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UQTools is the short name for the Uncertainty Quantification Toolbox, a software pack-

age designed to efficiently quantify the impact of parametric uncertainty on engineering sys-

tems. UQTools is a MATLAB R©-based software package and was designed to be discipline

independent, employing very generic representations of the system models and uncertainty.

Specifically, UQTools accepts linear and nonlinear system models and permits arbitrary

functional dependencies between the system’s measures of interest and the probabilistic or

non-probabilistic parametric uncertainty. One of the most significant features incorporated

into UQTools is the theoretical development centered on homothetic deformations and their

application to set bounding and approximating failure probabilities. Beyond the set bound-

ing technique, UQTools provides a wide range of probabilistic and uncertainty-based tools

to solve key problems in science and engineering.
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1 Introduction

UQTools is the short name for the Uncertainty Quantification Toolbox, a software pack-

age designed to efficiently quantify the impact of parametric uncertainty on engineering

systems. UQTools was designed to be discipline independent, employing very generic rep-

resentations of the system models and uncertainty. Specifically, UQTools accepts linear

and nonlinear system models and permits arbitrary functional dependencies between the

system’s measures of interest and the probabilistic or non-probabilistic parametric uncer-

tainty.

There are many novel features built into UQTools, but the primary innovation is related

to the development of set bounding techniques and their application to reliability analysis.

Set bounding techniques will be referred to as homothetic deformations in later sections of

the document. In contrast to conventional approaches to uncertainty quantification, these

techniques do not require the upfront definition of probabilistic models for the uncertain pa-

rameters. Instead, UQTools generates tight bounding sets to regions in the parameter space

of acceptable system performance (safe domain) or unacceptable system performance (fail-

ure domain). These bounding sets are constructed using simple geometries (hyper-spheres

or hyper-rectangles). Once these bounding sets have been calculated, the reliability analysis

corresponding to particular probabilistic uncertainty models can be efficiently carried out.

This feature enables accommodating for changes in uncertainty models with little additional

computational effort. Figures of merit for uncertainty quantification that result from these

techniques are robustness metrics that measure the separation between any given parame-

ter realization and the failure domain, upper bounds to the failure probability and accurate

estimates to failure probability.

Beyond the set bounding techniques mentioned above, UQTools provides a wide range

of probabilistic and uncertainty-based tools to solve key problems in science and engi-

neering. The entire UQTools package was written using the MATLAB technical computing

language. “MATLAB R©” and “MathWorks R©” are registered trademarks of The MathWorks,

Inc., of Natick, MA.

1.1 UQTools Capabilities

UQTools software realizes several complementary methods for performing a variety of un-

certainty quantification tasks. UQTools currently has the following capabilities:

• Efficient methods for failure set bounding

– By a failure set bound we mean the calculation of inner and outer approxi-

mations to the failure domain. The geometry of these approximations enables

the calculation of upper and lower bounds to the failure probability. UQTools

provides optimization-based tools for calculating such sets (see section 8).

• Hybrid methods for efficient estimation of failure probabilities

– This is a technique which makes use of the failure set bounds to reduce the num-

ber of samples needed to achieve a given confidence in a sampling-based esti-

mate of failure probability (see section 11). Improved efficiency is obtained by
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using quasi-random sampling techniques (see section 6.2) instead of the usual

pseudo-random number generators used in Monte Carlo techniques.

• First-Order Reliability Method (FORM)

– Efficient failure probability approximation for low probability ‘tail’ events is

provided by this classical technique (see section 9). This technique is used to

approximate the failure probability for a single requirement function.

• Efficient deterministic sampling

– These are techniques for generating quasi-random samples (see section 6.2),

and have been shown to be substantially more efficient than conventional Monte

Carlo.

• Efficient moment propagation methods

– This technique enables the calculation of means and variances of polynomial

systems whose input parameters are uniformly distributed (see section 7.1).

• Probabilistic sensitivity analysis

– Analyze and rank the relative importance of system parameters by evaluating

the dependence of the mean, variance and failure probability of the system re-

sponse to changes in the mean and the variance of the probability density func-

tions prescribing the inputs (see section 12).

• Response surface tools

– Generation of fixed and adaptive surrogate models having radial or polynomial

basis functions that can be readily integrated into the framework supporting

standard uncertainty quantification tasks (see section 7).

The present document is intended to serve as an introduction and extended overview

of UQTools. The reader who wishes to make use of this software may also want to refer

to documentation contained in the UQTools software package. In addition to several files

which are purely for documentation of specialized portions of this package, many of the

M-files which are intended as user interfaces to UQTools capabilities contain extensive

program preamble comments giving specifics of input and output parameters and details of

what the function calculates. Further, it is strongly suggested that, for those users looking

to maximize the utility of UQTools, they should focus their attention on section 13, “Learn

By Example”. In that section, detailed example problems are presented that illustrate the

many features in UQTools.

1.2 Documentation

There are four principal sources of documentation for the theory behind the software in

UQTools and instructions on how to make use of it:
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1. The present document gives overviews of both theory and software usage.

2. Papers listed in the References at the end of this document give theoretical back-

ground.

3. Document files included in the UQTools distribution package include both specifics

applicable to the software user and some of the papers referenced in the previous

item.

4. Many of the MATLAB M-files in the UQTools distribution package provide detailed

instructions in their program preamble comments as to what the M-file does and how

to call it. For this reason, this document gives not only the name of each function but

also the sub-directory in which it is located so that the interested reader may easily

find it and refer to the program preamble comments.

1.3 Additional Documentation Files Within the UQTools Software Package

There are, in the sections where they apply, several documentation files in the UQTools

software package. These are mentioned individually in the sections where they apply. For

reference purposes, the complete list is given here:

Table 1. Additional Documentation Files in the UQTools Software Package

UQTOOLS/RespSurf/Readme mv poly.txt For section 7.1

UQTOOLS/Documents/mv poly whitepaper.pdf For section 7.1

UQTOOLS/RespSurf/RBF RS data structure.txt For section 7.2

UQTOOLS/Documents/structural safety.pdf Ref [1], for section 8.1

UQTOOLS/Documents/aiaa journal.pdf Ref [2], for section 8.1

UQTOOLS/Documents/NASA-tp-2010-216189.pdf Ref [3], for section 8.1

UQTOOLS/RelMeth/DATA dictionary.txt For section 9

UQTOOLS/RelMeth/readme SORM.txt For section 9

UQTOOLS/Documents/conditional sampling.pdf Ref [4], for section 11.2

UQTOOLS/Documents/AIAA-2009-2283-304.pdf Ref [5], for section 12

1.4 Document Organization

The remainder of this document has been organized so that any material which is prerequi-

site for a given section has been presented earlier in the document. This has the consequence

that some of the more important and innovative material is presented later in the document.

For example, the material in section 8, “Bounding the Safe/Failure Space Using Homo-

thetic Deformations” is one of the most important contributions of UQTools. However, the

user must be conversant with several other features of UQTools in order to set up the input

to the principal user interface functions in this section, namely function homodef in section

8.1 and function cpv by RSapprox in section 8.2.
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To start with, the nature of uncertainty of each uncertain parameter must be specified to

the software. This is explained in section 4, “Representation of Random Variables.” Here,

the user is given two options for constructing this input item to the failure set bounding

software, one option being command line driven and the other being performed interactively

via a Graphical User Interface (GUI).

The software supporting the developments in section 8 requires analysis to be done in

the native probability space of the uncertain parameters or in transformed versions to that

probability space. Examples of this transformed space are the standard standard normal

space or the space of uniform distributions on the unit hyper-cube. These transformations

are explained in section 5, “Transformations Between Probability Spaces.”

Monte Carlo sampling is an uncertainty quantification tool of long standing. This tech-

nique makes use of sample points generated using a pseudo-random number generator.

MATLAB includes pseudo-random number generators, and UQTools provides interfaces

to them. However, quasi-random number generators, which create what is termed low dis-

crepancy sequences, can provide a given confidence level in estimating, for example, failure

probability using significantly fewer points than Monte Carlo. All of these sample point

generating methods are explained in section 6, “Generation of Sample Points”, which also

goes into Latin hyper-cube sample generation and a technique we call quasi-Latin hyper-

cube extensions of sample sets. Besides being of interest in themselves, these sampling

techniques are heavily used to generate adaptive surrogate models suitable for calculating

failure set bounds (see section 8.2 and function cpv by Rsapprox).

UQTools includes software for generating both multi-variable polynomial response sur-

faces and radial basis function response surfaces. These are explained in section 7, “Re-

sponse Surface Tools.” These may be used independently of the remaining functionality

of UQTools. However, as with sampling techniques, these response surface techniques are

heavily used in section 8.2, and the user of cpv by Rsapprox must understand them well

enough to properly formulate input parameters.

The First Order Reliability Method (FORM) method of estimating the failure probabil-

ity depends on locating the Most Probable Point (MPP) of failure of an uncertain system.

In section 9, “First Order Reliability Method,” two ways are provided to access software

which calculates the FORM approximation for a system with a single requirement function

(which defines what is called in the FORM literature the limit state surface). One way uses

the same input structure as the failure set bounding software in section 8. The other way

requires mastering a different representation for the uncertainty, but allows limited specifi-

cation of correlations between the uncertain parameters.

Both sections 8 and 9 make use of non-linear constrained optimization in their calcula-

tions. The theoretical justification for these techniques requires that global optima be found.

One risk with using optimization techniques is that the optimum found may be a local op-

timum, but not global. In section 10, “Risks and Potential Drawbacks,” we expand on this

potential drawback and provide a sampling based technique by which the user can test the

results of the optimization based calculations and search for evidence that the converged

optimum is local but non-global.

In section 11, “Estimating Failure Probability By Sampling,” we present several meth-

ods by which pre-knowledge of a failure bounding set may be leveraged to improve the

efficiency of a sampling-based estimation of failure probability.
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Section 12, “Estimating Probabilistic Sensitivities Via Sampling,” represents a change

of emphasis. Here, the observation is made that the probability distribution of an uncertain

parameter may not be known exactly, and the question is addressed of how sensitive the

statistics of a performance metric such as expected value, variance, or failure probability

are to such properties of the uncertain parameter distribution function as its mean, variance,

or the bounds of its support interval.

Section 13, “Learn By Example,” introduces the reader to several MATLAB M-files

which provide examples of the use of the software in UQTools. It is hoped that by examin-

ing and executing these files, the user can gain further understanding of the functionality of

UQTools. Additionally, these files might serve as templates for the user’s own applications.

2 Abbreviations

Table 2. Abbreviations Used in this Manual

CDF Cumulative Distribution Function

CPV Critical Parameter Value

CSR Critical Similitude Ratio

FORM First Order Reliability Method

GUI Graphical User Interface

MPP Most Probable Point (of failure)

PDF Probability Density Function

PSM Parametric Safety Margin

RBF Radial Basis Function

RI Reliability Index

RPSM Rectangular Parametric Safety Margin

RRI Rectangular Reliability Index

RS Response Surface

SORM Second Order Reliability Method

SPSM Spherical Parametric Safety Margin

SRI Spherical Reliability Index

3 UQTools Software Package

In addition to basic MATLAB, UQTools also requires the MATLAB Optimization Toolbox

and the MATLAB Statistics Toolbox. The bulk of UQTools was developed under MAT-

LAB version R2008b, but it should be compatible with more recent releases. The current

version of the UQTools software package contains about 9.5 megabytes of data contained

in a directory named UQTOOLS and its 17 subdirectories. There are about 300 MATLAB

M-files and several other files, including more detailed documentation about parts of the

package than are given in the present document and some data files.
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3.1 Obtaining the Software Package

The package is available to eligible recipients, as determined by NASA regulations for the

distribution of NASA generated software. To obtain a copy of the UQTools package, apply

to:

Dr. Sean P . Kenny

Dynamic Systems and Control Branch

Mail Stop 308

NASA Langley Research Center

Hampton, VA 23681-2199

Phone: 757-864-6612

FAX: 757-864-7722

E-mail: sean.p.kenny@nasa.gov

3.2 Organization of the UQTools Software Package

The following table gives a list of the subdirectories of UQTools directory UQTOOLS together

with a synopsis of the contents of each subdirectory:

Table 3: UQTools Directory Structure

DIRECTORY NAME Directory contents

UQTOOLS/ Subdirectories and a template

startup.m file

UQTOOLS/Distributions Distribution functions to supplement

those provided in the Statistics

Toolbox

UQTOOLS/Examples Subdirectories of example files

UQTOOLS/Examples/General Example files to exercise much of the

software in UQTools

UQTOOLS/Examples/MPP based Example files to exercise function

MPP FORM from subdirectory

UQTOOLS/RelMeth

UQTOOLS/Homodef Subdirectories containing software and

documentation for calculating

maximal safe or failure homothetic

deformations

UQTOOLS/Homodef/Core The top level software for calculating

maximal homothetic deformations

UQTOOLS/Homodef/Papers Papers presenting the theory behind

using homothetic deformations of

reference sets in uncertainty analysis
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Table 3: UQTools Directory Structure (Continued)

