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Abstract. The increased availability of radio occultation
(RO) data offers the ability to detect and study turbulence
in the Earth's atmosphere. An analysis of how RO data can
be used to determine the strength and location of turbulent
regions is presented. This includes the derivation of a model
for the power spectrum of the log-amplitude and phase fluc-
tuations of the permittivity (or index of refraction) field. The
bulk of the paper is then concerned with the estimation of the
model parameters. Parameter estimators are introduced and
some of their statistical properties are studied. These estima-
tors are then applied to simulated log-amplitude RO signals.
This includes the analysis of global statistics derived from a
large number of realizations, as well as case studies that illus-
trate various specific aspects of the problem. Improvements
to the basic estimation methods are discussed, and their ben-
eficial properties are illustrated. The estimation techniques
are then applied to real occultation data. Only two cases
are presented, but they illustrate some of the salient features
inherent in real data.

I Introduction

There is a long and distinguished history in the study of elec-
tromagnetic (EM) wave propagation through random media
(cf. Tatarskii, 1971; Yeh and Liu, 1982; Ishimaru, 1997).
These works have provided a firm theoretical foundation for
estimating statistical properties of the neutral atmosphere and
ionosphere via the statistical properties of the received EM
signals. That is, the characteristics of the turbulent atmo-
sphere can be deduced from, for example, correlation and/or

spectral analysis of the phase and/or amplitude of the re-
ceived signal. In the past, the bulk of the experimental analy-
sis in this area has been performed with ground-based trans-
mitters and receivers (e.g., radars and lidars), as well as with
ground-based receivers and space-based transmitters. With
the advent of Global Navigation Satellite System (GNSS)
constellations, a new avenue has become available to investi-
gate the turbulence properties of the earth's atmosphere. The
deployment of an ever-increasing number of Low Earth Or-
biting (LEO) satellites — with high quality, high-sampling
rate receivers — provides a very valuable new source of
turbulence measurements: GNSS-LEO occultations.

Previous efforts to study turbulence with RO signals have
been focused on the study of the middle to upper strato-
sphere and the ionosphere (e.g., Gurvich and Brekhovskikh,
2001; Gurvich and Kan, 2003; Gurvich and Chunchuzov,
2005). On the other hand, very few works have addressed
the characterization of turbulence in the upper troposphere
and lower stratosphere. Numerous other practical applica-
tions can benefit by having turbulence measurements (and re-
sultant climatologies) from GNSS-aircraft occultations. For
example: space weather (Hajj et al., 2000), trans ionospheric
communication links (Secan et al., 1997), aviation safety
and navigation systems (Cornman et al., 2004; Conker et
al., 2003), the accuracy of ground-based GNSS receivers
(Gangulv^et al.?, 2004), as well as the effect of turbu-
lence on measuring atmospheric state variables from GNSS-
LEO occultations (Gorbunov and Kirchengast, 2005).

In this paper, a detailed analysis of the problem is pre-
sented, including the derivation of a model for the power
spectrum of the lo g-amplitude and phase fluctuations of the
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permittivity (or index of refraction) field. The bulk of the pa-
per is then concerned with the estimation of model parame-
ters, such as the intensity and location of the turbulence along
the line of sight. A thorough study of the properties of the
parameter estimators is presented using simulated data. This
includes global statistics over a large number of realizations,
as well as case studies that illustrate various specific aspects
of the problem. The application of the methodologies is then
made with real occultation data. As the focus in this paper
was the development of methods, the purpose of the real data
analysis is to show how the theoretical and practical concepts
carry over into the real data. Hence, only two cases are pre-
sented, but they illustrate some of the salient features inher-
ent in real data. A more thorough analysis of real data is left
to follow-on efforts.

2 Wave propagation theory

2.1 Assumptions

In order to make the problem tractable, a number of simpli-
fying assumptions will be made. Most of these are routinely
used in the literature for optical wavelengths (cf. Tatarskii,
1971; Ishimaru, 1997). Very little work has been done to
justify many of these assumptions for the decimeter wave-
lengths in the GNSS problem; however, a few excellent pa-
pers exist, including Strohbehn and Clifford (1967), Clifford
and Strohbehn (1970), Clifford and Lataitis (1985), and Lee
and Harp (1969). We will list all of the assumptions here,
but their use will be introduced below in the context of the
development.

1. Polarization effects are ignored. This allows for the
wave equation to be written in terms of a single
scalar component of the electric field vector. This
is a reasonable assumption for the decimeter wave-
lengths consider for the GNSS problem (cf. Clifford and
Strohbehn, 1970).

Weak and single scattering is assumed. This is rea-
sonable for the GNSS transmitter wavelengths and
typical path lengths through turbulence (Clifford and
Strohbehn, 1970).

The assumption that the transmitter wavelength, ;1, is
much smaller than the smallest fluctuations in the per-
mittivity field, 1 0 , (; «l0 ), allows for a number of sim-
plifications in the development (including the first two
items above). While this is not necessarily true for
decimeter wavelengths, Clifford and Strohbehn (1970)
show that the practical effects of the assumption X «l0,
can be extended into regime,), > 1 0 , but not ),» 10.

4. Taylor's Hypothesis is valid. That is, for short time pe-
riods advection dominates over internal fluid stresses
(Monin and Yaglom, 1972). This is important for a

medium that is moving, which in general is the case for
the atmosphere. The practical effect of this assumption
is that we can assume that the permittivity for a small
scattering region is constant as it moves during a short
time interval.

The Markov Approximation is valid (Tatarskii, 1971,
Chapter 5, Section B). This means that there are mini-
mal effects on the received signal due to correlation in
the permittivity field along the line-of-sight. Therefore,
one can assume that this correlation is represented by a
delta-function.

6. The transmitter is a point source (i.e., we do not con-
sider the radiation pattern), and the receiver acts as point
aperture along the line-of-sight (i.e., we do not consider
the gain pattern). Due to the typical large distances be-
tween the transmitter and the scattering medium, the
first assumption is quite reasonable. If the distance be-
tween the scattering volume and the receiver is also
large, and a high-gain antenna is used, the second as-
sumption is also a reasonable one. For an omnidirec-
tional receiver antenna and/or the receiver very close to
the scattering volume (e.g., for an airborne receiver in
the atmosphere), then these effects do need to be ac-
commodated (cf. Lee and Harp, 1969; Tatarskii, 1971,
Section 53).

7. Atmospheric attenuation due to absorption is assumed
to be smooth and varying slowly during an occulta-
tion, and so that its effects can be accommodated by
trend removal of the amplitude or phase signal in the
time domain. This also means that we can consider the
permittivity field to be real-valued.

S. The turbulence patch has compact support. This is re-
quired to ensure the existence of various integrals that
arise in the calculations.

9. The effects due to an inhomogeneous background (e.g.,
refraction) are minimal. This means that we can assume
straight-line propagation.

10. The medium is purely random.	 There are no
deterministic structures, such as layered phenomena.

Most of the assumptions presented above are reasonable for a
first-order analysis of the turbulence problem. Nevertheless,
there are two aspects of the problem that are not addressed
in this initial study, the effects due to a background or turbu-
lent permittivity field characterized by inhomogeneity and/or
anisotropy. These are obviously real-world situations, but as
we are trying to keep to a simple analysis at this point, they
are not included in what follows.
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2.2 The first Rytov approximation

If polarization effects can be ignored, the vector wave equa-
tion for monochromatic signals, derived from Maxwell's
equations can be written in the scalar form,

(V 2 +k2 8(r))U(r)=0	 (1)

where U is a component of the electric field (a transverse
component for our case), k is the (constant) wavenumber for
the transmitted frequency, k = 27r f/c = 27r/;^, and E is the
permittivity of the medium. The index of refraction, n, is
given by F = n 2 , and free space is characterized by F = 1.
Since we have assumed weak scattering, a perturbation ap-
proached is used. Re-write Eq. (37) as

(0'+k2)U(r) =—k2-'(r)U(r) 	 (2)

where E _ (E) +E', and E' << (E). It is assumed that (E) = 1,
its free-space value. The angled brackets refer to an ensem-
ble average. Standard approaches to solving this equation
are provided in the literature (e.g., Tatarskii, 1971; Ishimaru,
1997) — one of which is the first-order Rytov approach. We
return to the Helmholtz wave equation and let

U (r) = e V1 (r)	 (3)

where the complex phase, Ali, is given by

flr) = X(r) +iS(r)

and X is the log-amplitude function, and S is the phase
function. Plugging Eq. (39) into Eq. (37) and solving
for Uo i/r1 leads to the first-order term (cf. Tatarskii, 1971;
Ishimaru, 1997),

k2
Vi1(r) 

_ 

Uo(r) f G o( r—r' ) E ' (r ' ) Uo(r ' )dr'	 (4)

Where

ik r r'

Go(r —r') = e 
II — I	 (5)

47c Ijr — r'l

^ = differential operator? is the free-space Green's
function for the problem (the double vertical lines indicate
the vector magnitude). Equation (40) is known as the first
Rytov approximation.

