in the local level frame, so this
change in position is actually a measure-
ment of current navigation state error
growth from the time the HDEM was
created. Since attitude errors are ex-
pected to be very small, the change in
position of the reference point is most
likely due to errors in the position of the
spacecraft. This process is repeated with
multiple new lidar images as the space-
craft descends. 

During descent, the correlation per-
formance degrades due to the shrinking
field of view, increasing resolution and

changing in view angle. The ground
sample distance (GSD) of the basemap
should be no more than twice the GSD
of the current lidar map. To prevent the
correlation from failing, resulting in a
loss of knowledge of the position error
on the reference point, a new base map
is generated for correlation. This new
base map is created by mosaicking the
lidar around the landing site. A new,
higher-resolution elevation map is cre-
ated from the lidar mosaic. The feature
selector is applied to the new base map
to generate a new reference point. Lidar
images are then taken of this new refer-
ence point and correlated with the new
base map. 

The process of generating a new base
map, then correlating lidar images to it,
is repeated until the beginning of verti-
cal descent (30 m). Each time the base-
map changes, it is correlated with the
previous base map to tie its position to
the original HDEM. This correlation in-
troduces a fixed error to the estimate of
the change in position of the original
reference point. Fortunately, this fixed
error is a function of the resolution of
the corresponding base map, so the
fixed error contribution is decreasing. 
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This algorithm could be used as a sensor approach for navigation of autonomous air vehicles
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The algorithm is related to other
motion and velocity estimation algo-
rithms, but is different because the
data processed is 3D points, not cam-
era images. This difference in input
data makes a large difference in how
feature selection and correlation are
implemented. The algorithm also must
handle oblique viewing angles and rel-

ative high sensor noise; both of these
make HRN challenging. Finally the
HRN algorithm actually commands the
lidar to collect data during descent
that is the best for HRN.  This “Active
Vision” approach was not used in previ-
ous work. 

This work was done by David M. Myers,
Andrew E. Johnson, and Robert A. Werner of

Caltech for NASA’s Jet Propulsion Labora-
tory. Further information is contained in a
TSP (see page 1).

The software used in this innovation is
available for commercial licensing. Please con-
tact Daniel Broderick of the California Insti-
tute of Technology at danielb@caltech.edu.
Refer to NPO-47115.

An autonomous vehicle patrols a large
region, during which an algorithm re-
ceives measurements of detected potential
objects within its sensor range. The goal of
the algorithm is to track all objects in the
region over time. This problem differs
from traditional multi-target tracking sce-
narios because the region of interest is
much larger than the sensor range and re-
lies on the movement of the sensor
through this region for coverage. The goal
is to know whether anything has changed
between visits to the same location. In par-
ticular, two kinds of “alert” conditions
must be detected: (1) a previously de-
tected object has disappeared and (2) a
new object has appeared in a location al-
ready checked. 

For the time an object is within sensor
range, the object can be assumed to re-
main stationary, changing position only
between visits. The problem is difficult
because the upstream object detection
processing is likely to make many errors,
resulting in heavy clutter (false posi-
tives) and missed detections (false nega-
tives), and because only noisy, bearings-
only measurements are available. This
work has three main goals: 
(1) Associate incoming measurements

with known objects or mark them as
new objects or false positives, as ap-

propriate. For this, a multiple hy-
pothesis tracker was adapted to this
scenario. 

(2) Localize the objects using multiple
bearings-only measurements to pro-
vide estimates of global position (e.g.,
latitude and longitude). A nonlinear
Kalman filter extension provides
these 2D position estimates using the
1D measurements. 

(3) Calculate the probability that a sus-
pected object truly exists (in the esti-
mated position), and determine
whether alert conditions have been
triggered (for new objects or disap-
peared objects). The concept of a
“probability of existence” was cre-
ated, and a new Bayesian method for
updating this probability at each
time step was developed. 

A probabilistic multiple hypothesis ap-
proach is chosen because of its superior-
ity in handling the uncertainty arising
from errors in sensors and upstream
processes. However, traditional target
tracking methods typically assume a sta-
tionary detection volume of interest,
whereas in this case, one must make ad-
justments for being able to see only a
small portion of the region of interest
and understand when an “alert” situation
has occurred. To track object existence

inside and outside the vehicle’s sensor
range, a probability of existence was de-
fined for each hypothesized object, and
this value was updated at every time step
in a Bayesian manner based on expected
characteristics of the sensor and object
and whether that object has been de-
tected in the most recent time step.
Then, this value feeds into a sequential
probability ratio test (SPRT) to deter-
mine the “status” of the object (sus-
pected, confirmed, or deleted). Alerts
are sent upon selected status transitions.
Additionally, in order to track objects that
move in and out of sensor range — and
update the probability of existence ap-
propriately — a variable “probability de-
tection” has been defined and the hy-
pothesis probability equations have been
re-derived to accommodate this change.

Unsupervised object tracking is a perva-
sive issue in automated perception systems.
This work could apply to any mobile plat-
form (ground vehicle, sea vessel, air vehi-
cle, or orbiter) that intermittently revisits
regions of interest and needs to determine
whether anything interesting has changed. 

This work was done by Michael Wolf and
Lucas Scharenbroich of Caltech for NASA’s Jet
Propulsion Laboratory. For more informa-
tion, contact iaoffice@jpl.nasa.gov. NPO-
47274

Tracking Object Existence From an Autonomous Patrol Vehicle 
These techniques could be part of a mobile surveillance system attached to a ground vehicle,
boat, or airplane.
NASA’s Jet Propulsion Laboratory, Pasadena, California 