UQTOOLS/Homodef/RSapprox Software for approximating maximal

homothetic deformations of reference

sets using response surface

approximations to the system

requirements function(s)

UQTOOLS/Homodef/Support Two subdirectories

UQTOOLS/Homodef/Support
/Robdes

Support files for

UQTOOLS/Homodef/Core

UQTOOLS/Homodef/Support
/Utilitarian

Support files for

UQTOOLS/Homodef/Core

UQTOOLS/Probsensitive The paper “Sampling-based Strategies

for the Estimation of Probabilistic

Sensitivities” and software to

implement the ideas in that paper

UQTOOLS/RelMeth Software to implement FORM, the

First Order Reliability Method, and

SORM, the Second Order Reliability

Method

UQTOOLS/RespSurf Software and documentation for fitting

and evaluating response surfaces based

on multi-variable polynomials and

radial basis functions

UQTOOLS/Sampling Software for sampling uniformly from

the unit hyper-cube and from

multi-dimensional vectors with various

random distributions

UQTOOLS/Transforms Software for generating probability

preserving transformations between an

arbitrary image space of independent

random variables and two special

instances - standard normal space and

uniform unit hyper-cube space

UQTOOLS/Uqtools GUI Software for a graphical user interface

(GUI) to assist in the creation of a

MATLAB vector rv in the base

MATLAB workspace, each component

of which describes a random variable

to UQTools
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Table 3: UQTools Directory Structure (Continued)

UQTOOLS/Documents Copies of references [1], [2], [3], [4],

[5], and a polynomial response white

paper

3.3 Getting Started with UQTools

The UQTools software package (obtained as in section 3.1) is distributed as a single ZIP

file. When unzipped, the contents are arranged as in section 3.2. The UQTOOLS directory

may be placed anywhere on the computer where the user has read/write permission. The

user should make a copy of file UQTOOLS/startup.m in a working directory, edit it so the

variable INSTALLDIR is set to the full path name of the UQTOOLS directory of the UQTools

installation, and start MATLAB in the working directory. This instance of MATLAB will

have access to the complete UQTools Toolbox.

4 Representation of Random Variables

For purposes of UQTools, the phrase random variable will refer to a real scalar valued

random variable and the phrase random vector will be used for vector whose components

are random variables. “Random vector” includes “random variable” as a special case. So

long as the components of a random vector are independent random variables, UQTools

finds all the information it needs about the probabilistic nature of the random vector from

functions that calculate the cumulative distribution function (CDF), its derivative, the prob-
ability density function (PDF), and the inverse CDF of each component random variable. If

P is a random vector, its CDF is denoted by FP and is defined by the property that, for all x
in the Euclidean space of the same dimension as P,

FP(x) = P[P ≤ x],

where P[E]denotes the probability of the event E and P ≤ x represents the event that every

component of the random vector P is no larger than the corresponding component of x. A

random sample p of P is any one specific value that P might assume.

UQTools allows users to create a MATLAB data representation of random variables
and random vectors using a command-line driven interface called setrvs or through a

graphical user interface called uqtools gui. UQTools depends upon the existence of soft-

ware for many of the distributions defined in the MATLAB Statistics Toolbox, and also

provides software for additional distributions not included in the Statistics Toolbox. Sec-

tion 4.1 gives the complete list of distributions that UQTools currently supports. Please

note that two of these, specifically, Interval and Deterministic Constant are not technically

distributions, but are included here because UQTools data structure can accommodate these

additional definitions. It is important to note that the vast majority of UQTools is based

upon the assumption that random variables are independent. The limited exception to this
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is the software contained in UQTOOLS/RelMeth that can accommodate correlated normal or

correlated lognormal random variables.

4.1 Using the Command-line Driven Interface

To use the command-line driven interface (setrvs) to fully prescribe a random variable,

UQTools permits the following syntax:

rv = setrvs(typedist,paramv,name,description,number);

The first two inputs are required and are described below:

• typedist - This is a string variable and is a unique identifier given to a type of

distribution. The list of currently supported values for typedist is given in Table 4.

• paramv - This is a vector of parameters used to define a particular random variable.

The length of this vector depends upon the selected distribution. Typical parameters

are the mean and standard deviation of a normally distributed random variable or

the left and right endpoints of the support interval of a uniformly distributed random

variable.

The command-line driven interface (setrvs) also allows three additional inputs. These

additional inputs are optional, and are typically used to attach information to the random

variable which identifies and documents it. These optional inputs are:

• name - A string containing an arbitrary name for the random variable.

• description - A string containing any descriptive information about the random

variable.

• number - A numeric scalar value to uniquely identify the random variable.

Table 4 gives the values of typedist currently supported by UQTools and some in-

formation about the form of paramv. For a complete description of the variable paramv
refer to the documentation accessible by the MATLAB help command. For example, the

MATLAB command “help ncfpdf” (or “help ncfcdf” or “help ncfinv”) would show

that, besides an initial input which provides the value(s) at which the function is to be eval-

uated, the Noncentral F Distribution (whose typedist is ncf) requires three parameters, a

numerator degree of freedom, a denominator degree of freedom, and a non-centrality pa-

rameter. This is the information the user must supply to setrvs in input argument paramv.

Note that the first 17 entries (through Weibull Distribution) in Table 4 are in the MATLAB

Statistics Toolbox while the remaining entries are part of the UQTools software, located in

directory UQTOOLS/Distributions. These directories must be on the user’s search path

(see MATLAB command “path”) so that the “help” command knows where to look for

the information.
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Table 4: Supported Distribution Types

Distribution Type typedist paramv

Beta Distribution beta [A, B] - real scalars, left and right exponents

Chi-Square

Distribution

chi2 [V] - positive integer V is the degree of

freedom

Noncentral

Chi-Square

Distribution

ncx2 [V, DELTA] - positive integer V is degree of

freedom and positive real DELTA is the

noncentrality parameter

Exponential

Distribution

exp [mu] - scalar mu is the mean parameter

Extreme Value

Distribution

ev [mu, sigma] - mu is the location parameter,

sigma is the scale parameter

Generalized

Extreme

Value

Distribution

gev [K, sigma, mu] - K is the shape parameter,

sigma is the scale parameter, mu is the location

parameter

Generalized

Pareto

Distribution

gp [K, sigma, theta] - K is the index (shape)

parameter, sigma is the scale parameter, and

theta is the threshold (location) parameter

F Distribution f [V1, V2] - V1 and V2 are positive integers,

the numerator and denominator degree of

freedom, respectively

Noncentral F

Distribution

ncf [NU1, NU2, DELTA] - NU1 and NU2 are

positive integers, the numerator and

denominator degree of freedom, respectively,

and DELTA is a positive noncentrality

parameter

Gamma

Distribution

gam [A, B] - A is the shape parameter, B is the

scale parameter

Lognormal

Distribution

logn [mu, sigma] - mu and sigma are the mean

and standard deviation, respectively, of the

associated normal distribution

Normal

Distribution

norm [mu, sigma] - mu and sigma are the mean

and standard deviation, respectively

Rayleigh

Distribution

rayl [B] - B is the scale parameter

Student’s

t-Distribution

t [V] - V is the positive integer degree of

freedom
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Table 4: Supported Distribution Types (Continued)

Noncentral

t-Distribution

nct [V, DELTA] - V is the positive integer degree

of freedom and DELTA is the noncentrality

parameter

Uniform

Distribution

unif [A, B] - A and B are, respectively, the lower

and upper endpoints of the support interval

Weibull

Distribution

wbl [A, B] - A is the scale parameter, B is the

shape parameter

Triangular

Distribution

tri [A, M, B] - A and B are, respectively, the

lower and upper endpoints of the support

interval, and M is the location of the apex of

the triangle

Interval interval [a] or [a, b] - support set is, respectively,

the interval from -abs(a) to abs(a) or the

interval from a to b

Generalized Beta

Distribution

gbeta [A, B, XMIN, XMAX] - the beta distribution

with positive left and right exponents A and B
is translated and scaled to the interval domain

with left and right endpoints XMIN and XMAX

Generalized

Bimodal

gbimodal [A, B] - A and B are, respectively, the lower

and upper endpoints of the support interval

Batson Beta

Distribution

batson [XMIN, XML, XMAX, CONF] - XMIN and XMAX
are, respectively, the lower and upper

endpoints of the support interval, XML is the

“most likely” point in that interval, and CONF
is an integer between 1 (least confident in XML)

to 5 (most confident in XML)

Deterministic

Constant

det [A] - A is the deterministic value

Below is an example that defines a single, normally distributed random variable:

rv = setrvs(’norm’,[0,1],’Var 1’,’Normal var’,1);

Below is an example that defines six independent random variables using generalized beta

distributions:

rv(1)=setrvs(’gbeta’,[2,2,0.9,1.1],’m1’,[],1);
rv(2)=setrvs(’gbeta’,[2,2,1.4,1.6],’m2’,[],2);
rv(3)=setrvs(’gbeta’,[2,2,32,36],’k1’,[],3);
rv(4)=setrvs(’gbeta’,[2,2,37,41],’k2’,[],4);
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rv(5)=setrvs(’gbeta’,[2,2,0.1,0.35],’alpha’,[],5);
rv(6)=setrvs(’gbeta’,[2,2,0.006,0.01],’beta’,[],6);

The MATLAB variable called rv in the previous example could have had any legal

MATLAB variable name. By contrast, if the graphical user interface uqtools gui is called,

the MATLAB variable it creates is always called rv.

The UQTools GUI (uqtools gui) was developed to assist in prescribing the random

variables, i.e., defining the rv structure. The interface is called uqtools gui. This interface

may be called in one of two cases. Case 1 is when there is no predefined rv structure, that is,

when the user wants to prescribe a completely new rv structure. For this case, the interface

may be initiated using either of the following function calls:

>> uqtools gui
or equivalently

>> uqtools gui(’start’)
Both options above will initialize the interface exactly the same way by opening the

interface and defining a single random variable in the rv structure. This default random

variable is prescribed as normally distributed with zero mean and unity variance. A copy of

the rv structure will also appear in the user’s base workspace upon initiation.

Case 2 is when the user wants to augment an existing rv structure. For this case, the

interface may be initiated using the following function call:

>> uqtools gui(’start’,rv)
Note: The uqtools gui function does not have output arguments, but instead uses the

MATLAB function assignin to update the structure rv in the base workspace. If the rv
structure exists on initialization, a copy of it is made and placed in variable rv org.

4.2 Using the Graphical Interface

Once the interface is initiated as describe above, the user will now have access to additional

graphical elements to modify the rv structure. This is best described using an example.

Assume that the user has predefined six independent random variables using generalized

beta distributions and then invokes uqtools gui.

rv(1)=setrvs(’gbeta’,[2,2,0.9,1.1],’m1’,[],1);
rv(2)=setrvs(’gbeta’,[2,2,1.4,1.6],’m2’,[],2);
rv(3)=setrvs(’gbeta’,[2,2,32,36],’k1’,[],3);
rv(4)=setrvs(’gbeta’,[2,2,37,41],’k2’,[],4);
rv(5)=setrvs(’gbeta’,[2,2,0.1,0.35],’alpha’,[],5);
rv(6)=setrvs(’gbeta’,[2,2,0.006,0.01],’beta’,[],6);
uqtools gui(’start’,rv)
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A screenshot of this example is given in Figure 1:

Figure 1. uqtools gui main window.

The user can click on the red density function image in the top toolbar to graphically

modify an existing random variable using an interactive PDF or CDF plotting utility. This

action will bring up the graphical interface below:

Using this interface, the user can easily change the distribution type, i.e., typedist
by using the pull-down menu and selecting from any allowable distribution as presented in

Table 4. The parameters, i.e., elements within the paramv vector, are displayed near the

bottom of the interface. Note, for a generalized beta, the four parameters are displayed and

may be changed by simply moving the corresponding slider bars shown in Figure 2.

The rv structure is constantly updated in the base workspace, so no additional action is

required to save changes. Any change is instantaneously reflected and automatically saved

in the base workspace. Recall, that the original rv structure that existed on initialization of

the GUI was automatically copied and placed in variable rv org.

5 Transformations Between Probability Spaces

The UQTools functions discussed in this section are kept in UQTools subdirectory

UQTOOLS/Transforms. Details of function usage are found in the program preamble or

“help” comments.