2.3 Correlation function and frequency spectrum

We depart from the standard development as presented by,
for example, Tatarskii (1971) or Ishimaru (1997), going for-
ward. We consider the situation where the transmitter, re-
ceiver, and media are all moving relative to each other, as
well as with respect to a fixed coordinate system. Typically,
the origin of the coordinate system is set at the transmitter
or at a point within the scattering volume. However, in what
follows it is assumed that the origin of the coordinate sys-
tem is at an arbitrary point. For the GNSS-LEO geometry,

Fig. 1. Scattering geometry at time t1.

we will want the origin of the coordinate system to be at the
(local) center of the earth. In the arbitrary coordinate sys-
tem, the receiver is at the point r R , the transmitter is at rT,
and a given scatterer is at rs (see Fig. 1) (we are consider-
ing a continuum field of permittivity, so the term scatterer is
used loosely). We assume that multiple scattering does not
occur, and that the transmitter acts as a point source, (i.e., an
outgoing spherical wave), which leads to

*1(rR) =
 k

IIrR— rTlle— ikllrR—rTll

eikllrR—rs11 eikllrs —rTll
E

1
(rs)drs	 (6)

II rR— rSll Ilrs—rTII

In order to ensure the existence of the integral, we assume
that the permittivity fluctuations have compact support, and
E'(rs) is non-zero (or has a minimal effect on Vi I (r R)) in a
region close to the line of sight, r R —r T - If E'(rs) is arandom
field, we assume that Eq. (42) exists in the sense that it is a
member of an ensemble of random permittivity fluctuations.
We will assume straight-line propagation. Return to Eq. (42).
If the scattering angles are small — a reasonable assumption if
the ratio )./lo is small — we can make the so-called parabolic
approximation in the integral equation (Tatarskii, 1971, Sec-
tion 45) (lo is a length scale on the order of the smallest fluc-
tuations in the medium). In order to use this approximation,
we will consider basis vectors that are parallel or perpendic-
ular to the vector r R — rT. We will denote the component of
vectors parallel to r R — rT , "x" and the perpendicular parts,
p (i.e., the projection of a given vector onto the plane per-
pendicular to r R — r T ). Note that PR — PT = 0. Consider

the quantity, II r R — r sll = [(xR— xs)' + 1PR — Ps111 1/ . We
will assume that XT < XS < xR . If xR — XS, the distance along
the x axis from the scatterer to the receiver, is much greater
than the transverse distances (valid for small-angle scatter-
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ing), then IIrR —rsll, can be approximated by

2

II r R — rSII = (XR—XS) 
1+ IIPR—PSII

C	 (XR—xS)2

IIPR — PSII'
ti XR — XS +

	

	 (7)
2 (XR — XS)

This is the parabolic approximation. A similar expan-
sion can be made for II r R — rT IL, which is simply X R —XT.
Since kII r R — rSII = 2nll r R —r sll/^^» 1, we will use the
full expression in Eq. (43) for the exponential terms in
Eq. (42); whereas, we only need to keep the leading term for
the non-exponential terms. Plugging all these factors back
into Eq. (42), we have for the non-exponential terms

II r R —r TII	 _ XR—XT

II r R — r SII IIrS— rTII 
ti
 (X R — XS) (XS — XT)	

(g)	 Fig. 2. Scattering geometry at times t, and t-).

which we will denote as b(XR ,XS ,XT ). It can be shown that
the exponential term from Eq. (42) is given by

IIrR — rSII +II r S — r TII — II r R — rTII

	

b(XR.XS.XT)	 2

^ 	 2	 II PS — PT	 (9)

Plugging Eqs. (44) and (45) into Eq. (42) gives the desired
result,

k2
V1I (rR) ^ 4n b(XR,XS,XT)

exp1 b (XR- XS. XT) 	 2
ik	 2	 Ps —pill e (rs)drs	 (10)

If we move the origin to rT , this is equivalent to setting XT =
0 and P T = 0, and since we have assumed that PR — PT =
0, this means that P R = 0. Equation. (46) then describes
the field,

k2	 xR
1G1 (X R. PR = ^) N 

4-T f XS (X R —XS)

exp
C

ik-	 XR	 IlPsll'I e (rs)drs	 (11)
2xs (X R — XS)

which is equivalent to Eq. (49)—(5) in Tatarskii (1971).
Therefore, we see that Eq. (46) has the correct limiting form
when the origin is placed at the transmitter.

Next, consider the transmitter, receiver and atmosphere
moving relative to each other — and all with respect to a
fixed origin, e.g., the center of the Earth. Since the longi-
tudinal motions do not chance the value of the correlation
of the field in an appreciable manner (Klvatskin, 1970), we
assume that the "x"-positions are not changing, and so the
velocity vectors described below are the projection of the
three-dimensional velocity vectors onto the plane perpen-
dicular to r R — r T . We consider a short enough time in-
terval, T = t2 — t i , such that P; ( t2 ) = P i ( t I ) + V; T, (where
"i" stands for R, T, or S). For this work we will assume

that the velocities are constant over all (short) time intervals
(i.e., Vi (T, ) = Vi ); that they are the same for all the scatter-
ers (i.e., Vs, = Vs,); and that they are deterministic quan-
tities (i.e., (V;) = Vi ). The same procedure used to derive
Eq. (46) can be applied to calculating Vi i (r R (t2 )), except
that we now use basis vectors parallel and perpendicular to

r R — rT + (V R — VT ) T (see Fig. 2). Unfortunately, this will
complicate matters later on when we calculate the correla-
tion functions; which in turn contain products of Vf I (rR(tt))
and VfI ( rR (12)). That is, we will have to transform the com-
ponents of vectors in one basis into the other. However, if
the two vectors rR —rT and rR—rT+(VR — VT) Tare close
to parallel we can then choose the basis vectors perpendicu-
lar to them to be identical. This assumption is valid to first
order if IIVRTII «IIrR — rTII and IIVTTII «IIrR — rTII. In

this case, the components of a vector in each basis system
will be the same — up to the level of approximation used.
Given the distances involved in typical GNSS-LEO occul-
tations, these conditions will be met; hence, we can safely
assume that the same basis can be used for calculations in-
volving the components of both r R — r T + (V R — VT ) r and
rR—rT.

Next, we calculate *1 (rOD). Consistent with the
approximations just discussed, we assume that

X R -XS » IIPR-PS+(VR—VS)TII 	 (12)

and similarly for XS — XT. It can be shown that the
exponential terms are given by

II r R— rS+( V R—VS)Tll+llrS—rT+(VS— VT)TII

—IIrR—rT+(VR—VT)TII

=b (XR ,XS,XT) ZIPS — PT — v"TII2i2
where,

(XS — XT)
V,^=	 (VR— VT) — ( V s —VT)	 (13)

XR —XT
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For the non-exponential terms in Vl (rR(t2)), using Eq. (48)
gives the same result as for Vi l (r R (t l )), i.e., Eq. (44).

