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The transition from low earth orbit Extravehicular Activity (EVA) for 
construction and maintenance activities to planetary surface EVA on 
asteroids, moons, and, ultimately, Mars demands a new spacesuit system.  
NASA’s development of that system has resulted in dramatically different 
pumping requirements from those in the current spacesuit system.  Hamilton 
Sundstrand, Cascon, and NASA are collaborating to develop and mature a 
pump that will reliably meet those new requirements in space environments 
and within the design constraints imposed by spacesuit system integration.  
That collaboration, which began in the NASA purchase of a pump prototype 
for test evaluation, is now entering a new phase of development. A second 
generation pump reflecting the lessons learned in NASA’s testing of the 
original prototype will be developed under Hamilton Sundstrand internal 
research funding and ultimately tested in an integrated Advanced Portable 
Life Support System (APLSS) in NASA laboratories at the Johnson Space 
Center.  This partnership is providing benefit to both industry and NASA by 
supplying a custom component for EVA integrated testing at no cost to the 
government while providing test data for industry that would otherwise be 
difficult or impossible to duplicate in industry laboratories. 

This paper discusses the evolving collaborative process, component 
requirements and design development based on early NASA test experience, 
component stand alone test results, and near term plans for integrated 
testing at JSCs. 

I. Introduction 
As NASA prepares for long duration human space exploration missions beyond low earth orbit, 
the development of a new spacesuit system has emerged as one of the significant technical 
challenges that must be overcome.  A new system is required to enable astronauts to move freely 
and work effectively on planetary surfaces, to survive the rigors of long missions with many 
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Extra-Vehicular Activity (EVA) sorties, and to reduce EVA demands for consumable supplies 
that must be launched from Earth.   Its development requires new technology and new designs in 
most EVA subsystems and components, and challenges not only the technical ingenuity of the 
engineering team, but also their creativity in accomplishing the task with limited available 
funding.  This paper presents recent and continuing work to develop a new EVA water 
circulation pump as a collaborative NASA / industry effort to respond creatively to both the 
technical and fiscal challenge. 

 

II. Background – Pump Requirements  
  
The need for a new water circulation pump is driven by changes in both the mission 
requirements and the PLSS design.  The transition from relatively short missions close to home 
requiring from 5 to 25 EVA’s before ground servicing to long EVA intensive exploration 
missions that must be completed without resupply or ground support demands a more robust 
pump design and one that can be conveniently serviced during the mission.  The loss of EVA 
capability experienced due to EMU pump failures on the ISS1 2 3 would have more serious 
consequences for an exploration mission to Mars, the moon, or an asteroid.       To minimize the 
impact of a pump failure and improve in-space repair logistics, NASA is pursuing a PLSS design 
with a stand-alone water pump as used in the Apollo PLSS in place of the integrated fan / pump / 
water separator assembly used in the current EMU PLSS.  In addition, the PLSS design has 
evolved to simplify the design for oxygen pressure regulation and reduce PLSS volume by 
placing the cooling water reservoir in the suit’s pressurized volume and using the suit pressure 
rather than a separate regulated supply to feed water to the coolant loop and control pressure at 
the pump inlet.4

 

   The planned integration of the new pump in an exploration PLSS is illustrated 
schematically in Figure 1. 

The principal pump design requirements for this application are summarized in Table 1.  Most 
notably, the requirement for the pump to operate at low inlet pressure after the make-up water 
reservoir has been reduced in pressure from vehicle atmospheric conditions (approximately 55 
KPa ( 8 PSIA))  to EVA operating pressure (approximately 29 KPa (4 PSIA)) demands a design 
that can operate reliably with large quantities of free gas at the pump inlet and resists cavitation 
when operating at low inlet pressure, even with elevated water temperature.  For operational 
flexibility, it is also important that the pump be self-priming, that is, capable of starting dry and 
filled with gas and drawing in water from the system water reservoir to establish water flow 
through the PLSS water loop and liquid cooling garment (LCG). 
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Figure 1.  Water circulation pump integration in an exploration EVA PLSS. 5

 
 

 
 

No. Description 
Requirements 

1 Surface temperatures – 1.7 C to 38 C (35 F to 100 F) 
2 Water flow rate and pressure rise – 91 Kg/hr at 35 KPa (200 lb/hr at 5 PSID),  

82 Kg/hr at 69 KPa (180 lb/hr at 10 PSID) 
3 Inlet Water Pressure – 23 – 69 KPa (In vacuum operating environment) 
4 Useful Life – 2000 Hours minimum (~ twice planned EVA use)  
5 Water quality – Potable water (recycled) per CxP 70024 
6 External operating environment – laboratory ambient testing, consider vacuum 
7  Standby and Start-up Capability – Inlet water between 1.7 and 38 C (35 to 100 F) 
8 Drive motor – permanent magnet design 
9 Power consumption – 15 W maximum at 5 PSID 