For the analyses done in UQTools, the original parameter probability space, P-space1,

is not always the best domain to use. To that end, UQTools provides probability preserving

transformations that allow the user to perform the analyses in potentially friendlier proba-

bility spaces. U-space is the probability space of a random vector U that has an uncorrelated

1Denote the space of values of the uncertain parameters by “P-space”, and represent its dimension by d.
Represent the uncertainties in the parameters by a random vector P. Under the CDF FP of P, P-space becomes

a probability space. The uncertainty quantification provided by UQTools can result from estimating or bounding

probabilities of events (such as the failure event of the system) in P-space.
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Figure 2. uqtools gui detail window.
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standard normal distribution. V-space is the probability space of a random vector V that has

the uncorrelated uniform distribution over the interval [0,1]. W-space is the probability

space of a random vector W that has an uncorrelated uniform distribution over the interval

[−1,1].
So long as the component random variables of the random vector P are mutually in-

dependent and have continuous distributions chosen from the collection supported by the

UQTools function setrvs and the interactive tool uqtools gui, UQTools provides proba-

bility preserving transformations that allow the P-space variables to be replaced by U-space

or V-space variables and visa versa. One advantage of using these probability preserving

transformations is to provide an analysis domain in which the variables all have the same

scaling. FORM, the First Order Reliability Method, (see section 9, page 38, and UQTools

functions call MPP and MPP FORM) depends on transforming the problem into U-space to

take advantage of favorable properties of the normal distribution. Many sampling meth-

ods provide samples in V-space that may then need to be transformed to one of the other

spaces if samples are needed there. Response surfaces, particularly Radial Basis Function

Response Surfaces, might provide better approximations to the functions they approximate

if their host domain is U-space or V-space instead of P-space, since in U-space and V-space

the variables are equally scaled.

The probability structure of P-space provides the information necessary to define these

transformations. By the assumed independence of the random variables comprising the

random vector P, the transformations are carried out component by component. Mapping

a random variable by its CDF results in the transformed random variable being uniformly

distributed on the interval [0,1]. Further mapping of that transformed variable by the inverse

CDF of a standard normal random variable results in the further transformed random vari-

able having the standard normal distribution. All of these mappings are invertible, so any

of P-space, U-space, and V-space can be mapped onto any other by a probability preserving

transformation.

UQTools provides six functions to accomplish these transformations:

Table 5: Probability Space Transformation Functions

Name Function performed

p2v Transform vectors from P-space into V-space.

p2u Transform vectors from P-space into U-space.

u2p Transform vectors from U-space into P-space.

v2p Transform vectors from V-space into P-space.

p2w Transform vectors from P-space into W-space.

w2p Transform vectors from W-space into P-space.

u2v Transform vectors from U-space into V-space.

v2u Transform vectors from V-space into U-space.

The first input argument to each of these functions is a matrix whose rows contain sam-

ples from the space that is being transformed and each column represents a dimension of
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the d-dimensional space. The second argument is a d-vector of rv style MATLAB struc-

tures that can come from UQTools function setrvs or the interactive tool uqtools gui
(see section 4). For the first six functions in Table 5, this second argument is required, and

must describe the probabilistic structure of the random variable P. For the last two of these

functions, this second argument is optional, if provided it is not referenced, and is included

only for calling sequence compatibility with the first four functions. The first output of

each of these functions is the matrix of transformed samples in the probability space. An

optional second output argument gives the gradient of the output points with respect to the

input points.

The transformation functions find use in some of the example M-files in directory

UQTOOLS/Examples/General: analytical.m, driver MPP RS.m, example fit RS.m,

example probsenses1.m, example sampling.m, mean var approx.m, pdf approx.m,

and spring mass.m.

See also the description of some of these files in section 13, “Learn By Example”.

6 Generation of Sample Points

The UQTools functions discussed in this section are kept in UQTools subdirectory

UQTOOLS/Sampling. Details of function usage are found in the program preamble or “help”

comments.

Traditional Monte Carlo analysis is based on analyzing the system model at a pseudo-

random sampling of the uncertain parameters. This is not necessarily ideal, since the

scattering of random samples typically shows clumps (over-sampling) and voids (under-

sampling). It is more efficient to use deterministic low discrepancy (a.k.a. quasi-random)

sampling methods. By “more efficient” we mean that by using low discrepancy samples

we can achieve greater confidence in results from a given number of low discrepancy sam-

ples than from the same number of random samples, or achieve the same confidence with

fewer low discrepancy samples than random samples. The phrase “low discrepancy” has

a technical meaning, and for those readers wanting more information, see Definition 2.2

discrepancy of [6]. It is good for the sequence discrepancy to be small (low) since it means

that there is no excessive clumping of the sample points and the voids in the sample tend

to be small. By using the transformations of section 5, a low discrepancy sequence can be

transformed into a representative sample of an arbitrary distribution.

There are many reasons one might want to have a sampling of points from the uncertain

parameter space. For example, if fP(p) is the PDF of P and g(p) is an arbitrary function

of p, the expected value of g, defined by the integral,
∫

g(p) fP(p)d p can be estimated

by averaging the values of g(p) over a representative sampling of the random variable P,

whether the samples are pseudo-random as in Monte Carlo analysis or quasi-random. As a

special case, the probability of an event can be estimated as the average number of sample

points falling in the event (take g to be the indicator function of the event). Also, analyzing

a system at a sampling of points can provide the data needed to build a response surface.

In addition, if prior analysis has regions of the uncertain parameter space (or one of its

transforms) where system behavior has been determined to be satisfactory, then to estimate

failure probability by sampling it is only necessary to sample conditionally outside this

known safe region. UQTools provides methods to implement such sampling techniques.
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6.1 Monte Carlo Sampling

The sampling techniques of UQTools extend those of MATLAB such as rand and randn.

The distributions in the MATLAB Statistics Toolbox and the few distributions added by

UQTools each has a function whose name concatenates the root name of the distribution

with the characters rnd, and which generates matrices or arrays of samples having the

named distribution. Input to these functions includes the same distributions defining pa-

rameters as the MATLAB functions that calculate the PDF, the CDF, and the inverse CDF.

One way to generate Monte Carlo samples in P-space is to use UQTools function mc that in

turn makes use of these xxxrnd functions. Another way to generate Monte Carlo samples

in P-space is to use MATLAB functions rand or randn to generate Monte Carlo samples in

V-space or U-space, respectively, and then use the UQTools transformation functions u2p or

v2p, respectively, with the vector rv (see section 4, “Representation of Random Variables”)

of structures which defines the probabilistic structure of P-space. This will transform the

U- or V-space samples into P-space.

6.2 Quasi-random Sampling

Quasi-random number generators are designed to produce sequences of points in the unit

hyper-cube that distribute in a highly uniform manner. They seek to minimize the sequence

discrepancy. As more points are generated, the tendency is for the quasi-random number

generator to fill in any gaps in the initial segment of the sequence.

Quasi-random sequences do not do as well on many statistical tests for randomness

as do sequences produced by pseudo-random number generators. But, passing statistical

tests is not the point of quasi-random sequences. The point is to fill the unit hyper-cube

uniformly, and to do this with initial segments distributed as uniformly as possible over the

unit hyper-cube.

It has been our experience that using low discrepancy sequences to estimate proba-

bilities produces superior results to those produced using pseudo-random sequences. For

that reason, UQTools includes several functions for generating quasi-random sequences.

Some of these are original works by the developers of UQTools and some are interfaces

to quasi-random number generators that have been included in distributions of MATLAB

since version R2008a. In these versions, the section “Generating Quasi-Random Numbers”

in the Statistics Toolbox “User Guide” provides background information on quasi-random

sequences and serves as an introduction to the MATLAB software.

There is a considerable body of literature on the subject of generating low discrep-

ancy sequences. Many schemes have been proposed, some quite complicated. This has

been necessitated by some drawbacks experienced by simpler schemes. In particular, these

drawbacks can take the form of degraded behavior as the dimension of the sample increases.

One way to judge the behavior of a d-dimensional sequence of sample points generated by

a quasi-random number generator is to make a scatter plot of the numbers in each pair of

coordinates and visually inspect the plots for coverage and uniformity. MATLAB provides

a tool, function plotmatrix, for this purpose. If any of the two dimensional scatter plots

shows problems like lack of coverage of the unit square, voids, clumps, or clear patterning,

then one concludes that the sequence is not adequately representative of a sampling of the
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d-dimensional uniform distribution. The converse is not true; and, unfortunately, UQTools

provides no definitive test of goodness of sampling.

UQTools provides software to generate quasi-random sequences. In what follows, the

discussion will be about Hammersley sequences and Halton Sequences.

6.2.1 Hammersley Sequences

A technique that is of historical interest in the field of quasi-random sequence generation is

called Hammersley sequence sampling. A UQTools function, hamseqsamp, was written to

generate these sequences (we use the plural here because there is a different sequence for

each choice of V-space dimension and of sequence length). A second UQTools function,

hss, uses a Hammersley sequence as a starting point to generate a quasi-random sequence

in P-space using the function v2p and the structure rv which defines the probabilistic struc-

ture of P-space. This technique may be of academic interest, but it is not recommended

for serious sampling. It has two drawbacks: (1) Once a Hammersley sequence has been

generated, it cannot be extended to a longer Hammersley sequence - every entry of the

first component of a sequence of Hammersley vectors is sensitive to the sequence length

which was specified when it was generated. (2) Hammersley sequences are susceptible to

2-D scatter plot patterning - for a 500-point sequence this is already noticeable in the 8

dimensional sequence and blatant by the 14-dimensional sequence.

6.2.2 Halton Sequence Leaped, I

Another technique for generating quasi-random sequences goes under the name “Halton”.

The basic Halton sequence shares with Hammersley sequences the 2-D scatter plot pattern-

ing drawback. In fact, the d-dimensional basic Halton sequence exactly matches coordi-

nates 2 through d +1 of the (d +1)-dimensional Hammersley sequence. The saving grace

of the Halton sequence is that, if one picks a favorable value for a leap parameter q, and

instead of taking the first, second, third, etc. elements of the Halton sequence, the elements

1, 1+ q, 1+ 2q, etc., are chosen, a much more satisfactory distribution of points in the

unit hyper-cube can be obtained. Such a sequence is called a “Halton sequence leaped”.

UQTools includes a function halslget that returns a Halton sequence leaped in the form

of a matrix whose rows are the sample points. This function is contained in UQTools and

does not depend on any other MATLAB Toolboxes. It takes four integer parameters: the

dimension of the sample space; the number of samples desired; a number which, together

with the dimension, determine the leap parameter; and a number which tells halslget how

many elements of the infinite Halton sequence leaped to skip over before recording values

in the output matrix. This skip parameter allows a previously generated Halton sequence

leaped to be extended by the addition of more Halton sequence leaped points.

6.2.3 Halton Sequence Leaped, II

The MATLAB Statistics Toolbox provides tools for generation of Halton sequences. The

MATLAB version is more versatile than halslget and should be used if it is available. As

of this writing, however, the MATLAB version has one serious drawback. It asks the user to

input a leap parameter that is the actual number of basic Halton sequence elements skipped
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over before taking the next element to add to the sample set. An injudicious choice of this

parameter can result in a sample set which is confined to a proper sub-hyper-rectangle of

the unit cube. To overcome this drawback, UQTools provides function haltonget as an

interface to the MATLAB capability. The first four parameters to haltonget are the same

as those to halslget, and if only those parameters are used, the results of calling the two

functions are the same (to within round-off error). The optional fifth parameter can be used

to turn on the MATLAB option to “scramble” the sequence. Based on an examination of

2-D scatter plots, it appears that this improves the discrepancy of the output and its use is

recommended by the UQTools developers. The optional sixth parameter gives access to

additional Halton Sequence Leaped sequences that fall in the cracks between the elements

generated by the basic Halton algorithm.

6.3 Latin Hyper-cube Samples and Quasi-Latin Hyper-cube Extensions

Suppose that the unit interval [0,1] is partitioned into N sub-intervals (sometimes called

bins in the statistics community) of equal length 1/N. A collection of N sample points

which are vectors in a unit hyper-cube is considered to be a Latin Hyper-cube Sample
if each coordinate of the sample set places one value in each bin. This in itself is not

enough to guarantee that the sequence distributes uniformly over the hyper-cube. So it is

also stipulated that the order in which the bins are occupied changes randomly from one

coordinate to another.

As it says in the MATLAB documentation for Generating Quasi-Random Numbers,

“Though not quasi-random in the sense of minimizing discrepancy, these sequences nev-

ertheless produce sparse uniform samples . . . .” Such sequences may be generated by the

MATLAB Statistics Toolbox function lhsdesign. UQTools makes no direct use of this

function.

UQTools does provide a function to extend an existing set of arbitrarily placed sample

points so that the resulting sample set is as nearly a Latin hyper-cube sample as possi-

ble. Such an extension is called a quasi-Latin hyper-cube extension. Suppose an existing

sampling of points from the unit hyper-cube contains M points and it is to be extended by

adding N new points. This is accomplished by UQTools function qlh extend. The inputs

to qlh extend are the existing set of M points to be extended and a set of N points from

the unit hyper-cube which are used as seed points to start the extension process. For best

final results, these N seed points should be distributed uniformly over the unit hyper-cube.

One of the previously mentioned sample generating techniques may be used to generate

this seed set. The function qlh extend then partitions the unit interval into M +N equal

subintervals; on a coordinate by coordinate basis it takes note of which of these intervals is

already occupied by the corresponding coordinate of a point in the existing sample set; and,

one new seed point at a time, it affinely transforms each of the seed point’s coordinates into

an unused interval. These newly occupied subintervals are now considered occupied for the

purpose of transforming the next seed point.