Hence, we can write Eq. (46) at two different times as

I,
V11(xR,PR(tl))^ 47r f 

b 
(XR 

'xst•XT)

exp 
i^ kb (X R, X S, . XT) 

11 Ps — PT 22

E'(rs, (t l ))drs,	 (14)

and

2
V11(XR, PR(t2)) 

4n ,^b(XR,XS2,XT)

t kb (XR, Xs, , XT)	 2
exp 11 PS, _PT_ V r^ 7 ^^

E' (r s2( t2)) dr s,	 (15)

where the subscripts "1" and "2" on xs and ps have been

used to indicate that we are considering scatterers at the
points rs, and rs„ respectively.

The important distinction between deterministic and ran-
dom quantities is that the latter should be quantified via their
statistical properties. For our purposes, we will consider
second-order correlation functions, and subsequently the as-
sociated Fourier frequency spectrum. Since *1 = X1 +iS1,
it can be seen that X1 = ReVi l = (Vf l +** )/2 and S 1 =

IMVfI = (r/rl —,P ) /2i.ElEvhat do Im stands for? It is
straightforward to show that the correlation function of the
lo;-amplitude field is g iven by

BX, (PR ( t ] ), PR ( 12)) = 2 [Re(VGl (PO O) V/1 (PR(t2)))

+Re(*l (PR(h))'4 (PR(t2)))]	 (16)

For the correlation function of the phase, the first term
in Eq. (16) changes sign; and for the cross-correlation of
the log-amplitude and phase, the real parts are replaced by
imaginary parts and the second term in Eq. (16) changes sign.

In order to obtain simplified expressions for the double in-
tegrals in Eq. (16), two further approximations are invoked.
First, we apply Taylor's Hypothesis (Monin and Yaglom,
1972) to the field E' (rs 2 ( t2 )) = E' (rs2 (t l ) + V S2 t). This hy-
pothesis assumes that: due to pure advection, - ( r S2 (t2)) =
E' (r S2 (t l )). That is, the permittivity fluctuation due to a scat-
terer at r S2 (t l ) will have the same numerical value after it
moves to rs 2 (t2 ). This means that the correlation function of
the permittivity field can be written as

Br, (rS, (h ), rs2 ( t2)) = (E' (rS, ( t l )) E' (r s2 (t2)))

_ (E ' (rs, ( t l )) E ' (r S, ( t 1 )))	 (17)

(it is assumed that the permittivity field is a real-valued one).
This allows for Eqs. (51) and (52) to be written solely as
a function of t i , so we can drop that notation except for

where it is needed explicitly. Next, we invoke the Markov
approximation (Tatarskii, 1971, Section 64). Consider the
correlation function of the permittivity field

BF , (xs, ,XS2 , PS,,Ps 2 ) = ( E'(XS , , Ps, )E,(Xs2 , Ps 2 )) (18)

For a homogeneous field, the correlation function can only be
a function of ps, — ps,and xs, —xs„ and furthermore if the

field is also isotropic it can only be a function of 11 Ps, —Ps2 ^I
and X S , —xs, I. Under the Markov approximation it is as-
sumed that there is no correlation of the permittivity field in
the longitudinal direction, and hence

BAX S1 1XS2 1 Ps, , PS2 ) =6 ( I xs1 —XS2I) AE' ( jjp s, — PS2II)	 (19)

where AF, is the correlation function in the trans-
verse coordinates.	 Using Eq. (19), the two quantities,

(*1 (PR( t l))VI I (PR(t2))) and (V1 1 (PR( t 1))'P1 (POD)) can
be evaluated as

(Vj l (POO) *1 (P02)))

=—k2n2 f exp	 i 119I12 Jo(Ilg111IV µ(n)11T)2	

—
kb(q)

wE , (0,Il g ll)Il g lldll q lldn	 (20)

and,

(*1 (PR( t l )) *1 (PR02)))
=k2n2 f 

Jo( II g IIJ1Vµ(i► )II7)^pF'(O,II g II)II g IIdII g IId>7 (21)
2

In Eqs. (20) and (21), ^o,, (O, IIgIU is the three-dimensional
spectrum of the (assumed) isotropic permittivity fluctu-
ations with q = (q,,,qz ), tt = (XS ,+xs 2 )/2, and b(q) =

R	 where R = XR —xT. We need the real and imab(rl—XT)(XR—q)'
inary parts of Eqs. (20) and (21) to calculate the correlations.
Equation (21) is real-valued, so its imaginary part is zero.
The real and imaginary parts of Eq. (20) will result in a co-
sine and a sine term, respectively, in the integral. Except
for these trigonometric terms, the integrands for Eqs. (20)
and (21) are the same. Therefore, using the trigonometric
identity, 2sin2 0 = 1 — cos20, the correlation function of the
log-amplitude fluctuations is given by

XR Oo

BX,(PR(t)),PR(tl+t))=47r2k2f f wn'(0,IIg11)

AT 0

JO(Ilg 1IIIVu(q)11r)sin2l	
II4112 

1ll g lldll g 11d>	 (22)
\\2kb (q) f

where we have used the spectrum of the index of refraction
field, (p„ , instead of that for the permittivity field. (For weak
scattering, cp,, ti 4rp„,.) We have also indicated the explicit
ranges of the integrals. If we set V R = V T = 0, this means
that V ,, ^ —V S ,  and as above, if we move the origin to the
transmitter we recover Eq. 09)--(11) in Ishimaru (1997). So
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again, we see that our results have the correct limiting form
as presented in the literature. Using 2cos 2 0 = 1 +cos20,
the correlation function of the phase fluctuations is the same
as that for the log-amplitude case, excepting that the sine-
squared term becomes a cosine-squared term. The cross-
correlation function is of the same form excepting that the
sine-squared term becomes a sine term — without the factor of
two in the denominator of the argument — and the coefficient
in front is given by 7r 2 k2 /2. (After we performed the deriva-
tion described above, a reference was found that provides a
very similar result: Strohbehn, 1974)

To compute the frequency spectrum, we take the cosine
transform of Eq. (22). We define the cosine transform of a
function g(t) as

00

g(f)=4fg(t)cos(2rr .ft)dt	 (23)
0

Hence,

ipx , (f)=167r 2k 2 f gp„,(0,11411)Jo(11411 11Vj,

sin'-	
114112	

cos(27r f r )114 II d 11911 d rid r	 (24)
2kh(q) )

After performing the integration over rand 11411^'e get
(Comman, et al., 2009)

n1+on/2
16n5/Zk2AC^r(^) --4/3

Vi,.(r])
ai —01)/2

2T'(1/3)iaz-—Re[e	 U[111-113, — iay]] (171	 (25)
51'(5/6)

where we have used the isotropic von Karman form for the
index of refraction spectrum

2 _11/6

cP„,(0.114112)=ACn,(r))I119112+(2nIL) ]
	

(26)

where A is a constant, C2 ,(11) is proportional to the intensity
of the turbulence ("structure constant") at the point r), R is
the distance along the line of sight from the transmitter to the
receiver, k is the transmitter wavenumber, and L is a length
scale related to the correlation function for the index of re-
fraction field. Also in Eq. (25), we are assuming a patch of
turbulence centered at q = ri i with extent 077; and we have
denoted a = q(R—rl)/kR, z =2nf/V7,, y= X2 +2n/L'
Tis the gamma function, and U is the confluent hypergeo-
metric function of the second kind. The frequency spectrum
of the phase is given by an expression similar to Eq. (25), ex-
cepting that the minus sign in the curly brackets is replaced
by a plus sign. If the turbulence patch is narrow enough along
the line of sight, then the integral over > can be approximated

Amplitude Spectrum for Different q Values

0.1

0.01

• q=21200km
0.001	 • it = 20200 km

• r/ = 19200 km

10-^

0.1	 0.2	 0.5	 1.0	 2.0	 5.0	 10.0	 20.0

Fig. 3. Amplitude frequency spectrum (in Hz) with varying turbu-
lence location values.

by a simple mid-point formula,

16tr5 /2k2A C2 , ( tlt) A t __4/3
( (f) ti	 y

VI, ( r) t )
(21'( 1/3) _ Re[e i °z2 U[l/2,-1/3,— iav]]I (27)
jl 5F(5/6)  

where a=a(il l ),z= x(rlt , f)and y=y(rl i , f, L).
Since it is a multiplicative factor, C2,(i7 j )Ar7 simply

changes the overall amplitude of the spectrum, and changes
in the turbulence length scale essentially raises or lowers the
spectral amplitudes at the lowest frequencies. The changes
in q, are more complicated, affecting both the amplitude
and the frequency of the oscillations — as can be seen in
Fig. 3 between one and two Hz. The variations in these pa-
rameters are not distinct, i.e., changes in one parameter can
look like changes in another one. This fact makes parameter
estimation difficult, as will be discussed subsequently.