10  Supply Voltage – 28 VDC nominal 
11 Speed Control – to regulate flow between 20% and 120% of design points 

Goals 
1 Servicing and Maintenance – replaceable in lunar and micro-gravity in space 
2 Packaging geometry and volume - .00025 cu.m. (15 cu.in.) maximum, 5.7 cm x 7.0 cm x 5.7 cm (2.25 in. x 

2.75 in. x 2.25 in.) 
3 External operating environment goal – Deep space vacuum, Mars atmosphere 

Design Considerations 
1 Consider replacement in space during lunar transit 
2 Pass gas bubbles from cooling water source without major performance degradation 
3 Consider water contamination issues 
4 Consider packaging alternatives in design 
5 Consider alternative materials to minimize pump mass 
 
 

Table 1.  Top level requirements for a new exploration PLSS pump6  
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III. Initial Prototype Design and Manufacture  
 
During 2008 and 2009, Hamilton Sundstrand worked under contract to NASA to develop and 
deliver a prototype pump to meet the needs of a future exploration PLSS.  Pump technology 
options were evaluated in a trade study resulting in the selection of a gerotor based design as the 
best choice for this application since it combined positive displacement operation required for 
high free gas tolerance, efficiency, robustness, and low risk of cavitation.  Based on that 
technology choice, Hamilton Sundstrand collaborated with Cascon to develop a detailed design, 
manufacture a prototype pump (Figure 2), and demonstrate its performance characteristics in a 
comprehensive test program that addressed all of the application requirements except operating 
life. 
 

    
Figure 2. The original PLSS pump prototype used a coated aluminum housing to minimize weight. 

 
The prototype was designed and manufactured under an aggressive schedule (< 6 months) in a 
program planned to address major performance risks on a cost effective basis.  Consequently, it 
used a separately packaged commercial controller for drive electronics and made maximum use 
of design elements that could be adapted from commercial pump designs while achieving the 
desired performance characteristics.  Design targets also included a very small packaging 
envelope and minimized component weight.  The resulting design combined proven internal 
gerotor pumping components in wear and corrosion resistant materials, carbon bearings, and a 
light weight nickel plated aluminum housing.  

 

IV. Prototype Stand-alone Test Results and Lessons Learned 
 
Before delivery to NASA, the prototype pump was subjected to a battery of performance tests 
that included verification of pumping performance and efficiency over a range of operating 
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speeds and flow resistance conditions (Figure 3), confirmation of pumping efficiency and power 
consumption, demonstration of self-priming capability, tolerance for large amounts of free gas at 
the pump inlet, and cavitation resistance (Figure 4).  Performance was verified both at ambient 
pressure and under the reduced pressure conditions expected in EVA use with NASA’s 
exploration PLSS architecture including a suit pressure water reservoir. 
 

 
Figure 3. The prototype pump met flow performance requirements in testing over a wide range of conditions. 

 
Figure 4. The prototype pump demonstrated resistance to cavitation under expected operating conditions in 

the exploration PLSS. 
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The prototype met all of its design performance requirements in these pre-delivery stand alone 
tests. Verification of pump life characteristics was planned at NASA in conjunction with pump 
use in integrated PLSS testing.  Pump testing at NASA was delayed by several months after 
delivery as rigs were prepared.  When testing was initiated, the pump failed to rotate.  
Examination of the pump ports and subsequent tear down inspection showed that the nickel 
plating on the inside surface of the aluminum housing and cover had been breached allowing 
corrosion of the aluminum and accumulation of resulting corrosion products (Figure 5) which 
jammed the pump.  Although it was recognized that the use of coated aluminum was not 
sufficiently robust for an ultimate flight design, it was believed that the observed failure was 
attributable to a prolonged wet stand between pre-delivery testing and the subsequent NASA 
attempt.  A second identical prototype was manufactured to support the planned NASA testing 
with the expectation that avoiding a long non-operating wet stand would allow completion of the 
planned test protocol.  The new prototype showed essentially identical performance to the 
original in both industry and NASA labs (Figure 6) and was placed into endurance testing. 
 
 

 
Figure 6. Corrosion products from the prototype aluminum housing are visible through the inlet port. 
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Figure 6. The second pump prototype matched the original prototype’s performance. 

