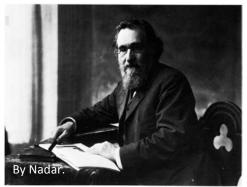


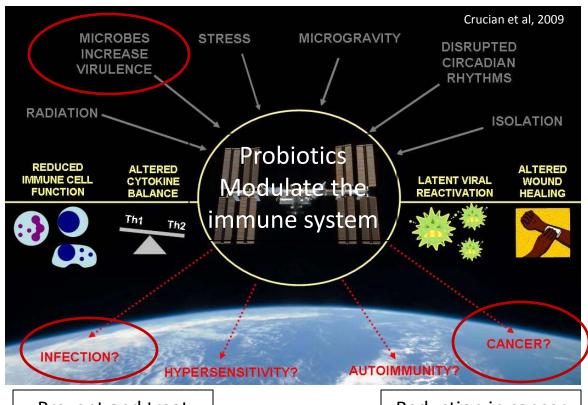
Probiotics


"live microorganisms which when administered in adequate amounts confer a health benefit on the host" (WHO/FAO)

History of Safe Use

Humans have ten times more bacterial cells in their gastrointestinal tract than human cells in their body. A beneficial relationship with the gut microflora is essential for good health.

Probiotics	GRAS list number
Bacillus coagulans	GRN 378 (Pending)
Bifidobacterium animalis subsp. lactis strain Bf-6	GRN 377
Bifidobacterium lactis Bb-12	GRN 49
Bifidobacterium longum strain BB536	GRN 268
Lactobacillus acidophilus NCFM	GRN No. 357
Lactobacillus reuteri DSM 17938	GRN 254
Lactobacillus rhamnosus HN001 (DR20)	GRN 281
Lactobacillus rhamnosus GG	GRN 231


4/3/2012

Immune dysregulation in spaceflight and probiotic benefits

Antagonize pathogens

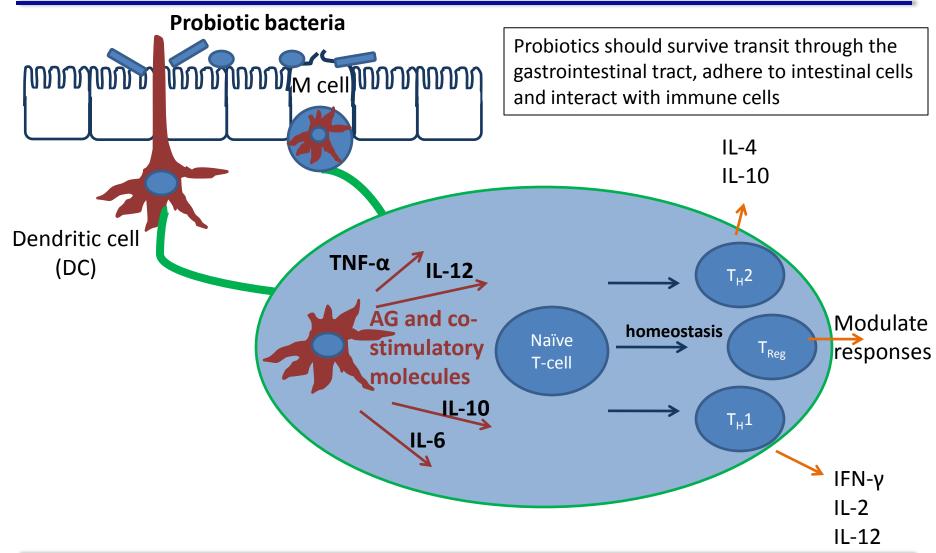
Protect against infection

Prevent and treat antibiotic associated diarrhea

Reduction in cancer biomarkers in colon

Increase specific IFN-y responses and natural killer cell activity

Reduce cold and flu-like symptoms


Alleviate gastrointestinal issues

Prevention of urinary tract infection

Mode of Action

Probiotics in Spaceflight

Unknowns

- Alterations in microbial activity
- Probiotic tolerance in relation to immune changes in spaceflight

Preliminary Studies

- Determine changes in growth, stress response, or metabolic activity in an analog growth environment
- Evaluate probiotic effect on human immune function in an analog environment or spaceflight
- Identify probiotic candidates for spaceflight

Shelf Life and Food Matrix

Probiotic survival and functionality through shelf life is product specific

Product parameters

Temporal factors during shelf

- · Product composition
- Moisture content
- Oxygen
- nH
- Organic acids
- Other bacteria
- Other functional ingredients
- Temperature
- Packaging

Physiological fitness of probiotics is influenced by growth, harvesting, and concentration conditions

Host parameters

- Survival at site of action
- Host microbiota
- Host immune factor expression
- Bile, acid, and pancreatic enzyme production

Sanders and Marco, 2010

Probiotic physiology

Production

parameters

Fermentation conditions
 Concentration

technology • Preservation

technology

Food matrix may impact survival and physiological activity of probiotics in the gastrointestinal tract

4/3/2012

Introduction into Space Food System

- Introduction of probiotics will exceed current flight approved microbial limits.
- Food must have a five year shelf life at ambient temperature.
- A method to introduce probiotics into this system must be determined.

Factor	Limits
Total aerobic count	20,000 CFU/g for any single
	sample (or if any two
	samples from a lot exceed
	10,000 CFU/g)
Coliform	100 CFU/g for any single
	sample (or if any two
	samples from a lot exceed 10
	CFU/g)
	100 CFU/g for any single
Coagulase positive	sample (or if any two
Staphylococci	samples from a lot exceed 10
	CFU/g)
Salmonella	0 CFU/g for any single
	sample
Yeasts and molds	1000 CFU/g for any single
	sample (or if any two
	samples from a lot exceed
	100 CFU/g or if any two
	samples from a lot exceed 10
	CFU/g Aspergillis flavus)

4/3/2012