3 Parameter estimation

Assuming that the received signal is a Gaussian random pro-
cess, its spectral values at each frequency will have an expo-
nential distribution. This result comes from the fact that the
real and imaginary parts of the Fourier transform of the signal
(divided by the variance) are both standard and independent
Gaussian random variables. Hence, the spectrum, which is
proportional to the sum of the squares of these quantities, is
a sample from a Chi-Squared distribution with two degrees
of freedom (cf. Theorem 8.8 in Freund, 2004). Furthermore,
a Chi-Squared distribution with two degrees of freedom is
an exponential distribution with mean and variance equal to
two (cf. Definitions 6.3 and 6.4 in Freund. 2004). Therefore,
the spectrum is distributed exponentially with mean and vari-

ance equal to twice the variance of the signal. It is important
to note that this randomness is due to the random permittivity
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Amplitude Spectrum	 (ML) method (Freund, 2004). Consider a model of the form,

0.1

0.001

10-5

	 • Theoretical

•Simulated

10-1
0.1	 0.2	 0.5	 1.0	 2.0	 5.0	 10.0	 20.0

Fig. 4. Amplitude frequency spectrum (in Hz) for theoretical and
simulated case.

field — not the additive receiver and processing noise. Using
the fact that the spectral points are exponentially distributed,
numerous realizations of the spectra can be generated by re-
placing each spectral point with a sample from an exponen-
tially distributed random number sequence. An example of
this is shown in Fig. 4. The exponential probability density
function is given by,

P(x) _ e —'M	 (28)

where P is the mean value for the distribution. The prob-
ability distribution function is given by P(x < b) = 1 —
exp(—b/,B), so that P(x < 0) ti 0.63; and hence, more of-
ten than not, samples from this distribution will be less than
the mean, as can be seen in Fig. 4. For an exponential distri-
bution, the standard deviation is equal to the mean. Hence,
for the simulation, the spectral level at a given frequency
is given by replacing that point by a sample from an expo-
nential distribution with its mean value being the theoretical
spectral value at that point (i.e., from Eq. 27). The simu-
lation is intended to represent real-world situations; hence,
it was assumed that the received signal would be available
at 50 Hz, and approximately 10s worth of data would go
into a single spectrum. The parameters used in the simula-
tion are: Cn, O 17 = 4 x 10-9 , L = 5 km, and 17 1 = 20 200 km.

Furthermore, a noise floor, Q = 3.5 x 10 -5 , is added to the
data. The magnitude of this level is derived from COSMIC
GNSS-LEO data.

Referring back to Eq. (27), the parameters to be estimated
are C 2 (g l )O17, L, >71 and Q: the turbulence intensity, the
turbulence length scale, the location of the center of the tur-
bulence patch from the transmitter, and the noise level. As
the functional form of Eq. (27) is highly non-linear in L and

171, a simultaneous solution for all four parameters is compli-
cated. The preferred solution is via the maximum likelihood

ui =ccpi( r) L L ) +Q 	 (29)

where "i" refers to the frequency, f;, c = Cn,(r1 1 )A17, and
(p i is the right-hand side of Eq. (27), divided by c. Consider
a measured spectrum, denoted X i . It is assumed that the Xi
are independent exponential random variables with expected
values, (X i ) _ g i . The likelihood function is then given by

_Y-X
e i= 1 "i

L = 
r

N

^	
(30)

1 1µi
i=1

where N is the number of frequency values (it is assumed that
by context, the reader will not confuse the use of L for the
likelihood function as well as the turbulence length scale).
The negative log-likelihood function is

N 

[Xi

—1nL=T,+lnµ i ^	 (31)
i=1 

The ML estimates for the parameters are found by solving
the coupled set of non-linear equations, a(—lnL)18p j = 0,
where the p j are the parameters, c, Q, L and '71 . Instead
of dealing with this formidable problem, a simpler two-
dimensional problem will be discussed to motivate the tech-
niques. It will be assumed that the length scale L is known.
Since the model, µ i , is linear in c and Q, a linear weighted
least squares approach can be emplo yed to estimate those two
parameters. Once that is done, these values can then be used
in a one-dimensional ML solution for 17 l . Some variations on
this approach can also be used, and will be discussed below.
Consider the least squares problem for c and Q. It will be the
simultaneous solution to the coupled equations, 8Rldp j = 0,

N
(pj = {c, Q)), where R =	 (µ; —X;) 2 w;, and the weights

i=1

w i are independent of c and Q. If the weights are chosen
such that w; _ ^, I , then this is similar to aChi-Squared
minimization problem. The solution for the parameters can
then be solved via Cramer's method for a 2 x 2 system of
equations, giving

An alternative is to calculate Q directly from the high-
frequency parts of X i . Denoting this estimate, Q, a
one-dimensional weighted least squares solution then gives

N

^(Xi —Q)
i=1

c =
N'	

(33)

^oi
i=1
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Fig. 5. Negative log-likelihood function as a function of >) 1 in km,
with varying turbulence location.

16 000	 18 000	 20 000	 22 000	 24 000

Fig. 6. Negative log-likelihood function as a function of q1 in km,
for varying turbulence length scale.

A further alternative — the one that will be employed in the
following — is to calculate c via a "pseudo" ML method. That
is, we assume that the data X; is replaced by X; = X; — Q,
and then solve for c via the ML formula, 8 (—InL)/c = 0.
Letting µ; = cep;

ac- Y,I 
+1nµ;1=—T 1_1   Nc	 (34)

i-I	 7ti	
1=1	 ^'i

Equating this to zero, gives the desired ML-like estimate
for c,

1 N X;	 1 N X,—Q
c ( t7) = 

E	
(35)

1V	 (Pi(?])(^7)	 N T <pt (i1) 

Plugging this back into Eq. (31) gives

—1nL(>)) = N[1 +c(q)]+Ylntp; (>)) 	 (36)
r-1

Where the explicit dependence on 11 has been indicated (re-
call that we are not including dependence on the length scale
L at this point). Note that the last term is independent of the
data and can thereby be computed a priori. Equation (36)
is now a one-dimensional function and the solution for r7 1 is
given by minimizing it with respect to >. For the results pre-
sented below, we merely take the minimum value of Eq. (36)
as a function of q as the estimate for > 1 . Once the estimate
for 17 1 is determined, this value is plugged back into Eq. (35)
to estimate c.

Different values of c will shift the negative log-likelihood
curves up or down (for simplicity in terminology, the phrase
"likelihood" will mean "negative log-likelihood."). Figures 5
and 6 show the results of Eq. (36) when varying q j , and
L. Changes in r7 i and L change the likelihood function in
more complicated fashions, not only varying the level of the
curves, but also their shape. The flatness of the likelihood
function at the smaller > poses a problem for the >7 i estima-
tion — one would like a steep bowl leading down to the correct

minimum. The flatness means that variations in the likeli-
hood function — due to the exponentially distributed random
errors in the spectral values — can cause a false minimum to
be smaller than one for the true minimum. A simple method
was developed to deal with this problem: using a weighting
function in the denominator of Eq. (35). This function was
chosen to be solely dependent on q. The only portions of
the line of sight that are of interest are those that go through
the atmosphere or at least portions of it where turbulence can
be stron c, enough to disturb the signal significantly. For ex-
ample, excluding outer regions of the ionosphere where the
permittivity perturbations due to fluctuations in the electron
density field can be small. Hence, the weighting function
can be chosen such that it is close to one for those portions
of interest along the line of sight, and drops smoothly to zero
away from those regions. The effect of the weighting func-
tion on the likelihood function is illustrated in Fig. 7. It can
be seen that the likelihood function is unchanged essentially,
between approximately 18 000 to 22 000 km. This is impor-
tant, as the purpose here is not to bias the estimates, but to
try to eliminate non-physical estimates.