Each seed point is thus transformed into a final sample point whose coordinates are the

unique occupiers of their respective bins. However, since the original set of N points was

arbitrary, it may not have the unique occupancy property of a Latin hyper-cube sample for

this set of M +N bins. Thus, the extended sample might not be a truly Latin hyper-cube
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sampling. This is the reason for the “quasi” in the name. However, it is permissible to ask

qlh extend to “extend” an empty set of samples by setting the “existing set” to the empty

matrix [ ]. In this case, the “extended” set is actually a Latin hyper-cube sampling.

7 Response Surface Tools

The UQTools functions discussed in this section, and some of the documentation are kept

in UQTools subdirectory UQTOOLS/RespSurf. Documentation, including details of func-

tion usage, can be found in the program preamble or “help” comments of the function

files and in the files RBF RS data structure.txt, Readme mv poly.txt, and UQTOOLS
/Documentation/mv poly whitepaper.pdf.2.

UQTools has the capability to generate response surfaces. For purposes of UQTools, a

response surface (RS) is function that provides a global approximation to the behavior of

a parametrized system based on results calculated at various points in the parameter space

(the data points). Evaluating a RS of a system at a point of the parameter space is typically

much more computationally efficient than evaluating a high fidelity physics model of the

system. So, replacing a high fidelity model in an analysis by a RS approximation can rapidly

produce an approximate answer to the analysis. In section 8.2, UQTools approximates

requirements functions by RSs to rapidly approximate bounds for failure sets.

The RS function forms that have been implemented in UQTools are (multivariable)

polynomials and radial basis function (RBF) RSs (with optional polynomial pre-fit). There

is no hard coded limit on the number of parameters, the order of the approximating poly-

nomial, or the number of data points used in defining the RSs. However, calculating the

coefficients used in these RSs requires solving linear equations the size of whose coeffi-

cient matrices depends on these numbers. Some common sense care must be exercised

in the choice of how many data points to use in fitting the RSs and, in the case of an RS

using a polynomial component, how many monomial terms are in the polynomial. The

number of monomial terms is determined by the dimension of the parameter space and the

polynomial order chosen (and the value of an optional truncation parameter which limits

the number of variables used in cross terms of the polynomial) or by explicitly prescribing

which monomials are to be used.

7.1 Multivariable Polynomials

A polynomial is a linear combination of monomials. A monomial in the variables p1, ..., pd
is a product of the form pi1

1 · · · pid
d where, for 1 ≤ j ≤ d, i j is a non-negative integer. The

order of a monomial is the sum of its exponents. The order of a polynomial is the maximum

order of its monomials. A polynomial can be specified by specifying which monomials are

used in it and then specifying what coefficient is multiplied by each of these monomials

in forming the linear combination which is the polynomial. The UQTools multivariable

polynomial software has two ways to specify which monomials are being used. The first

specification paradigm, specification by order uses two or three integer parameters. The

2This white paper is out of date in that it was written before the gradient and Hessian capabilities were

added to the multi-variable polynomial software and much of the capability for accepting polynomials defined

by “coefficients and exponents” was added.
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dimension of the parameter space and the order of the polynomial are always specified.

Optionally, a third parameter (the truncation parameter) may be specified to limit the num-

ber of cross terms (non-zero exponents) in a monomial. When the two-parameter version

of this paradigm is used, the polynomial consists of all monomials of the given number of

variables whose orders do not exceed the given order. If the truncation parameter is also

specified, the monomials with more than the specified number of active variables are elim-

inated from the full set. The second paradigm for specifying a polynomial, specification
by powers, is to simply provide a matrix of non-negative integers (variously called the ex-

ponents matrix or the powers matrix), each row of which is the vector of exponents, the

(i1, . . . , id) in the previously given definition of “monomial”, used in one of the monomials.

For a single RS (simultaneous representation of multiple RSs will be dealt with later)

the coefficients of the monomials are stored in a column vector. If the form of the poly-

nomial is specified by powers, then the association between coefficients and monomials

is simple: coefficient number i goes with the monomial defined by row i of the powers

matrix. If the form of the polynomial is specified by order, the monomial associated with

each entry in the coefficient vector is determined by an algorithm. This order is uniquely

determined by its inputs that are the polynomial order, the number of variables, and, op-

tionally, the truncation parameter. This algorithm is described in detail in the white pa-

per UQTOOLS/Documents/mv poly whitepaper.pdf. The user can determine how many

terms a given polynomial will have by using function mv poly count terms. To find out

exactly which monomials are used and in what order the algorithm assigns them, the user

can call function mv poly expansion with the optional output variable powers.

UQTools provides several functions for use with multivariable polynomial RSs. These

functions are described in Table 6.

Table 6: Functions for Multivariable Polynomial Response Surfaces

Function Name Calculation performed

mv poly coeff fit Calculate the coefficients to fit a polynomial to given

data. For the underdetermined case (fewer monomials in

the polynomial than points of data to be fit), the

coefficients are chosen to minimize the (weighted)

sum-squared error between the data and the polynomial.

Specifying weights is optional with the default being that

all data points are equally weighted. For the

overdetermined case (more monomials in the polynomial

than data points), coefficients with a minimum sum of

squares are chosen to fit the data exactly.

mv poly eval Evaluate a multivariable polynomial RS at one or

more points in the parameter space. Gradients and

Hessians may also be evaluated.
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Table 6: Functions for Multivariable Polynomial Response Surfaces (Continued)

mv poly expansion Primarily for internal use of UQTools, this function

evaluates all monomials of a polynomial specified by

dimension, order, and truncation parameter at the input

data points and (optionally) their gradients and Hessians,

and may be used to calculate the powers matrix for a

multivariable polynomial RS specified by order.

mv poly expanpow Primarily for internal use of UQTools, this function

evaluates all monomials of a polynomial specified by

explicit list of monomial power vectors at the input data

points and (optionally) their gradients and Hessians.

mv poly count terms Primarily for internal use of UQTools, this function

calculates the number of monomials in a multivariable

polynomial RS specified by order.

mv poly momabtmean If the variables in a multivariable polynomial are

considered to be independent uniformly distributed

random variables, this function calculates the mean and

moments about the mean up to whatever order is

requested of the polynomial function of these random

variables.

mv poly intgrl Primarily for internal use of UQTools, this function

integrates a multivariable polynomial over a

hyper-rectangle defined by fixed lower and upper limits

on each variable.

mv poly mult Primarily for internal use of UQTools, this function

returns the product polynomial specified by powers

resulting from multiplying two input polynomials

specified by powers.

If several functions are to be fit with RSs with otherwise identical parameters they may

be evaluated in parallel at one or more points from the parameter space by a single call to

mv poly eval using a matrix of coefficients3.

For an example of the use of many of these functions see section 13.1,

“File: mv poly example.m.”

3To evaluate fewer than the complete set of RSs at a set of points from the parameter space, simply make

a reduced coefficient matrix by extracting the relevant columns from the full coefficient matrix, and pass the

reduced matrix to mv poly eval.
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7.2 Radial Basis Function Response Surfaces

A radial basis function (RBF) is a real valued function (at least for the purposes of UQ-

Tools) defined for a nonnegative real argument.

If φ is a specific RBF, then a RBF RS using φ is a function of the form:

r(p) =
n

∑
i=1

ciφ(||p− pi||)

In this expression, the pi are fixed points (called the centers of the RBF RS) in the parameter

space, the norm is Euclidean norm (so that ||p− pi|| is the radial distance from p topi; hence

the radial in “radial basis function”), and ci is the coefficient which goes with the center pi.

Fitting a RBF RS to n data points {(pi, f (pi))|1 ≤ i ≤ n} (here, we are assuming that the

data comes from evaluating a function f defined on the space containing the pi) requires

solving for the coefficients ci, 1 ≤ i ≤ n, in the system of equations

n

∑
i=1

φ(||p j − pi||) ci = f (p j),

where j = 1, . . . ,n. For the RBFs used in UQTools, as long as the centers are distinct, this

system of equations has a unique solution, and the resulting RS exactly matches the target

function at the centers.

It is in the nature of RBFs to treat the variables as if they are equally scaled. In a raw

physics model, this might not be the case. For example, consider the relative scaling dif-

ference in a model where some variables represent masses and others represent damping

ratios. For this reason, one might want to transform the variables to improve scaling be-

fore fitting a RBF RS. In dealing with uncertain parameters modeled as random variables,

the previously mentioned transformations from P-space into U-space or V-space replace

possibly unevenly scaled variables with variables having identical scaling.

RBF RSs can have some intrinsic limitations. For example, each term of a Gaussian

RBF has a bump at its center and approaches zero as its argument grows indefinitely large.

Thus, a Gaussian RBF RS might tend to be bumpy (this can be somewhat alleviated by

choice of the Gaussian parameter; more about that later) and will approach zero as its

argument grows large. This is not ideal if one is trying to approximate a function that

is biased away from zero. To add flexibility to RBF RSs, UQTools permits polynomial

preconditioning.

With polynomial preconditioning, the data is first approximated with a polynomial RS,

say Q. Then an RBF RS r(p) is fit to the residual data {(pi, f (pi)−Q(pi))|1 ≤ i ≤ n}. The

resultant RS is r(p)+Q(p), and it again matches the target function at the centers.

The user should consider the following points when using polynomial preconditioning.

The order of Q should be limited to any known polynomial-like trends in f . Absent any

knowledge of the behavior of f , Q should be of small order. Orders zero (the constant

polynomial) and one (the linear polynomial) should be safe. The potential danger of using

a high order Q is that, in choosing coefficients to minimize the sum square error between the

polynomial and the truth function at the data points, the polynomial will oscillate between

data points, with overshoots and undershoots, so that it may achieve close approach at data

points. The corrective RBF RS will need only small coefficients to remove remaining error
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between the polynomial and the truth function data points. The resultant RS will tend to

follow the oscillations of the polynomial and may not be a reasonable global approximation

to the truth function.

The data that specifies an RBF RS (with or without the optional polynomial precondi-

tioning) is contained in a single MATLAB variable of data type structure. The user enters

the following information into this structure:

• The name of the RBF.

• Any parameters used by the RBF.

• The points in parameter space used as centers.

• The value(s) of the truth function(s) that are to be interpolated at these centers.

• The order of the pre-fit polynomial(s) (with “-1” for “no pre-fit polynomial(s)”).

• Optionally, a cross-term truncation parameter for the pre-fitting polynomial(s).

Details about this are included in the documentation file UQTOOLS/RespSurf/RBF RS
data structure.txt.

UQTools provides three functions for creation and evaluation of RBF RSs and eight

functions that define the eight parametrized families of RBFs which it supports. The three

creation and evaluation functions are given in Table 7.

Table 7: Functions for Radial Basis Response Surfaces

Function Name Calculation performed

rbf coeff fit Calculate the coefficients of the pre-fit polynomial(s)

(if requested) and the coefficients of the RBF RS(s).

Add this and other information to the RBF RS defining

structure.

rbf coef reduce Calculate the structure that results from removing some

of the multiple response surfaces from the structure

calculated by rbf coeff fit.

rbf eval Evaluate the RBF RS(s) (and, optionally, its (their)

gradient(s) and Hessian(s)) at one or more points from

the parameter space.

UQTools provides eight functions that define eight choices for the RBF. Of these, six

may be used if gradients of the RSs are desired, and five of those may be used if Hessians

are desired. In the following table, the “Differentiability” column contains the entry “G” if

the function is everywhere differentiable, so may be used if gradients are to be calculated,

and contains the entry “H” if the function is everywhere twice differentiable, so may be

used if Hessians are to be calculated. The entry “-” is used to indicate that the function is

not everywhere differentiable. See Table 8 for a description of these functions.
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Table 8: Radial Basis Functions

Name Differentiability The Radial Basis Function

cubic rbf – The cubic radial basis function:

ϕ (r) =
(√

r2 + c
)3

This RBF uses a single real scalar parameter c
that should be non-negative.

gaussian rbf GH The Gaussian radial basis function:

φ (r) = e−cr2

This RBF uses a single real scalar parameter c
that must be positive. Note that c is related to a

Gaussian distribution standard deviation σ by

the equation c = 1/σ2.

imq rbf GH The inverse multiquadratic radial basis

function:

φ (r) =
1√

r2 + c2

This RBF uses a single real scalar parameter c
that should be positive.

linear rbf – The linear radial basis function:

φ (r) = cr

This RBF uses a single real scalar parameter c
that should be non-zero.

mq rbf GH The multiquadratic radial basis function:

φ (r) =
√

r2 + c2

This RBF uses a single real scalar parameter c
that should be positive.

tps rbf G The Thin Plate Spline radial basis function:

φ (r) = r2 log(cr2)

This RBF uses a single real scalar parameter c
that should be positive.
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Table 8: Radial Basis Functions (Continued)

compactI rbf GH The Compact-I radial basis function:

φ(r) =
{

Ψ(t), if t< 1,
0, otherwise

Here,

Ψ(t) = (1− t)5(8+40t +48t2 +25t3 +5t4) and

t = r/c. This RBF uses a single real scalar

parameter c that should be positive. Note that

this φ(r) = 0 for r ≥ c.

compactII rbf GH The Compact-II radial basis function:

φ(r) =
{

Ψ(t), if t< 1,
0, otherwise

Here,

Ψ(t)= (1−t)6(6+36t+82t2+72t3+30t4+5t5)
and t = r/c. This RBF uses a single real scalar

parameter c that should be positive. Note that

this φ(r) = 0 for r ≥ c.