After two weeks of operation in the endurance test rig, the second prototype also failed and the 
cause was again traced to breach of the nickel plating and corrosion of the underlying aluminum.  
In this case, the breach occurred primarily on the cover, a relatively simple part.  A new cover 
was manufactured and the pump cleaned and reassembled to provide an interim component that 
could support NASA test needs on an expedited basis.  To date, the reassembled pump has not 
been used in testing, but continuing development of NASA’s PLSS integration concept has 
confirmed the need for a more robust component that provides the performance demonstrated in 
the original prototype design. 
 

V. Advanced Prototype Objectives, Design, and Manufacture  
 
Based on NASA’s requirement and the demonstrated superior performance capability of the 
previous prototypes, Hamilton Sundstrand and Cascon have collaborated to adapt the original 
design and implement it using more corrosion resistant materials to provide a new robust 
prototype pump that will provide long term service in water circulation applications.  This 
industry funded effort was motivated by other commercial and space applications for the 
resulting pump and underlying technology as well as by the opportunity to provide future flight 
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hardware for the exploration PLSS based on the prototype’s demonstrated capabilities and will 
benefit from collaboration with NASA integrated PLSS test efforts.  The prototype is intended 
for use by NASA under a loan agreement to provide cooling water circulation in a prototype 
PLSS assembly that will be subjected to extensive performance testing.  This NASA / industry 
collaboration provides NASA a necessary component for their system development test at no 
cost while it provides test data to industry that is vital for component design maturation and 
could not be obtained in any other way.  The extended test experience in an integrated system 
with other life support subsystems and components over the full range of expected system 
operating conditions will verify pump performance and durability characteristics under truly 
representative application conditions including both known and unanticipated interactions with 
other system elements and water chemistry reflecting long term PLSS use through multiple 
mission cycles.  
 
The new prototype pump uses the same gerotor pumping elements successfully applied to meet 
NASA’s PLSS pump needs in the original prototype, but incorporates a stainless steel housing 
and end cover to ensure corrosion resistance in long term water service.  Alternative bearing 
materials are also being investigated to provide improved control of critical clearance dimensions 
in manufacturing the pump.  The pumping elements themselves were already manufactured in 
highly corrosion and wear resistant materials and require no change.  In addition to material 
changes, the pump has been modified from the original prototype design to take advantage of 
continuing development in commercial pumps using the same pump technology and to improve 
the integration of the “canned motor” fluid barrier that isolates the drive motor windings from 
the pumped cooling water without requiring dynamic fluid seals in the assembly.   
 
The new prototype includes a compact brushless dc drive circuit built into the pump assembly.  
This controller, developed for commercial pumping applications, requires a small increase in the 
pump package length, but eliminates the need for a separate drive electronics package.  This 
provides a significant reduction in total PLSS packaging volume and allows pump speed control 
over the desired range for the original prototype from a central system control unit by varying the 
voltage applied to a speed control signal input in the pump assembly interface connector.  A 
pump speed output signal is also provided supporting system monitoring needs. 
 
In the new pump prototype, the canned motor fluid barrier is being manufactured as an integral 
part of the pump housing instead of as a separate mechanically installed sleeve.  This eliminates 
the need for some assembly steps and for o-ring seals at the sleeve interfaces eliminating life 
limited components and potential leakage paths to provide a more robust unit.  Implementing this 
design has also provided an opportunity for manufacturing development that can benefit future 
commercial and NASA products as it has required the refinement of techniques for producing 
deep thin walled cavities with extremely tight tolerances.  The design for the new prototype is 
illustrated in Figure 7.  Over-all the pump assembly with drive electronics is 13 cm (5.1 inches) 
long including the electronics housing and inlet port.  It is 4.5 cm (1.8 inches) wide and 4.1 cm 
(1.6 inches) high with an additional local height increase of 1.7 cm (.66 inches) for the electrical 
connector at one end of the package. 
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Figure 7.  The new prototype pump incorporates corrosion resistant materials and integrated pump drive 

electronics.   

VI. NASA PLSS Integration Testing Plans, Pump Application   
 

PLSS 2.0 will be the integrated testing platform for the new prototype pump. The goal of the 
integrated test is to develop a test bed with flight like attributes. The pump will be integrated into 
the thermal loop with other NASA components such as the Suit Water Membrane Evaporator 
(SWME), Thermal Control Valve(TCV) and Feedwater Supply Assembly (FSA). Figure 8 shows 
a schematic representation of the Thermal Loop for the current design of the Advanced Portable 
Life Support System (APLSS).  
 