In order to examine the statistical properties of the c and r11

estimators, 1000 realizations of the simulated spectra were
generated. Before discussing these results, however, some
preliminary concepts are presented.

3.1 Theoretical error analysis

Since the random errors in r7 i are not easily described theo-
retically, these will be analyzed in the context of the simula-
tion results. However, the error statistics of c can be studied
analytically. Consider then the estimator for c as given by

Eq. (36). Recall that this was referred to as a pseudo-ML es-
timator. This is because the correct ML estimate is given by
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-InL=^	 +ln(ccP;+Q)^	 (37)

	

r =1	 i+Q

Then, c is found by solving

	

d(-1nL)	 NN	 X;	 (p;

0	
ac	

- i=1 I ( C W,+Q) 2 ^oi +C'Oi+Q]	
(38)

which is now non-linear in c, thus requiring a numerical solu-
tion. Therefore, we restrict our analysis to the "pseudo-ML"
estimate. First, consider the expected value of c,

1 N (
Xi)-(Q) — I N

(c)
= NT Vi(111) N

= 1 N C(Pi(rlt)+Q-Q 
-c	 (39)

	

N i=1	 tPi ( rll )

Which shows that this is an unbiased estimator of c (where it
has been assumed that Q is an unbiased estimator of Q.and

q , is the true value for the parameter >). Next, consider the
variance of c - with the same assumptions made above,

Since it has been assumed that the X i are independent, expo-
nentially distributed random variables, their variance is equal
to the square of their mean, and Eq. (42) becomes

N (c^Pi(7)1) +Q)2 	(43)
Var(c)=T^

-1	 N2iP; (t11)

Note that if Q = 0, Var(c)=c'` /N.
Things are more complicated when r1 i is not the true value.

Denote this, f7 1 . The estimated value for c (denoted c) is now

( c ) _ C
Al

	

(Pi ( rll)	 (44)
N	 ^Pi(r,)

and hence the bias, b = (c) - (c) is given by

1	 N ^Pi(>71)b=c 1 - N^	 (45)
=1 (Pi (^1)

Therefore, it can be seen that the bias is a function of the
sum of the ratios of the spectrum evaluated at the true and
estimated q 1 values, respectively. Note that if r1 i = q 1, then
the bias will be zero, as expected.

The variance of cis given by Eq. (43), but with f11 in the
denominator. Note that if Q = 0, the variance of c is

2 N	 ^
Var(c)=^

C
—^ 

^1 (pi (m) ]
<Pi(^ll)`	 (46)

N	 i-t 

Since the X; are exponentially distributed random variables,
the random error is significant — as can be seen in Fig. 4. In
order to reduce the random error, averaging spectra is help-
ful. Consider the statistics of the estimator of c with aver-
aged spectra (denoted c). The averaged spectral values are
given by

1 
M

	

— Y, (X;) j	 (47)
M .-1

where j indexes the elements that go into the average - of
which there are M. The estimator, c, is then given by

I N X;	 I	
n M (X i) ^

_	 (48)c= NE _= J
N i=1	 NM i = 1 j=1 iOi

N	 X.	 Interchanging the order of summation and summing over i
Var(c)=Var E	 (40)	 M

i = 1 N ^P; ( rll)	 gives, c = Y c j /M. Taking the expected value gives
j=1

It can be shown that the variance for a linear combination of
independent random variables, y; , is given by (Freund. 2004)1 `N

^^) = ,E(CA = (C)	 (49)
J=1

Var ^a;y; = Ta?Var(y;)	 (41)	
where it was assumed that the (cj) are identical. This shows

i	 )
i	 that the estimator from the averaged spectra is unbiased.

Hence, with a; = I / (Ncp i ), Eq. (40) becomes	 Using Eq. (41), the variance of c is given by

1 n VarGX) M`N Var(c
J 

) - Var (c)
Var(c)= T	 (42)	 Var(c)=Var Ecj/M

i=t 	
=

j=1

E	 -	 (50)
N` i=1 

[(P, 
( 111) 2	 MZ	 M
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Fig. 8. Distribution of Cn Aq estimates over 1000 realization. The
dashed horizontal line is the true value.

where it was assumed that the variances of cj are identical.
This shows that averaging the spectra reduces the variance of
c by a factor of I/ M.

As seen in Eqs. (44) and (46), the ratio co j (rf l )/rp; (f I ) is

important in determining the error properties of the estima-
tor c. In order to study this further, we will need the follcm-
ing concepts. The probability density function for a gamma
distribution is given by

x«— I e —x /^
P(x) _

	

	 (51)
I^" 1, (Cl) 

If X is gamma-distributed with parameters a and P, and v is a
positive constant, then v X is gamma-distributed with param-
eters a and vp. Since the spectral values X; are assumed to
be independent exponentially distributed random variables —
or gamma-distributed with a = I and P = µ i — it follows that
the ratio X,/µ; will be exponentially distributed with mean
one (use the property just discussed, with v = µ; ). If the µ;

are evaluated with the estimates for Q, c and il l , then the ratio
should be approximately distributed as an exponential distri-
bution with mean one. The same holds for averaging the
spectra, but here the ratio X; /µ; will be gamma-distributed
with a = M and = 1 /M (Freund, 2004) (recall that X; is
given by Eq. 47). These properties can then be used to test
the quality of the estimation methods via a goodness-of-fit
analysis.

No Weighting Weighted No Weighting, Weighted,

Averaged	 Averaged

Fig. 9. Distribution of r1 1 estimates. The dashed horizontal line
indicates the true value.

4 Simulation studies

As mentioned above, 1000 independent realizations of the
amplitude spectrum were generated. Equation (37) was used
to calculate estimates of r1 i , and then those are in tarn are
used to estimate c via Eq. (36), with q = t) 1 . Recall that
the true values for these parameters are rf l = 20 200 and
c = 4 x 10-9 . There are four different estimation method-
ologies that were employed: the pseudo-ML method, one in
which a weighting function is used, and then the same meth-
ods applied to averaged spectra. Five spectra were used in
the averaged-spectrum analysis. A discussion of the overall

estimator performance is presented first, followed by a set of
case study analyzes that deal with more specific aspects.

4.1 Overall statistical performance

Figures 8 and 9 illustrate the overall simulation results.
These are hybrid plots, with both the coloring and widths be-
ing related to the number of samples at that specific param-
eter value. Furthermore, the smaller purple boxes indicate
outliers. Tables 1 and 2 present some descriptive statistics
for the results. Most of the statistics used in the tables are or-
der statistics, i.e., quantiles and inter-quantile ranges. These
metrics are more robust in the presence of outliers, and so
they are more appropriate here than other dispersion metrics
such as skewness and kurtosis. It can be seen that the me-
dian values are all quite close to the expected value, reflect-
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ing the comments above about how the estimators are unhi-
ased. Those comments referred to the estimator for c, but that
fact is also represented in the median value of the estimator
for 11t . The use of the weighting function has the desired
effect: it eliminates the most egregious outliers. However,
from the tables and the figures, it can be seen that the de-
crease in outliers comes at the price of increasing the errors
in the "middle" statistics (e.g., the 40-60 and 30-70 quar-
tile ranges). It is clear that spectral averaging is a powerful
method for reducing the random errors — even with averaging
only five spectra. The beneficial effects of spectral averaging
are far greater than using a weighting function. A definitive
bias towards larger outliers in c can be seen in Fig. 8. This is
more clearly exemplified in Fig. 10, a contour-scatterplot of
the c estimates versus the q I estimates. The horizontal and
vertical lines indicate the true value of those parameters. The
solid black curve comes from the stem in Eq. (44) and subse-
quently embodied in the equation for the bias, Eq. (45). This
plot show how the bias is a fundamental aspect of the prob-
lem, not an artifact of the processing methodology. Recall
that the bias comes from the sum of the ratios of the true am-
plitude spectrum (i.e., with the true value of q, ) divided by
the amplitude spectrum evaluated at a different qt. As can
be seen from Fig. 3, excepting for the lowest frequencies,
the spectrum for the rl t = 19200 curve is always lower than
that for q t =20200; hence, the sum will be greater than one,
thus producing an overestimate of c. Alternatively, if the es-
timated value of q t is greater than the true value, the sum of
the ratios will be less than one and will give an underestimate
of c. This explains the biased structure for the estimates of c,
as seen in Figs. 8 and 10.