8 Bounding the Safe/Failure Space Using Homothetic Deforma-
tions

8.1 Using the Exact Requirements Functions

The UQTools functions discussed in this section are kept in UQTools subdirectory

UQTOOLS/Homodef/Core. The theory behind this analysis technique is described in re-

search papers by the authors [1–3] and are included in the files in UQTools subdirectory

UQTOOLS/Homodef/Papers.

8.1.1 What Is It, How Is It Done?

UQTools provides software to analyze the performance of a system that depends on the un-

certain parameter vector p. The performance is considered acceptable when a set of system

requirements is satisfied. These requirements, which also depend on the uncertain parame-

ter p, are described by the set of inequalities g(p)< 0, where g is a (possibly) vector-valued

function of p. The function gi(p) will be referred to as a requirement function. This vec-

tor inequality, g(p) < 0, must hold component-wise, so system acceptability requires the

satisfaction of all requirements. For instance, if the system is a structure and p represents

material properties, one of the component inequalities, gi(p) ≥ 0, can describe the uncer-

tainty realizations yielding a plastic deformation. If the system is a controlled aircraft and

p represents some aerodynamic coefficients, gi(p) ≥ 0 can represent the uncertainty real-

izations for which the closed-loop system is unstable.
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Note that each realization of the parameter vector p will either fall into the constraint

satisfaction set S = {p : g(p)< 0}, also called the Safe Domain; or into its complement, the

constraint violation set F = {p : gi(p) ≥ 0 for some i}, also called the Failure Domain. It

follows that F =C(S), where C(·) is the set complement operator. Determining whether or

not the system performs acceptably requires knowing the value of p. Since this value is un-

certain, we need to characterize the dependency of g on p. If the expected range of variation

of p is a subset of the safe domain, the system will be sufficiently robust to uncertainty; i.e.,

the requirements will be satisfied for all possible uncertain parameter realizations within

such a range. Otherwise, a portion of this range will fall into the failure domain. Determin-

ing whether a system is sufficiently robust can be difficult for several reasons, for example:

• p can have a large dimension.

• g can be expensive to evaluate.

• The dependence of g on p can be so complex as to preclude determining the Failure

Domain analytically.

The idea supporting the developments that follow results from trying to find the separa-

tion between a particular parameter realization, p̄, which we will call the Nominal Parame-
ter Point, and whichever of the failure or safe domain does not contain p̄. One choice of the

point p̄ could be our best guess of the actual value of p. The separation between the point p̄
and the set F or S will be determined by homothetically adjusting the size of a Reference Set
Ω [1–3]. The reference set can be a hyper-rectangle or hyper-sphere centered about p̄ which

is serving as the homothetic center. Homothetic deformation of the reference set refers to

expanding or contracting it about its center point by a fixed factor, the similitude ratio, in

all directions while keeping the center point and the orientation fixed [7]. Ω is deformed

homothetically until it is as large as possible while still being fully contained in the same

domain as p̄. The deformed set will be called the Maximal Homothet M. The terminology

Maximal Safe Set will be used if M ⊂ S. The parameter point(s) where the maximal set

touches the boundary of the failure domain are the Critical Parameter Values (CPV), which

are denoted as p̃. These parameter realizations can be interpreted as worst-case uncertainty

combinations. This case is significant since, for p̄ ∈ S, the larger the maximal safe set, the

further the failure domain is from p̄, and; therefore, the more robust the system is to un-

certainty in p. The reference set can have hyper-spherical or hyper-rectangular shapes in

either P-space or U-space while having p̄, or its transformation to U-space, as its geometric

center. Details of the mathematical formulation of this process are given in [1] and [2].

Figure 3 shows a sketch of a two-dimensional P-space, a hyper-rectangular reference

set, and the corresponding maximal set for a system subject to two requirements. The gray

portion, labeled F , is the failure set. For p ∈ F , at least one of the inequalities g1(p)≥ 0 or

g2(p)≥ 0 holds.

References [1–3] propose two metrics to quantify the size of the maximal set. These

metrics, called the Parametric Safety Margin (PSM) and the Reliability Index (RI), are

quantifiers of robustness. PSM arises from reference set deformations in P-space, while RI

results from reference set deformations in U-space. To distinguish between the cases where

p̄ ∈ S or p̄ ∈ F , UQTools software returns the PSM or RI as a positive number in the former

case and as a negative number in the latter.

30



Figure 3. Maximal safe set of a hyper-rectangular reference set.

Note that the notion of robustness evaluated via failure probabilities differs considerably

from the ideas represented by these metrics; e.g., there can be situations where the failure

probability is small and p̄ is in the failure domain.

8.1.2 Utility of Bounding Sets

Unless specifically stated otherwise, further discussion refers to the case that p̄ is in the Safe

Domain, so the maximal homothet M of the reference set is a subset of the Safe Domain.

Once M has been determined, several tasks can be performed.

• Robustness metric: Any metric evaluating the size of the maximal set is a quantifier

of robustness. The PSM and the RI are two of these metrics [3]. The larger their

values are, the larger the separation between the nominal parameter point and the

failure domain.

• Failure probability bound. As mentioned previously, if C[·] and P[·] denote the com-

plement set and probability operators, then note that P[C(M)] = 1− P[M] ≥ P[F ].
Since the geometry of M enables the exact calculation of P[M], the upper bound to

the failure probability P[C(M)] can be readily calculated as 1-P[M]. Note that the cal-

culation of C(M) is independent of the probabilistic uncertainty model. As a result,

the calculation of upper bounds for several probabilistic uncertainty models (i.e., the

application of P[g] to C(M)) can be done with minimal computational effort.
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• Failure probability via sampling. Since g(p) < 0 for all points in the maximal safe

set, one can avoid performing function evaluations at such points when estimating

P[F ] via sampling. This is the basic idea behind the hybrid methods for estimating

failure probability (see section 11). Rejection-based and conditional sampling-based

variants of this algorithm are available in UQTools. Details of these methods are

provided in sections 11.1 and 11.2.

8.1.3 How To Use homodef

In order to perform a homothetic deformation, the reference set Ω and the set of require-

ments g(p)< 0 must be prescribed. Besides these two inputs, UQTools requires setting up

parameters that affect the numerical search for the CPV(s). The UQTools function used to

perform homothetic deformations is called homodef. The CPV, the maximal set, and the

PSM or RI are some of the outputs of this function. Details on the data structure supporting

the inputs and outputs of this function can be found in its program preamble comments.

The example file named example homodef.m (section 13.2) exercises representative

input combinations of homodef in detail. In particular, we consider problems (1) of varying

number of dimensions, (2) of varying number of requirements, (3) where the reference

sets are either hyper-spherical or hyper-rectangular in either P-space or U-space; and in

some cases, (4) where the dependence of g on p allows for the analytical calculation of the

maximal set. Plots of relevant sets in the parameter space back these analyses. The reader is

strongly encouraged to study and execute all 17 problems in example homodef.m (section

13.2) to get familiar with the notions, concepts, and data structures supporting homodef.

A high level description of the main inputs and output of homodef is presented next.

More details can be found in the program preamble comments of file homodef.m in direc-

tory UQTOOLS/Homodef/Core. UQTools permits the following syntax:

results = homodef(req,prob,numsetup,descriptor,sta ic p,write,dosampling)

1. The set of requirements functions (symbol in document g, variable name req)

The variable req is a MATLAB vector of data type structure with as many elements

as the number of requirements functions. The following information must be supplied

for the ith requirements function:

• req(i).g the name of the function that calculates g(pi, · · ·).
• req(i).name a character string giving the name of the requirement. This

should be unique to this requirements function since UQTools uses it to identify

this function to the user. Otherwise, it does not enter into the calculation.

• p (req(i).extrainputs a cell array specifying any inputs required by func-

tion gi other than those required. Should be set to the empty cell array, {}, if no

additional inputs are needed.

• req(i).tolxcf a vector containing the tolerances [TolX, TolCon, TolFun]

to be used when the MATLAB Optimization Toolbox function fmincon calcu-

lates the maximal safe set of Ω for gi. req(i).tolxcf may be set to the empty

vector, [], to use default values.
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Note that each function named in req(i).g must be created by the user. The first

input of this function must be the value of the uncertain parameter vector p, and

additional inputs, if needed, should be formulated to use the information the user will

put in req(i).extrainputs. Thus, if req(i).g=’myfun’, the user should have a

function M-file named myfun.m which calculates requirements function i and whose

first line looks like:

function y = myfun(p, C1,...,Cn)

The (possibly empty) list, C1,...,Cn, of additional parameters should be furnished

as a cell array in the extrainputs field by, for example, executing a command of the

form:

req(i).extrainputs = {C1,...,Cn};

2. The reference set (symbol in document Ω, variable name prob and descriptor).

UQTools allows for using reference sets in P-space or U-space that have either hyper-

spherical or hyper-rectangular geometries. The variable prescribing which of these

four combinations holds is named descriptor. The data required in prob by each

of these combinations is specified next. In all four cases, the variable in prob.set
must be created via function setrvs or using uqtools gui (this is the vector of

structures called rv in section 4, “Representation of Random Variables”). Additional

details on the data structure of the variable prob are given in the def prob*.m files

in subdirectory UQTOOLS/Examples/General.

Note that, if a maximal homothet of the reference set is sought in P-space, then

the probabilistic structure of the uncertain variables will not be used by homodef.

In contrast, to determine a maximal homothet of the reference set in U-space, the

probabilistic structure is necessary to define the transformation between P-space and

U-space. Thus, the user-provided information in structure field prob.set serves dif-

ferent functions in these two cases. For P-space problems, prob.set(i) sets limits

on how widely the uncertain parameter number i is allowed to range in seeking the

maximal homothet. This can be done by defining prob.set(i) using setrvs with

argument typedist set to ’interval’ and argument paramv set to a two element vec-

tor defining the uncertainty range of interest for the components of prob.set. For

U-space problems, prob.set is set to the actual rv structure (see section 4) which

describes the probabilistic nature of the uncertain variables.

descriptor=’p-sphere’ (see problems 2, 5, and 7 in example homodef.m, sec-

tion 13.2): In this case we have to prescribe the center of the sphere in P-space

(prob.nom) and the uncertainty range limits of interest (prob.set). This range con-

fines the numerical search for the CPV to a hyper-rectangular set in P-space. The

realization of infeasible or unreasonable values of the uncertainty can be prevented

using such a range. For this descriptor, the robustness metric calculated by homodef
is the Spherical Parametric Safety Margin (SPSM).

descriptor=’p-rectangle’ (see problems 1, 3, 4, and 6 in example homodef.m,

section 13.2): in this case we have to prescribe the center of the rectangle in P-space
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(prob.nom), the half lengths of the deforming directions (prob.m), the half lengths of

the fixed directions (prob.c), and the uncertainty range of interest (prob.set). The

next section explains the significance of having both deforming and fixed directions.

For this descriptor, the robustness metric calculated by homodef is the Rectangular
Parametric Safety Margin (RPSM).

descriptor=’u-sphere’ (see problems 9, 11, 1, 15, and 17 in example homodef.m,

section 13.2): In this case we only have to prescribe the probabilistic uncertainty

model (prob.set). In all cases, the center of the sphere is assumed to be the origin

of U-space. Even though maximal sets with other origins can be calculated, the in-

ability to calculate their probabilities analytically precludes most of their usefulness.

Note that the support set of the random vector in prob.set prescribes the uncertainty

range of interest. For this descriptor, the robustness metric calculated by homodef is

the Spherical Reliability Index (SRI).

descriptor=’u-rectangle’ (see problems 8, 10, 12, 14, and 16 in

example homodef.m, section 13.2): in this case we have to prescribe the center of

the rectangle in U-space (prob.nom), the half lengths of the deforming directions

(prob.m), and the half lengths of the fixed directions (prob.c). As before, the sup-

port set of the random vector in prob.set prescribes the uncertainty range of interest.

For this descriptor, the robustness metric calculated by homodef is the Rectangular
Reliability Index (RRI).

3. Numerical setup (variable name numsetup)

The input variable numsetup is a MATLAB scalar variable of data type structure

that prescribes the numerical setting used to perform optimization and sampling. The

fields sea, sam, and opt refer to the searching, sampling, and optimization setups

respectively. Details on the specific sub fields can be found in the def prob*.m files

in subdirectory UQTOOLS/Examples/General. The information in the field sea is

used to overcome the possibility of not converging to the true CPV. In such a case

a sequence of serial and parallel searches for the global optimum are carried out.

Information in the field sam is used to evaluate convergence to the global optimum by

sampling the surface and volume of the maximal set. This test will only be conclusive

if one of such samples falls into the failure domain. The information in the field opt
is used to prescribe the use of simplex and/or gradient-based algorithms.