The over-arching test objective for the second phase of the development work on the APLSS is 
to validate the full system integration as a packaged assembly across a simulated range of 
internal and external environments and vehicle interfaces.  The APLSS will have two different 
test configurations along with 5 different orientations tested. First, the PLSS will be integrated to 
a Space Suit Assembly Simulator (SSAS), a urethane replica of a Mark III space suit, as shown 
in Figure 9.    
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     Figure 9.  Space Suit Assembly Simulator 

The main goal in integration to the SSAS is to provide high-fidelity suit volume and pressure 
drop interactions for the entire PLSS system.  The second configuration will be as a packaged 
APLSS inside a vacuum chamber to test 4 different orientations.  External environments 
simulated will include cold, neutral and hot thermal environments, all ranging from -180 F to 
180 F.  Operating loads simulated will include metabolic rates ranging from 400 BTU/hr to 3000 

Figure 8. Current Thermal Loop in APLSS 
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BTU/hr with CO2 and water injection to the system to replicate human metabolic effects at each 
energy output.  The goal for the APLSS is to demonstrate autonomous functionality in the 
simulated EVA environment with the different external environments and crew work rate 
profiles as seen in a typical 8 hour EVA. 

    
As part of the thermal loop in the APLSS, the prototype pump will be subjected to all the 
external environments and system operating conditions described above.  As part of the primary 
objectives, the pump will be operated at a speed generating 200 pound per hour of water with 
differential pressures resulting from the other cooling loop components. The pump will be used 
to demonstrate several operational scenarios which include operation of the water loop with the 
integration of the Feedwater Supply Assembly(FSA), a flexible water accumulator pressurized 
by the suit volume to provide supply pressure to the water loop, In addition, the pump will test 
the operational concept of a vacuum water recharge in an umbilical configuration.  The pump 
will also play a key role in proving the operational concept of split flow through the LCG using a 
Thermal Control Valve (TCV).  The pump drive electronics will also be part of the control 
integration of all the components in the PLSS.  The pump will also be an integral part of the 
operational sequence evaluation to perform suit initialization post-launch with a dry thermal loop 
which includes priming the system, recharging the FSA and degassing the loop.   

 
The APLSS will also be tested under simulated component failures to determine response 
characterization of entire system under these conditions. The Cascon pump will be part of some 
these objectives which will include commanding the Suit Water Membrane Evaporator (SWME) 
off and seeing thermal loop response with the pump active. The pump will also be commanded 
to a low RPM setting to simulate degraded flow and determine system response and cooling 
capabilities. On the other hand, the pump will also be set to a high RPM to simulate a loss of 
pump control and determine the cooling efficiency and mitigations to continue operation of the 
thermal loop under these conditions. 

  
As part of the secondary and tertiary objectives there will be an integration of component 
controllers to test an automated initialization state which will include the pump performing its 
task to initiate flow through the thermal loop and subsequently enable cooling to the avionics and 
vent loop. 

 
The cooperation between industry and NASA in bringing an advanced pump prototype to this 
integrated test effort is making a significant contribution to its success.  The availability of the 
demonstrated performance capabilities of the original development prototype in a small flight 
like package with the inclusion of motor drive electronics is an important factor in NASA’s 
ability to address the full range of anticipated PLSS operating conditions in a realistic and flight 
like PLSS packaging volume enabling the advancement of the integrated system concept and 
other key components it includes. 
 

VII. Significance / conclusions      
 

The development of a prototype coolant pump for NASA’s advanced PLSS provides an example 
of the potential power of NASA / industry collaboration to benefit technology development for 
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human space exploration and commercial uses on Earth and a pathfinder for future collaborative 
efforts.  With a genesis in successful commercial pumping products, the pump has advanced 
through NASA investment in adapting  the design to specific PLSS needs and testing in NASA 
laboratories that exposed opportunities for design improvement.  Subsequent industry investment 
in implementing the identified enhancements is providing an advanced prototype that is helping 
to enable NASA advancement of integrated PLSS technology.  In the process, NASA is 
generating test data and applications experience that will benefit industry in further developing 
the pump to better serve both NASA and commercial applications.  Both NASA and industry 
costs to achieve important technology development objectives have been reduced. 
 
Collaboration during the development of the pump prototype and the evolution of APLSS design 
has been an important asset to both industry and NASA in providing advance knowledge of key 
interfaces and performance needs and attributes to permit efficient integration of developmental 
items whose characteristics are in many cases not well characterized and subject to change over 
time.  
 

VIII. Future Work 
 
The integration of the prototype pump into NASA’s development APLSS and initiation of test 
operations is anticipated in the near future.  The authors anticipate that, as in any development 
activity, unanticipated questions and issues will arise.  The foundation of cooperation and 
collaboration that has been established in reaching this point will enable an effective response to 
those surprises and continued progress toward the test data and results required to carry the pump 
and APLSS to the next level of maturity.    
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