A significant concern in any estimation algorithm is the
identification and elimination (or mitigation) of outliers. In
the results just presented, it could be seen that the overall sta-
tistical performance of the estimators is quite good, but in a
real world application one wants to know if a given parame-
ter estimate is accurate or not, This is a difficult problem in
general and even more so in this application because the pa
rameters do not have independent effects on the estimators.
As mentioned above, the ratios of the true (in this case, simu-
lated) spectra to the model spectra with the estimated param-
eters should be approximately distributed as an exponential
random variable with mean one. The collection of ratios in
question is taken over the set of frequencies samples for the
given realization. An investigation was made into whether
fitting an exponential distribution to the ratios could be used
to determine the accuracy of the parameter estimates. This
is a standard technique in the category of "goodness-of-fit"
tests. A number of tests were employed: Anderson-Darlinig,
Cramer-von Mises, Kolmogorov-Smirnov, Kuiper, Pearson
chi-squared, and the Watson U' test (Lindgren, 1968). Each
test produces a so-called test statistic, which then leads to the
probability (or "p-value") that the given data comes from the
specified distribution. For each realization, the ratios were
calculated and then tested as to how likely they were to come

18000	 19000	 20000	 _`1000	 -2000

Estimated r/ Values

Fig. 10. Contour-scatterplot of C? Aq estimates versus qt esti-
mates. The horizontal and vertical lines indicate the true value val-
ues for those parameters, respectively. The solid black curve is from
Eq. (45).

from a mean-one exponential distribution. Figure I 1 illus-
trates the results using the chi-squared test, giving the p-value
as a function of the c estimate for each of the 1000 real-
izations. The color-coding is proportional to the number of
counts at that (c, p-value) grid cell. An optimal result would
produce something like an upside-down "V" pattern (though
not uniform in the number of counts), with the base of the
two legs at the zero p-value axis, and the apex at the true c
value and a p-value of one. That is, the higher the p-value
(i.e., closer to one), the better the estimate — and vice-versa.
As can be seen from the figure, the chi-squared test is clearly
not optimal. There is skill, but there are too many mid to low
p-values associated with good c estimates, as well as some
poorer c estimates with high p-values. In other words, the
p-value for this test could not be used as a single criterion
for identifying outliers. The Pearson chi-squared test is used
so frequently that a comment is warranted as to one reason
that it does not perform well in this case. As discussed in
Lindgren (1968, p. 486), the Pearson test is not well-suited
to continuous distributions, the difficulty laying in choosing
the appropriate binning strategy. The other tests, such as the
Kolmogorov-Smirnov and Anderson-Darling, which use the
distribution functions directly, do not have this limitation.
However, it turned out that none of the individual tests had
sufficient skill to be used in outlier detection. Thus, a sim-
ple hybrid method was used as the goodness of fit metric —
the maximum p-value over all the tests. The results of this
method for the c parameter estimation are shown in Fig. 12.
While certainly not optimal, this approach is a significant im-

8. X 10-9

7. X 10-9

6. X 30 -9

ro 5.X10-1

N
w

4.X10-9

3. X 10-9

2. X 10-9

1. X 10-9

www.atmos-meas-tecii.net/5 /l/2012/ 	 Atmos. Meas. Tech., 5, 1-20, 2012



12	 L. B. Cornman et al.: Progress in turbulence detection via GNSS occultation data

Table 1. Statistics for maximum likelihood estimates of C Aq

40-60 30-70 20-80 10-90

Median STD Quantile Quantile Quantile Quantile

C Aq (x 10-9 ) (x 10-9 ) Range Range Range Range

Basic 3.98 0.90 0.31 0.67 1.13 2.00

Weighted 4.01 0.70 0.29 0.60 0.96 1.64

Spectral 4.00 0.24 0.09 0.18 0.32 0.50
Average

Weighted,
Spectral 4.00 0.22 0.08 0.18 0.29 0.48
Average

Table 2. Statistics for maximum likelihood estimates of r1 l .

40-60 30-70 20-80 10-90

q l Quantile Quantile Quantile Quantile

(km) Median STD Range Range Range Range

Basic 20200 903 15 400 1010 2045

Weighted 20190 653 90 360 845 1560

Spectral 20 200 197 10 40 120 280
Average

Weighted,
Spectral 20200 176 30 60 100 270
Average

provement over the individual tests. For the rl l estimates,
there was more skill than in the c estimation scenario, but as
a stand-alone outlier detection method, this goodness-of-fit
method is still not adequate. In the next section, a number
of case studies are discussed, which leads to a better un-

derstanding of the difficulties in the estimation and outlier

identification problem.

4.2 Simulation case studies

Five cases out of the 1000 realizations are analyzed in the

subsequent material: realizations 64, 177, 306, 356, and
127. The first four were chosen to study the relationship
between p-values and parameter estimates. Specifically, the
four cases illustrate the combinations of high and low p-
values with both good and bad parameter estimates, (i.e.,
high-good, high-bad, low-good and low-bad). Realization
127 is used to show how statistical comparisons between the
log-likelihood functions derived from the simulated data and
parameter estimates can be misleading.

The first case studied is realization number 64. Figure 13
through Fig. 15 show the spectra, likelihood function and dis-

tribution of ratios for this realization, respectively. Figure 13
shows the trite spectrum (black), simulated spectrum (red),
and the spectrum with the estimated c and nt values (green).
Another spectrum function is plotted, (labeled "fit," in blue),
NN here the parameters were set "by-eye" to get a better fit to
the likelihood function (more on this below). Figure 14 illus-
trates the likelihood functions derived from the true spectrum
(black); the simulated spectrum (red); the spectrum from the
estimated parameters (green); and the spectrum from the fit-
ted parameters (blue). Figure 15 shows a histogram of the
spectral ratios using the spectrum derived from the estimated
parameters, a carve representing a smoothed histogram (red),
and a curve which is a mean-one exponential density func-
tion (black). Table 3 gives the estimated values of c and q

a "low" and "high" rating of the p-values, and a chi-squared
type of error function, computed as

EE— 
P ( —InL D( r1r) — ( —InL E( rlt))]'	 (52)
^,	 InLE(gi)t—1

where, the sum is over all q values (15 000 to 25 000 km with
a resolution of 10 km, i.e., P = 1000), —InL D is the negative
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Fig. 11. Probability values as a function of C2 Aq estimates: Chi-
squared test.
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Fig. 12. Probability values as a function of C2 Aq estimates: maxi-
mum overall tests.

log-likelihood calculated from the data, and —InL E is that
derived from the estimated parameters. Another statistic, EF,
is calculated using the log-likelihood function from the fitted
parameters instead of that from the estimated ones. Note that
these statistics are not goodness of fit metrics for the fit to the

Amplitude Spectrum, Realization 64

0.1

0.001
• Fit
• True

Estimated
• Simulated

0.1	 0.2	 0.5	 1.0	 2.0	 5.0	 10.0	 20.0

Fig. 13. Amplitude frequency spectrum (in Hz) for realization
64, showing fit (q = 20 200, L = 5 km, and C2 A,7 = 3.84 x 10-9),
compared to estimated (q = 17 210 km, L = 5 km, and Cn Aq =

8.4 x 10-9).
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Fig. 14. Log-likelihood functions, as a function of 01 in km for
realization 64, showing hand-fitted as well as estimated and true
functions.

spectrum, but rather for the fit to the likelihood function. The
reason for this choice is that the parameter estimates come
from the likelihood function — not the spectrum.