4. Maximal Set (variable name results)

The output of homodef, which is called results in the internal documentation in file

homodef.m, is a MATLAB scalar or vector variable of data type structure depend-

ing on whether p̄ is in the failure or safe domain, respectively. If p̄ is in the safe

domain, results has the same number of components as the vector of requirements

functions. Each component of results contains information computed during the

determination of the maximal safe set of Ω for one of the requirements functions,

g. However, the components of results are not necessarily in the same order as

the components of g. The components have been sorted so that the one leading to

the smallest homothet, i.e., the maximal safe set for the fully constrained problem,

is given first. The succeeding components of results give the maximal safe sets for
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the other individual requirements functions in order of increasing size. If p̄ is in the

failure domain, results has only a single component which describes the maximal

homothet of Ω which is contained in the failure domain.

The fields of results give information about the maximal set being described. The

field results(i).infdss is +1 when the nominal parameter point is in the safe do-

main, otherwise it is -1. The fields results(i).robmets and results(i).cpvs p
contain the metric of the maximal set (i.e., PSMs or RIs) and a CPV in P-space cor-

responding to each requirement. Note that the sign of infdss and that of robmets
are the same. The field results(i).name met is set to one of the strings SPSM,

RPSM, SRI, or RRI depending on the input value of descriptor. Several additional

fields of results are described in the program preamble comments to file homodef.m.

The UQTools function sample ms.m is used in example homodef.m (section 13.2)

to test whether the search for the CPV has converged to its true value.

8.1.4 Extensions

UQTools enables performing homothetic deformations of hyper-rectangular reference sets

in which some directions are deformed while other ones are kept fixed. Figure 4 (below)

illustrates the case where the hyper-rectangular set Ω is only deformed in the p1 direction.

This class of deformation is feasible if and only if the homothet of smallest size is fully

contained in the safe domain, e.g., in the sketch, this implies that a vertical line centered at

p̄ having a length equal to 2c, would be in the safe domain. The failure domain, labeled F ,

is as in Figure 3.

In order to set up this class of deformation, it is required to prescribe (i) the vector

of half lengths of the reference set for those directions being deformed (i.e., m in [1]),

and (ii) the vector of half lengths of the reference set for those directions not being de-

formed (i.e., the c vector). A UQTools example of this class of deformations is available in

example homodef.m with problem=4 (section 13.2).

8.2 Homothetic Deformations over Surrogate Models

The UQTools functions discussed in this section are kept in UQTools subdirectory

UQTOOLS/Homodef/RSapprox. The user interface functions in this subdirectory are in func-

tion M-files cpv by RSapprox.m and cbRrestart.m. As in homodef, these routines seek

to calculate a robustness metric. Unlike homodef, these routines are only programmed to

deal with the case that the given nominal point is in the safe domain.

These routines differ from homodef in that the exact requirements functions are re-

placed by RBF RS approximations. These RS approximations are adaptively improved by

iterating the robustness metric calculation with new RS data based on previous iterations

and sampling. The purpose of this iterative improvement is to make the CPVs of the RS ap-

proximations to the requirements functions converge to the CPVs of the actual requirements

functions. The expectation is that using cpv by RSapprox will require fewer evaluations

of the requirements functions than using homodef, thereby saving computing time in cases

where the evaluation of the requirements functions is computationally burdensome.
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Figure 4. Hold some variables fixed, adjust others to find maximal safe set.

In order to master the operation of cpv by RSapprox , the user must first understand

several other parts of the UQTools package:

• The input variables to homodef, as described in section 8.1, “Using the Exact Re-

quirements Functions.”

• The use of sampling routine haltonget, as described in section 6.2.3, “Halton Se-

quence Leaped, II.”

• The RBF RS paradigm described in section 7.2, “Radial Basis Function Response

Surfaces.”

Function cpv by RSapprox functions in two modes. One is to initialize the process and

perform iterations until it converges or a preset iteration limit is reached. The other is to

restart a previous calculation, performing additional iterations. Such a restart requires mod-

ifying the output cpvapxout from the previous iteration and using it for the input param-

eter cpvapxin in the restarted run, typically accomplished by a call to the restart function

cbRrestart.

The function cpv by RSapprox is called by a MATLAB statement of the form:

[results, cpvapxout, conv info] = cpv by RSapprox( cpvapxin, ...
req, prob, numsetup, descriptor, ic p, write, sample, formp);
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The first input, cpvapxin, is a MATLAB scalar variable of type “structure”. It con-

tains a great deal of information needed to start (or restart) the iteration. The form of the

RBF RSs is specified, convergence parameters are specified, and an iteration count limit is

specified. Since both the initial set of RBF centers and some of the centers added during

each additional iteration are generated by the quasi-random number generator haltonget,

cpvapxin also has fields to control quasi-random number generation. The RSs may have

their domains in P-space or in one of the transformed spaces U-space or V-space. This may

require information in addition to that provided by variable prob. See program preamble

comments for field .rsdomain of input structure variable cpvapxin for more information

on evaluation domains. Additional information for restarting cpv by RSapprox to perform

additional iterations comes from the output variable cpvapxout from the previous iteration.

The next seven input variables are exactly the input variables that would be used in a

call to homodef. The last input variable formp is optional. The variable ic p is ignored

by cpv by RSapprox, which calculates its own initial values for the optimizations that de-

termine the maximal homothet(s), and is included only for calling sequence compatibility

with homodef.

Recall that, if descriptor is p-rectangle, homodef requires that every

prob.set(i).typedef be set to interval; while , if descriptor is p-sphere, homodef
does not use prob.set. However, cpv by RSapprox requires probabilistic descriptions of

the uncertain parameters to effect the transformations between P-space and V-space. This

information is provided in cpvapxin.rv.

As in homodef, these routines find a robustness metric, i.e., SPSM, RPSM, SRI or RRI,

according to the value in descriptor for an approximation to the problem defined by req
and prob by finding the CPV for the maximal homothetic deformation of a hyper-spherical

or hyper-rectangular reference set in P-space or U-space.

8.2.1 Brief Sketch of the Method

A brief sketch of the method is given here, but again; please see the program preamble

comments for a complete description.

First, some sample points are generated in V-space and transformed into P-space. The

requirements functions are evaluated at these points. This gives the data for the first surro-

gate requirements functions RSs. Then function homodef is used to find a CPV for each of

the surrogate requirements functions RSs.

Then, the RSs are refined by using new data. The surrogate CPVs just found and the

values of the actual requirements functions are added to the interpolation data. Also, some

more quasi-randomly generated sample points are added, using the quasi-Latin hyper-cube

technique. Surrogate CPVs are calculated for this new set.

With two sets of data, convergence testing can occur. If the process is unconverged, and

the iteration limit has not been reached, another iteration just like the last one is taken. If

the process is converged, the surrogate CPVs are taken as approximations of the true CPVs,

and an approximate maximal safe set is calculated.
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8.2.2 Convergence Testing and Algorithm Termination

Convergence is declared if the CPVs and robustness metrics for all active requirements

functions, and the RS approximation error terms for all requirements functions pass specific

convergence tests.

A call to cpv by RSapprox terminates for one of 3 reasons: an error has been detected,

the iteration limit has been reached, or convergence has been detected. See internal docu-

mentation for more information.

8.2.3 Restarting cpv by RSapprox To Perform Additional Iterations:

After making a calculation with cpv by RSapprox, a user might find that the approximate

answer is not sufficiently close to the desired answer. Common restart scenarios involve

needing to increase the iteration limit and/or altering the convergence parameters. As an

alternative to starting the calculation from scratch using cpv by RSapprox, UQTools pro-

vides a utility to allow the user to accomplish restart easily in these cases. This is possible

because the output variable cpvapxout has accumulated information about the iterations

already performed.

The function to drive a restart is in file UQTOOLS/Homodef/Rsapprox/cbRrestart.m.

The program preamble comments in this file provide details about how to call it. The most

important thing to note is that the input variable cpvapxin to cbRrestart is the output

variable cpvapxout from the previous run of cpv by RSapprox.

9 First Order Reliability Method

Discussed in this section are the UQTools functions for applying the First Order Reliability

Method (FORM) to systems with probabilistic parameter uncertainty are kept in UQTools

subdirectory UQTOOLS/RelMeth.

FORM and SORM4 are techniques that have, for several decades, found application

in reliability analysis of structural systems. These are techniques for approximating the

probability of failure of a system with probabilistic parameter uncertainties. They are both

most likely to give reasonable approximations of failure probability when the following are

true:

• Failure probability is small.

• Failure region is in the tail of the uncertain parameter distribution function.

• Most of the failure probability is attributable to just one of the requirements functions.

In the UQTools implementation, the failure region is defined by a single requirement

function that has, historically in this context, been called a limit state function.

The starting point for FORM and SORM is the transformation of the uncertain param-

eter space into standard normal space, a.k.a. U-space. Then, the so-called Most Probable

4An overview of FORM and the Second Order Reliability Method (SORM) can be found in the second

section of [6]. This reference also gives one more example of the versatility of the techniques included in

UQTools.
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Point (MPP) of failure is calculated. This is the point in the U-space transform of the fail-

ure region that is closest to the origin, which is the expected value of the standard normal

distribution. The Euclidean norm of the MPP, frequently represented by the symbol β , is

called the reliability index (RI). Because the tail of the standard normal distribution function

experiences exponential decay, the motivation for examining this point is that it is hoped

that the system failure probability is concentrated at the MPP, as it could be if the failure re-

gion indeed had small probability and lay in the tail of the uncertain parameter distribution

function. FORM then estimates the failure probability by approximating the failure region

by the half-space resulting from placing a hyper-plane through the MPP tangent to the fail-

ure region (hence first order) and calculating the probability of the half-space opposite the

origin (this assumes that the origin is in the safe domain). See Figure 5 for a representative

graphic. This probability is simply Φ(−β ), where Φ is the CDF of the (one dimensional)

standard normal distribution [8, equation (2.19), p. 12]. SORM replaces the hyper-plane by

a quadratic surface (hence second order) that also matches curvature of the failure boundary

at the MPP. Calculating, or even estimating, the probability of a region in U-space bounded

by a quadratic surface is much more difficult than the linear case.

Figure 5. FORM and SORM

There is a connection between the present FORM analysis and the analysis done in

section 8.1. If the problem considered in section 8.1 has a single requirements function and

function homodef is used to find a maximal safe hyper-sphere in U-space, then the CPV

there is the same as the MPP from FORM and the SRI there is the same as the RI from

FORM.
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UQTools provides FORM analysis by utilizing a software package called MatPA (in-

cluded in the directory UQTOOLS/RelMeth). The user represents data using the homodef
standard input variables req, prob, numsetup, and descriptor and passes these to the

interface routine, call MPP, which will translate the data into input format for the MatPA

function MPP FORM and then call MPP. If all the uncertain parameters are declared to be

normal random variables in field .set of input structure variable prob, correlations may

be imposed on these parameters by inputting a correlation coefficient matrix in optional

call MPP parameter called Covariance. As an additional optional parameter, the user

may declare in the sixth input parameter position the initial value, X0, for the optimization

search for the MPP. If this is done, the position for optional input parameter Covariance
must be filled, if only by the empty matrix, []. If no user-supplied initial value is given,

call MPP supplies a default. UQTools permits the following syntax:

[mppU,beta,G0,Pf,Ps,mppX,optout,results,dist,stru] = ...
call MPP(req,prob,numsetup,descriptor,Covariance,X0);

If multiple requirements functions are defined, the requirements functions are passed to

MPP FORM one at a time and the MPPs and FORM approximations to failure probability are

calculated individually for each of these limit state functions.

The program preamble comments in file MPP FORM.m also define its output variables.

The interface function call MPP has the same outputs as MPP FORM except that, for multiple

requirements functions, scalar outputs are promoted to column vectors and vector outputs

are promoted to matrices where, for both vectors and matrices, row i corresponds to MPP

and FORM analysis results using requirements function number i as the limit state function.

Function call MPP has one additional optional output variable called results, see section

8.1.3 for a detailed description. This contains those fields of the homodef output variable

of the same name that are needed by the function sample ms and used to test whether the

optimum found is a global optimum (see section 10).

The UQTools function M-file MPP FORM.m calculates both the MPP and the FORM

approximation to the failure probability. The MPP calculation is accomplished by a non-

linear constrained optimization. An initial value for the optimization, called X0 in the pro-

gram preamble documentation of MPP FORM, is provided by the user or by call MPP. The

optimization actually takes place in U-space. MPP FORM converts X0 internally to the corre-

sponding U-space value to serve as an initial value in the optimization.

MatPA was written using a different representation of parameter uncertainty than that

which has become the UQTools standard. The UQTools user can call MPP FORM directly

by constructing the necessary input as defined in the program preamble comments in file

MPP FORM.m and the document UQTOOLS/RelMeth/DATA dictionary.txt. One advan-

tage to this approach is that the parameter uncertainty representation protocol used by

MatPA allows for more generality in the uncertain parameter distribution than the UQTools

protocol. Besides allowing individual parameters to be modeled as random variables of

arbitrary distribution that are independent of the rest, blocks of parameters may be declared

to have correlated normal or correlated lognormal distributions with the understanding that

the parameters within such a block are correlated with each other, but independent of all

parameters outside the block.