From Table 3, it can be seen that the parameter estimates
are quite poor for realization 64, and the error statistics are
moderately large (relative to the other realizations). This im-
pl ies that in this case, neither the E E and EF statistics, nor the
difference between them would indicate that the parameters
are significantly in error. The p-values for this realization are
very high, which indicates that they are also not helpful in
determining whether the parameters are outliers. This is re-
inforced by how well the distribution of the ratios matches
the exponential curve — as seen in Fig. 15. As mentioned
previously, the random errors for an exponential distribution
are large, and hence the log-likelihood function can have un-
dulations, which can result in a global minimum offset from

10-5
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Table 3. Parameter estimates and statistical measures for selected realizations.

Log-Likelihood Log-Likelihood
Realization Error Statistic Error Statistic
Number III C,'-,Oq P-values (EE) (EF)

64 17210 8.4x 10-9 Hi-h 100 54

127 20200 4.0x 10-9 High 45 8

177 20 200 4.0 x 10-9 Low 16 2

356 17 320 9.1 x 10 -9 Low 284 10

Distribution Plot, Realization 64
1.2

1.0

• Data
0.8	 • Exponential

• Smoothed
0.6

0A

4	 5	 6	 7

Fig. 15. Distributions plots of the ratios in Eq. (45), for realization
number 64.
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Fig. 16. Log-likelihood functions, as a function of nt in km for
realization 177, showing hand-fitted as well as estimated and true
functions.

-1650

-1660

-1670

-1680

-1690

-1700

the "true" minimum. It was also mentioned that this issue is
especially problematic for smaller q values, where the like-
lihood function has a shalloNN incline. This is exactly what
occurs with this realization, as clearly seen in Fig. 14. The
model parameters chosen "by eye" produce a somewhat bet-
ter fit to the empirical loo-likelihood function. This was a
surrogate for a more sophisticated algorithm which might
find the best fit to the empirical log-likelihood by varying
the c and q, (as well as L) parameters as part of a three-
dimensional minimization algorithm. This gives hope for
more accurate parameter estimation by using a more sophis-
ticated minimization method, e.g., estimating L in addition
to c and q, . Since the values for c and rj l are more important
for practical applications, the error induced by lowering the
value for L, in exchange for more accurate c and q, estimates
is acceptable. However, as seen in Figs. 5, 6, and Eq. (37), the
effect on the log-likelihood function due to variations in these
parameters are not independent. This is quite apparent in the
effect that changing q (cf. Fig. 5) has on the log-likelihood
function. That is, both the level and minimum value change
with varying q.

Realizations 356 and 177, both have low p-values with
poor and excellent parameter estimates, respectively. EE is
quite large for realization 356; however, adjusting c in a Ini-

nor fashion (to 4.3 x 10 -9 ) and L in a more significant way
(to 9), produced an excellent fit to the empirical likelihood
function (EF = 10). Another interesting aspect of this case
is that the fitted log-likelihood function, which produced an
excellent fit to the empirical one, is still off in level to the true
one. This is due to the random errors that produce a simu-
lated log-likelihood function that is off in level. This means
that minimizing the E F function can still produce parameters
that are in error. Realization 177 resulted in excellent pa-
rameter estimates, as well as a very good EE value. The fit
did not change the parameter estimates appreciably, although
EF is better than E E . This case is interesting in that the esti-
mated log-likelihood function is well matched to the true one
— as seen in Fig. 16 — whereas the fit log-likelihood function
is well matched to the simulated one. Of course, in a real
world scenario, the true lob likelihood function would not be
available so one would have to depend on the fit to give all
the information.

This case also brings up an interesting point, one that is
even more apparent in realization 127 (cf. Fig. 17): that good
parameters estimates only require that the estimates of the
level (c) and location of the minimum (r71 ) match those of the
true data, i.e., at a single point in the (q j , —In L D ) domain.
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Log—Likelihood Function, Realization 127
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Fig. 17. Log-likelihood functions, as a function of r11 in km for
realization 127, showing hand-fitted as well as estimated and true
functions.

Log—Liklihood Function, Weighting: Realization 64
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Fig. 18. Log-likelihood functions (as a function of >1 1 in km) —
empirical and estimated — for the basic and weighted parameter es-
timation methods. The data are from realization 64.

On the other hand, getting a good fit to the log-likelihood
function requires reasonable matches at many points. No
combination of parameters might produce a good fit to the
"measured" (real or simulated) log-likelihood function; how-
ever, if the fit and true curve matched at just the right point,
the estimates would be perfect. This implies that the fitting
method should be more robust in parameter estimation — or
at a minimum it could provide information regarding data
quality. The hope that p-values could provide some measure
of confidence in the parameter estimation was not fulfilled.
Nevertheless, it was found that distributions with numerous
outliers (i.e., large ratios) tended to produce lower p-values.
This leads to two possible augmentations for the future: re-
calculating the p-values with the outliers removed, and us-
ing that as a revised confidence measure; and removing the
outlier points from the parameter estimation process.

4.3 Weighting and spectral averaging

As mentioned above, other techniques that can improve pa-
rameter estimation entails the use of a weighting function
in calculating the log-likelihood function, and spectral av-
eraging. Figure 18 shows the benefit in using a weighting
function. The red and brown curves are the un-weighted
empirical and estimated likelihood curves, respectively, for
realization 64. Recall that the parameter estimates for this
case were poor (c = 8.4 x 10 -9 and 71 1 = 17210). Since
the q, estimate is on the low end of the 71— range, the use
of a weighting function should improve the estimates. As
can be seen from the figure (blue and green curves for the
weighted empirical and estimated likelihood curves, respec-
tively), the new estimates are superior to the un-weighted
method: c = 3.98 x 10 -9 and 711 = 20150. Tables I and 2
give the statistical results over 1000 realizations. Next, we
turn to spectral averaging. A small number of realizations (5)
are averaged to show the benefits of this method. Of course,

for a GNSS-LEO occultation geometry, the vertical extent of
the atmosphere covered over the period required to average
five spectra can be large. Running averages could be used,
but then the samples would not be independent and the ef-
fect of averaging on the variance — as given by Eq. (50) —
would be lessened. Figure 19 illustrates the benefit of aver-
aging on reducing the random errors. The red curve is the
averaged spectrum and the black curve is the true spectrum.
Comparing this case with, for example, the case shown in
Fig. 4, it can be seen that the averaged spectrum is matched
better to the true spectrum, and hence the parameter esti-
mation should be improved similarly. Figure 20 shows the
log-likelihood functions from the true and averaged spec-
trum. Again, the beneficial effects of averaging can be seen,
i.e., the log-likelihood function generated from the averaged
spectrum is better matched to the true log-likelihood func-
tion. Tables I and 2 give the statistical results over 1000 re-
alizations. It can be seen that by reducing the random error,
spectral averaging improves the parameter estimation mach
more significantly than the weighting scheme. It was shown
above that when averaging spectra, the distribution function
for the ratios becomes a gamma distribution with parameters
a = M and = I /M; where M is the number of spectra go-
ing into the average (here, five). This can be seen in Fig. 21
with the simulated data.

5 GPS-COSMIC occultation case studies

The theory, techniques, and observations presented in the
previous sections would be inadequate if they did not per-
tain directly to real data. In this section, an analysis of two
case studies from GPS-COSMIC occultations is presented.
The purpose of these case studies is to show how the meth-
ods and results from above apply to the real world scenario
— not as an in-depth analysis of the real data. These cases
were selected since they were from a region in which there
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Distribution Plot: Spectral Averaging

Realization 25
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Fig. 19. Averaged and theoretical frequency spectra (in Hz). Five

spectra, beginning at realization 25, were averaged.