Examples using MPP FORM.m are found in directory UQTOOLS/Examples/MPP based.
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10 Risks and Potential Drawbacks

10.1 The Problem

Both the determination of maximal (safe or failure) sets and the calculation of the MPP

in FORM calculation make use of optimization of some objective function subject to non-

linear constraints. The theory on which they are based assumes that a global optimum is

found. Practitioners of numerical optimization are well aware that numerical optimization

software such as is used in UQTools may declare convergence when a local optimum has

been located rather than a global optimum. This has unfortunate consequences for maximal

set and FORM calculations. In a maximal set calculation, if the declared CPV is a result of

finding a local, but non-global optimum, then the declared maximal set is actually too large.

In a FORM calculation the result is not, in fact, the most probable point of failure, i.e., a

point in the U-space failure domain at which the PDF of the standard normal distribution

in U-space is maximal. A consequence of this is that the estimated probability of failure

using the declared MPP is smaller than would have been estimated if the true MPP had been

calculated.

10.2 A Test for Non-globality of Solutions

UQTools provides function sample ms in directory UQTOOLS/Homodef/Core that is used

to test numerically if the declared maximal set is fully contained in the same domain as the

nominal point. Points sampled from within the declared maximal set and from its boundary

are tested by evaluating the constraint functions at those points. If any of those points is

found to be in the opposite domain from the nominal point, sample ms returns indication

that the declared maximal set is too large, so must have been the result of the optimiza-

tion problem converging to a non-global optimum. Otherwise, it indicates that all samples

are in the domain they are supposed to be in. An example of the use of this function

can be found in file example homodef.m (see section 13.2). Another example is in file

example call MPP.m (see section 13.16). This routine allows the user to check whether a

FORM answer is faulty due to an optimization converging to a local, but non-global solu-

tion. In this example, sample ms is used to check whether the MPP returned by call MPP.m
is correct by testing points within an RI radius of the origin of U-space to see if there are

any constraint violations. In a contrived example with a deliberately chosen bad starting

point, the first “MPP” is found to be faulty. Information from sample ms is used to find a

new starting point for call MPP.m that results in a properly converged answer.

11 Estimating Failure Probability By Sampling

The UQTools functions discussed in this section are kept in UQTools subdirectory

UQTOOLS/Sampling. Details of function usage are found in the program preamble com-

ments.

Standard Monte Carlo methods for approximating failure probability depend on ana-

lyzing the system at a representative sampling of the whole parameter space. The present

section provides alternatives that require the generation of fewer sample points and/or the
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evaluation of the system at fewer sample points. These alternatives are considered hybrid
methods in that they combine sampling methods with the techniques of section 8.1 to gen-

erate maximal safe sets of rectangles or spheres. Either a full space sample set is generated

or sample points are generated conditional on falling outside the maximal safe set. Even if

a full space sample is generated, it is a relatively cheap computation to determine if a given

sample point is inside the maximal safe set. Then, to estimate failure probability, it is only

necessary to perform full system analyses at sample points outside the maximal safe set.

11.1 Rejection Method

If the uncertainty in the parameters is represented by an independent set of random vari-

ables, a whole space sample can be generated by generating each coordinate independently

as a one-dimensional random sampling. This can be done in UQTools by using such func-

tions as mc, hhs, or has, or by generating a uniformly distributed sample in the unit cube

or a sample with a multivariate standard normal distribution and then mapping it to param-

eter space using the UQTools functions v2p or u2p respectively. In the rejection method

of failure probability estimation, one simply examines each sample point for membership

in the safe hyper-rectangle or hyper-sphere. System analysis is only done at sample points

which fall outside these safe sets; i.e., points inside the maximal safe set are rejected for full

system analysis. This reduces the number of system analyses that must be done by compar-

ison with traditional Monte Carlo sampling to achieve the same confidence in estimating

the failure probability. Since system analysis is typically the computationally intensive part

of the operation, this can provide substantial savings in computer time.

11.2 Conditional Sampling

Now suppose that the probability of a sample point falling inside the maximal safe set is

nearly equal to 1, so the failure event has small probability. It would be good if the sample

generation process generated only representatively distributed samples that fall outside the

safe sets. This is easier said than done. The conditional distribution of the uncertain pa-

rameters conditioned on the requirement that the samples fall outside the hyper-rectangle

or hyper-sphere is not a distribution of independent random variables, and this lack of inde-

pendence must be compensated for in the sampling process. The algorithms implemented

in this conditional sampling software are documented in [4].

There are two cases in which UQTools software can accomplish this conditional sam-

pling. The two cases are sampling outside of a hyper-rectangle and outside of a hyper-

sphere, and are described below.

1. Hyper-rectangle: The random vector to be sampled is comprised of components that

are independent random variables. The samples are to be generated conditionally on

falling outside a given hyper-rectangle that, as required, is oriented with its axes

parallel to the coordinate axes. The uncertainty in the random vector is modeled

using an “rv” structure as described in section 4. For estimating failure probability,

the authors suggest using a maximal safe set of a hyper-rectangular reference set such

as is calculated by the software of section 8. The UQTools function that performs this

sampling is called hrcomp condsamp and is described in section 11.2.1.
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2. Hyper-sphere: The random vector to be sampled is comprised of components which

are independent random variables which all have the standard normal distribution.

The samples are to be generated conditionally on falling outside a given hyper-sphere

that is centered at the origin. Here, one could use the maximal safe hyper-sphere

in the U-space transform of the uncertain parameter space such as is calculated by

the software of section 8. One could also use an origin centered sphere in U-space

whose radius is the RI calculated by FORM as in section 9. The UQTools function

that performs this sampling is called hscomp condsamp and is described in section

11.2.2.

These sampling techniques are examples of what is called “importance sampling”. In

importance sampling, the samples are generated using a different distribution from that of

the uncertain parameters, usually chosen to generate more samples in some region of in-

terest. A correction factor is applied to the information computed from these samples to

compensate for using the “wrong” distribution. Here, the region of interest is the comple-

ment of the known safe set. The distribution used here for sampling has a PDF which is

zero inside the known safe set and is the necessary multiple of the original PDF outside the

safe set in order for it to be a proper PDF. The correction factor is given in the conditional

probability formula of section 11.2.1.

11.2.1 Conditional Sampling Outside a Hyper-rectangle

If the safe set is a hyper-rectangle (with sides parallel to the coordinate hyper-planes), then

the conditional sampling is accomplished by the UQTools function hrcomp condsamp from

subdirectory UQTOOLS/Sampling. As usual, the complete description of the function inputs

and outputs is in the program preamble comments.

This function has four inputs. The first is a vector cell array of structures. The structure

in the jth cell provides the necessary information about the distribution of the jth uncertain

parameter. It can be generated from information provided by UQTools function setrvs
or by the graphical user interface driven by UQTools function uqtools gui. This is illus-

trated in the test script UQTOOLS/Example/General/test hrcomp condsamp.m that also

provides a tutorial and template for the use of hrcomp condsamp.

The second input is a matrix of rows from the unit hyper-cube. It is used to seed the pro-

cess of generating samples outside the safe set. For the final sample set to be representative

of the uncertain parameters, this seed set must be uniformly distributed over the unit hyper-

cube. Generating such seed sets is explained in section 6. The third parameter defines the

hyper-rectangle by giving its “lower left” and “upper right” corner. The last parameter is

optional and gives the probabilities that each component of the uncertain parameter vector

falls below or above the limits of its component of the hyper-rectangle. Mathematically,

this information is redundant given the information in the first and third parameters. How-

ever, if the probability of the uncertain parameters falling into the safe hyper-rectangle is

close enough to 1, there might be some numerical problems with computing these comple-

mentary probabilities directly from the CDF. Represent the CDF of component j by Fj, and

let x j represent component j of the ”upper right” corner of the safe hyper-rectangle. The

default calculation of the probability that component j of the uncertain parameter vector
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falls on the high side of the safe hyper-rectangle is expressed by the formula

1−Fj(x j).

If Fj(x j) is nearly equal to 1, finite precision computer arithmetic might introduce truncation

error into this calculation. The user might be able to use problem dependent knowledge of

the distributions (e.g., using symmetry of the normal distribution) to devise a numerically

more robust method of calculating this probability. The optional last parameter provides a

means for the user to pass this information to hrcomp condsamp.

If F is the failure domain, H is the hyper-rectangle, and C(H) is its complement, then

the conditional probability formula states:

P(F ) = P(F |C(H))P(C(H))

The function hrcomp condsamp returns the conditional sample with the same number

of points as the seed matrix and the probability P(C(H)) of the complement of the hyper-

rectangle. P(F |C(H)) is then estimated by evaluating the system at the conditional sample

points and calculating the fraction of them that fall in the failure set. The failure probability

is then estimated using the conditional probability formula.

11.2.2 Conditional Sampling Outside a Hyper-sphere

The only case of conditional sampling outside a hyper-sphere for which UQTools has soft-

ware is the case that the uncertain parameter space is standard normal space and the sphere

is centered at the origin. This is not so limiting as it sounds, since UQTools software can

be used to transform the problem to U-space and find a maximal safe hyper-sphere cen-

tered at the origin. This conditional sampling is accomplished by the UQTools function

hscomp condsamp from subdirectory UQTOOLS/Sampling. Inputs to this function are the

radius of the hyper-sphere, the dimension of the parameter space, and the number of sam-

ples desired. This routine makes use of MATLAB random number generators. An optional

fourth input allows the user to seed those generators. Using this option, the same “random”

sample can be generated repeatedly. This might be useful in testing. The outputs here are

the set of conditional samples and P(C(H)) where now H is the hyper-sphere. Failure prob-

ability is then estimated using the conditional probability formula in the same manner as

with hrcomp condsamp. A test script that also serves as a tutorial and template is found in

file UQTOOLS/Example/General/test hscomp condsamp.m.

12 Estimating Probabilistic Sensitivities Via Sampling

Heretofore, we have provided tools for uncertainty quantification in which the user has

been required to supply the description of uncertainty. Each uncertain parameter is de-

scribed by modeling it as a random variable with a user-specified random distribution. This

may require some conjecture on the part of the user to assign to each random distribution

the values, mean, variance, support interval endpoints, distribution shaping exponents, etc.,

which are needed to specify it. The tools described in this section estimate how sensitive are
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the statistics of output variables, which are dependent on the uncertain parameters, to vari-

ation in the statistics of those parameters themselves. An example might be: how sensitive

are failure probability estimates to the variances used to define the uncertain parameters?

This can give the user information about which of the uncertain parameters have the most

effect on the statistics of interest and which have the least effect.

The tools provided here are limited. Sensitivities are calculated only with respect to the

expected values and variances of the uncertain parameters. Only normal or generalized beta

distributions are considered. Since a normal distribution is determined by its mean value

and variance, these can be varied directly to estimate the sensitivities of output statistics.

Mean value and variance of a generalized beta distribution are derived from the four values

that specify the distribution - two distribution-shaping exponents and the two endpoints of

the support interval. For sensitivity approximation, perturbations are introduced into the

mean value and variance of a generalized beta distribution either by perturbing the two

distribution-shaping exponents or by perturbing the two support interval endpoints. These

two techniques represent different sensitivities.

Sensitivities are estimated for certain statistics of random variables that are dependent

on the uncertain parameters (through the system being analyzed). The statistics targeted

here for sensitivity analysis are mean, variance, and the probability of the dependent vari-

able falling above (or below) some specified value. This latter statistic is the model used

for failure probability throughout UQTools.

Software described in this section is contained in UQTools directory

UQTOOLS/Probsensitive.

12.1 What Is It, How Is It Done?

UQTools provides software that analyzes a system that depends on the uncertain parameter

vector p. Metrics used by the analyst to evaluate the system’s performance will depend

on performance metrics(s) y that are functions of the uncertain parameter p. (Note that,

here, performance metrics are called y instead of the g used earlier in this document. This

is consistent with the notation in the paper [5] that presents the theory behind the calcula-

tions performed by this software.) The presentation that follows assumes that y is a scalar

function. Extensions to vector functions can be easily made. The common model for the

vector p of uncertain parameters is as a vector of independent random variables where its

components assume normal or generalized beta distributions. These variables constitute

the uncertainty model of p. Let us denote the PDF of the uncertainty model as fp(p,θ),
where θ is a vector of parameters. For instance, if all components of p are uncorrelated

normal random variables, θ is a vector composed of the means E[pi] and standard devia-

tions
√

V[pi]. Furthermore, let us define the vectors of means, m, and variances, v, of the

components of p whose ith components are mi=E[pi] and vi = V[pi].

The propagation of the uncertainty model of p through the performance metric y(p)
leads to a probabilistic description of y; i.e. y is a random variable. In this context, the

decisions made by the analyst should be based on the characteristics of this random variable.

In general, the prescription of an arbitrarily distributed random variable requires an infinite

number of moments. The three most common figures of merit used to characterize a random

variable are its mean, E[y], its variance, V[y], and the probability of an event of interest, e.g.,
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P[g(y)> 0]. These three metrics can be approximated by sampling y(p) and using:

E[y]≈ ȳ Δ
=

1

n

n

∑
i=1

y(pi)

V[y]≈ 1

n−1

n

∑
i=1

(y(pi)− ȳ)2

P[g(y)> 0]≈ 1

n

n

∑
i=1

I(g(y(pi))> 0)

Here, pi represents a realization of the uncertain parameter vector p sampled according

to fp(p,θ), n is the total number of realizations; and I(·), called the indicator function, is

equal to one if its argument is true, and is equal to zero otherwise.

By probabilistic sensitivities we mean derivatives of the three figures of merit above

with respect to the mean or the variance of particular components of the uncertain parameter

vector p, e.g., dE[y]/dv1, dV[y]/dm2, dP[g(y)> 0]/dv1. The desired variations in the mean

m and variance v of the uncertain parameters are attained by varying θ in fp(p,θ). Note

that the relationship among the variations in the mean/variance and the variations in θ may

not be unique (e.g., a differential of the variance of a uniform distribution can be attained by

changing either of the two parameters or by changing both of them) and may not even exist

(e.g., a differential of the mean of an exponential distribution for a fixed variance cannot be

attained).

Sampling-based approximations to probabilistic sensitivities using finite differences-

and Leibniz-formulations are proposed in [5]. The latter formulation is implemented in

UQTools. This formulation does not increase the computational complexity of the problem

since it uses the very same function evaluations used to estimate the three figures of merit

above via sampling. Details on the derivations and numerical analysis of the resulting

approximations are available in [5].

The probabilistic sensitivities calculated in UQTools can be used to rank the importance

of individual uncertain parameters in p according to the manner in which they affect the

performance metric, y.

12.2 How To Use It

UQTools implements the Leibniz formulation to probabilistic sensitivities for combinations

of normal and generalized beta distributions. Differentials of the mean and variance for beta

distributions are attained by changing both shaping parameters while keeping the support

set fixed. Note that uniform distributions are a special case of the generalized beta. The

sensitivities of interest are grouped into two categories described below:

Sensitivities of the mean and variance of y: The UQTools function mom sensi.m calcu-

lates the sensitivity of the mean and variance of the performance metric y with respect to

the mean and variance of the uncertain parameters in p. UQTools permits the following

syntax:

[me,va]=mom sensi(rv act,rv sam,data)
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Examples of its usage can be found in example probsenses.m (see section 13.11; an

extended demonstration is given in example probsenses1.m, section 13.11). The func-

tion mom sensi.m requires three inputs: the uncertainty model of p in rv act, a sampling

density function in rv sam (to be used when importance sampling is desired), and a cell

array with the realizations pi and y(pi) in data. The input data is generated via the UQTools

function M-file get sams.m. Both rv act and rv sam are created by setrvs.m.

Sensitivities of the probability of y > y∗ and y < y∗: The UQTools function

prob sensi.m calculates the sensitivity of the probability of y > y∗ or y < y∗ with re-

spect to the mean and variance of the uncertain parameters in p. Examples of its usage

can be found in example probsenses.m (see section 13.11). The function prob sensi.m
requires five inputs: the uncertainty model of p in rv act, a sampling density function in

rv sam (to be used when importance sampling is desired), a cell array with the realizations

pi and y(pi) in data, the value of y∗ in ystar, and the relation symbol that relates y with y∗

in relation symbols. The input data is generated via the UQTools script get sams.m.

Both rv act and rv sam are created by setrvs.m.UQTools permits the following syntax:

pr=prob sensi(rv act,rv sam,data,ystar,relation symbols)

13 Learn By Example

This section will give an overview of some of the programs contained in the subdirectory

UQTOOLS/Examples/General. These programs were designed to give new users templates

to use for solving various types of problems within the UQTools framework. Each program

exercises a specific capability or set of capabilities relevant to uncertainty quantification.

13.1 File: example homodef.m

This is the primary example to use for those looking to understand all the capabilities of the

homodef code (section 8.1). There are currently 17 different problem variations that can be

selected.

Note: By making the variable write equal to 1, intermediate results found when exe-

cuting homodef.m will be displayed. An example with detailed explanation of these results

can be found in the file displayed1.m in subdirectory UQTOOLS/Examples/General. The

data in this file correspond to the execution of example homodef.m (same subdirectory)

when the variable problem is equal to 1.

13.2 File: simple homodef.m

This example problem compares results from homothetic deformations and those from

FORM. It does this utilizing a simple algebraic model as the requirements function. The

features demonstrated are:

• Setting of the rv structure for the case of two random identically distributed, inde-

pendent normal variables.

• Proper setup of the prob, req, numsetup structures.
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• Computation of upper bounds on failure probability using the maximal homothet.

• Proper usage of the function call MPP to compute FORM approximations of failure

probability.

• Standard Monte Carlo sampling for estimating failure probability using the function:

pfviasam.

• The hybrid approach of estimating probability using the function: pfviahm.

13.3 File: driver spring mass us.m

A maximal bounding hyper-sphere example is presented using both homothetic deforma-

tions and FORM (sections 8.1 and 9). The problem is related to the maximum singular

value of a two spring-mass system. The system has 2 inputs and 2 outputs. This example

requires the Control System Toolbox. The features demonstrated are:

• Setting of the rv structure for the case of six randomly distributed, independent vari-

ables using a generalized beta model.

• Proper setup of the prob, req, numsetup structures.

• Proper usage of the req.extrainputs field used to pass additional data into the

requirements function.

• Computation of upper bounds on failure probability using the maximal homothet.

• Proper usage of the function call MPP to compute First-Order Reliability Method

approximations of failure probability.

• Standard Monte Carlo sampling for estimating failure probability using the function

pfviasam.

• The hybrid approach for estimating probability using the function pfviahm.

13.4 File: driver spring mass pr.m

The example presents a variation of the features covered in driver spring mass us (sec-

tion 13.3). The file driver spring mass pr.m determines the maximal hyper-rectangular

set in six-dimensions using homothetic deformations for the maximum singular value of

a two spring-mass system used in driver spring mass pr. This example requires the

Control System Toolbox. The features demonstrated are:

• Setting of the prob.set field for the case of six interval models.

• Setting of the prob.rectangular ref field for the aspect ratios used in the hyper-

rectangular bounding set.

• Proper usage of the req.extrainputs field used to pass additional data into the

requirements function.
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• Setting up an uncertainty model for the computation of upper bounds on failure prob-

ability and sampling-based estimates.

• Computation of upper bounds on failure probability using the maximal homothet.

• Proper usage of the function call MPP to compute First-Order Reliability Method

approximations of failure probability.

• Standard Monte Carlo sampling for estimating failure probability using the function

pfviasam.

• The rejection-based hybrid approach of estimating probability using the function

pfviahm.

• The conditional sampling based hybrid approach of estimating probability using the

function pfviahmc.

13.5 File: driver MPP RS.m

The example presents another variation of the features covered in driver spring mass us
(section 13.3). The main difference is that file driver MPP RS solves the problem using a

radial basis response surface. That is, a RS is generated for the maximum singular value

of a two spring-mass system, which is then used in the FORM solution. An additional

capability demonstrated in this example is an adaptive refinement of the RS that is used in

the FORM problem. Plots are generated showing the convergence history of the FORM

solutions. Features beyond those demonstrated in driver spring mass us are:

• Generation of a RS.

• Evaluation of test points for surface generation.

• The transformation of test points from unit hyper-cube to physical space or standard

normal space.

• Definition of data structure used for RS model

• Adaptive RS implementation

13.6 File: driver simulink us.m

A maximal bounding hyper-sphere example is presented using both homothetic deforma-

tions and FORM (sections 8.1 and 9). The problem is the peak overshoot due to a step input

to a two spring-mass system. The system is modeled in Simulink and therefore requires

the MATLAB Simulink Toolbox. This example demonstrates the usage of Simulink within

UQTools. Two separate approaches for passing parameters into Simulink are demonstrated.

One approach uses the model workspace in conjunction with the Model Explorer within

Simulink. The other approach uses the assignin method for Simulink model workspace.

For more information on Simulink model workspaces type: doc simulink.modelworkspace
at the MATLAB command prompt. Also, see the requirements function gfun ex3 that calls

the Simulink model.

49



13.7 File: driver simulink pr.m

Same as driver simulink us (section 13.6) except uses a hyper-rectangle reference set.

13.8 File: example sampling.m

This example is used to generate Monte Carlo, Hammersley sequence and Halton sequence

samples (see section 6.2). Some of the features of these sampling techniques are illustrated

by plotting projections of the samples into two-dimensional subspaces.

13.9 File: example sum iid.m

This example presents a simple problem to test approximations to failure probability against

known analytic solutions. The requirements function is simply the sum of n independent,

identically distributed random variables; e.g., p1+ p2+ · · ·+ pn < Z. The code can currently

handle cases of identically distributed random variables of the following distributions: uni-

form, normal, and exponential. The analytic solutions are compared to those obtained from

FORM (section 9), homothetic deformation (section 8.1) coupled with conditional sampling

(section 11.2), and brute force Monte Carlo sampling. This example really demonstrates

how Monte Carlo is not well-suited to estimate very low failure probabilities.

13.10 File: example probsenses.m

This example presents a script on how to execute the capabilities implemented in the code:

UQTOOLS/Probsensitive (see section 12).

13.11 File: example probsenses1.m

This example adds to some of the concepts covered in example probsenses (section

13.11). The primary difference in this example is that the function used here to gener-

ate analytic solutions is more general. Specifically, a generalized cubic of five uncertain

parameters is considered. Another difference is that example probsenses1 demonstrates

how to approximate probabilistic sensitivities of failure probabilities using radial basis RSs.

13.12 File: example fit RS.m

This example presents several simple examples of fitting RSs using both pure radial basis

and radial basis with polynomial pre-fitting (see section 7.2).

13.13 File: mv poly example.m

The UQTools script file mv poly example.m in UQTools subdirectory

UQTOOLS/Examples/general gives examples of the use of many of the functions in sec-

tion 7.1, “Multivariable Polynomials”. In this file, the three default “truth” functions are 4

variable polynomials of order 5 with randomly chosen coefficients between -1 and 1. The

default RS polynomials are of order 3 with cross terms limited to no more than 2 active

variables. The second and third truth functions use coefficients derived from the first. If a
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monomial in the truth polynomial is also used by the RS polynomial, its coefficient retains

its value. The others are reduced to 20% and 5% respectively of their values in the first truth

function. The idea here is to make “truth” functions that are closer in form to the RS func-

tion than the original. The RS coefficients are calculated, and the truth and RS polynomials

are evaluated at the data points and at many of other points and then the function values

are compared to see how closely the RSs match the truth functions. Segments of this file

may be used as templates for application of this software. This example also demonstrates

calculating gradients and Hessians of RSs.

13.14 File: mean var approx.m

This is a sample problem for demonstrating a capability of approximating means and vari-

ances. Six different solution approaches are presented:

• Evaluating analytically.

• Calculating statistics using quasi-random sampling of the truth function (section 6.2).

• Sampling a radial basis RS fit of the truth function (see also section 7.2).

• Sampling a multivariable polynomial response fit of the truth function.

• Analytic results of moments using the multivariable polynomial response fit of the

truth function (section 7.1). See UQTOOLS/RespSurf/mv poly momabtmean.m.

• Approximating using a truncated Taylor Series approximation (based on gradient and

Hessian capability of response surfaces, see section 7).

13.15 File: pdf approx.m

This example addresses the problem of finding a PDF from a collection of samples from a

random scalar-valued (i.e., one-dimensional) variable. For purposes of illustration, this ex-

ample analyzes internally generated data, but the methods used are general enough to apply

to other problems of interest. This example uses three different approaches to fit a PDF to

data. The first two are based upon general kernel density estimation theory, with one using

basic kernel density estimation, and another where the parameters in the density estimation

are optimized. The third approach optimally fits a generalized beta PDF to the given data.

The three approaches are compared to analytic solutions for cases where the parameters are

independently distributed uniform, Gaussian, or exponential random variables. The ana-

lytic solutions are derived when the function of interest is: y(p) = (
5

∑
i=1

pi)
k, where k is an

integer satisfying k ≤ 5. The techniques used in this example are not covered elsewhere in

this document, and in fact, are not even part of the UQTools package. However, this exam-

ple demonstrates a very useful feature that may benefit users and therefore it was decided

to include this example in this UQTools document. As usual, internal documentation exists

and can be found in pdf approx.m and pdf opt approx.m.
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13.16 File: example call MPP.m

File example call MPP.m exercises the function call MPP (see section 9) to estimate the

Most Probable Point of failure and the failure probability of a simple example with a single

limit state function. By carefully tailoring the limit state function and the initial point

used in the optimization search, the example first converges to a point on the limit state

surface that is not the MPP. This is discovered by running the testing function sample ms
(from directory UQTOOLS/Homodef/Core). It finds a failure point within the reliability

index radius of the nominal point. By using that point as an initial point, a second run of

call MPP does converge properly.
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