Fig. 21. Distribution of ratios for the five averaged amplitude fre-
quency spectra shown in Fig. 19, above. Note that the theoretical
density function is from a gamma distribution.

Log—Liklihood Function: Spectral Averaging 	
SNR Data — Trend Removal

Realization 25	 COSMIC Occultation 2, (2300,2800)

time (s)

16 000	 18 000
	

20 000	 22 000	 24 000

Fig. 20. Log-likelihood function, as a function of q1 in k1n, derived
from averaged and theoretical amplitude frequency spectra. Five
spectra, beginning at realization 25, were averaged.

was vigorous convective activity, as well as turbulence re-
ports from pilots in the vicinity. In each case, a 500-sample
analysis window was selected and processed using the same
methodologies as used with the simulated data. There is one
difference, however. A trend was removed from the ampli-
tude time series data prior to the analysis. The trend was
computed via a running median filter with a width of 2001
points, or approximately 40 s. The appropriateness of the fil-
ter window was checked by verifying that the residuals had a
mean that was close to zero. The noise level was computed
by taking the median value of the log-amplitude spectrum
over the last 50 points (i.e., the high-frequency region).

Figure 22 shows the amplitude time series over the course
Of occultation 2 (arbitrary nomenclature). The black curve is
the raw data, the red curve shows the trend, and the two ver-

Fig. 22. SNR data for COSMIC occultation number 2 (black).
Trend curve is in red and the vertical, dashed blue lines indicate the
analysis window.

tical dashed blue lines delineate the analysis window. This
window was chosen because it had large-amplitude fluctua-
tions, and could be used to test subjectively whether some of
the assumptions presented in Sect. 2.1 were violated; specifi-
cally whether inhomogeneity and/or layered structures would
affect the results. Figure 23 shows the spectra of the data
(red), one using the estimated parameters (in green, with
c=5.1 x 10 -10 , q l = 19010, L=5.0 and Q=7.Ox 10-6),
and one using the fitted parameters (in blue, with c=5.19 x
10-10 , q l = 19010, L=3.1  and Q = 6.O x 10 -6). The like-
lihood functions for the data (red), the estimated parameters
(green) and fitted parameters (blue) are presented in Fig. 24.
For this case, E E = 31.6 and EF = 2.1. Figure 25 illus-
trates the distribution of ratios. From these three figures it
can be seen that the characteristics of the real data are sim-

ilar to those of the simulated cases (e.g., realization 64).
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Distribution Plot

Cosmic Occultation 2, (2300,2800)

• Data
• Exponential

• Smoothed

Fig. 23. Amplitude frequency spectrum (in Hz) for occultation 2
(red), model spectrum using estimated parameters (green), and "by-
eye" fitted parameters (blue).

Fig. 24. Log-likelihood functions, as a function of r7 l in km,
from data (red), estimated parameters (green), and fitted parame-
ters (blue) for occultation 1.

The p-values for this case are mid-level to high, as might
be expected by how well the distribution from the real data
matches an exponential one.

The amplitude time series for occultation I is shown in
Fig. 26. It can be seen that there are significant fluctuations
within the window. This window was chosen because of that
fact — to see how well the theory applies to such a dynamic
case. Figure 27 shows the spectra for the data (red), the spec-
tra derived from the estimated parameters (green), and that
using a set of fitted parameters (blue). The spectrum of the
data shows features that were not seen in the simulated data.
For example, the "hump" from around 3 to 6 Hz. In fact,
if we look at the amplitude (red) and phase (black) time se-
ries over the analysis window (Fig. 28), a significant ramp

Fig. 25. Distribution of ratios for occultation 2.

can be seen in the amplitude data at around 54s, with what
appears to be a damped oscillation in the subsequent 1.5 s.
The phase data shows a step-like structure during the same
1.5s, with the steps in concert with those in the amplitude
data. (It should be noted that the de-trending used with the
phase data was very different than that used with the am-
plitude data. A polynomial fit over an extended time seg-
ment, centered at the analysis window was employed. For
this example, the fit was performed over a window extend-
ing 150 points before and after the analysis window.) The
source of these oscillations is unknown, but their periods are
approximately 10-16 samples, which at 50 Hz. gives fre-
quencies from around 3-5 Hz — which matches what is seen
in the frequency spectrum. The hump in the spectrum gen-
erates magnified oscillations in the likelihood function, seen
in the empirical (red) curve in Fig. 29, with the unfortunate
by-product that one of these oscillations happens to be the
global minimum, in turn skewing the parameter estimation
(see the green curve in this figure). A by-eye fit was per-
formed (blue curve) which provided far superior parameter
estimates — or at least a better fit to the empirical likelihood
function — since the true values are unknown. The estimated
and fitted error statistics are EE = 299.2 and E F = 2.4, re-
spectively. For the estimated parameters, c = 2.76 x 10-9,
?1 1 = 17730, Q = 1.8 x 10 -5 and L = 5, and for the fitted pa-
rameters, c = 1.31 x 10-9 , q, = 20800, Q = 6.0 x 10 -6 , and
L = 7.0. It is encouraging that even with the data quality
issues, physically reasonable parameter estimates can be ob-
tained with fits to the likelihood function. The distribution of
the ratios for this data also contains artifacts from the oscil-
lations. In fact, these are directly related to the hump in the
spectrum around 5 Hz, as those values — being much larger
than the model spectrum — in turn produce large ratios. These
large ratios in turn produce poor p-values.
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SNR Data — Trend Removal

COSMIC Occultation 1, (2450,2950)
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Fig. 26. SNR data for COSMIC occultation number 1 (black).
Trend curve is in red and the vertical, dashed blue lines indicate
the analysis window.

Amplitude and Phase Data (Trend Removed)

COSMIC Occultation 1, (24502950)
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Fig. 28. De-trended amplitude and phase time series (in seconds)
from the analysis window for occultation 1. (Between the vertical,
dashed blue lines in Fig. 26.) Note spike just after 54 s, and oscilla-
tions ("ringing") for the subsequent 1.5 s.

Fig. 27. Amplitude frequency spectrum (in Hz) for occultation I
(red), model spectrum using estimated parameters (green), and "by-
eye" fitted parameters (blue).

Fig. 29. Log-likelihood functions, as a function of n1 in km,
from data (red), estimated parameters (green), and fitted parame-
ters (blue) for occultation 2.

6 Conclusions

In this paper, an overview of the derivation used to produce
the model spectrum was presented. This derivation started
from the Helmholtz wave equation, and using a reasonable
set of assumptions, resulted in the model spectrum, Eq. (26),
and its mid-point approximation, Eq. (28). This latter model
was used in the subsequent analysis. The assumptions used
in the derivation were spelled out clearly. It was pointed out
that, as we considered this a first-order solution, two real
world atmospheric situations, inhomogeneity (including lay-
ered structures) and anisotropy, were not considered. The
model derivation was based on standard weak scattering the-
ory which can be found in many references. However, in our
case we needed to modify the standard methods to include
the motions of the transmitter, receiver, and atmosphere, as

well as placing the origin of the coordinate system at an arbi-
trary point. It was shown that our results match those in the
literature when making the appropriate simplifications.

A parameter estimation methodology was presented, fol-
lowed by a discussion of the statistical properties of the esti-
mators. A detailed study using simulated data was presented
after the theoretical discussions. A number of metrics were
examined to evaluate the accuracy of the estimates, e.g., me-
dian, standard deviation, and various inter-quantile ranges. It
was found that the estimates of the turbulence intensity and
the location of the turbulence alon g the line of sight could
be retrieved in an accurate manner. In this instance, the term
"accurate" refers to the global statistics over the 1000 simu-
lated realizations. In a practical application, one would like
to have accurate estimates for each measurement, or at least
a notion as to when the estimates are unreliable. Goodness
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of fit metrics (p-values) were used to see if the distribution
of the ratios of the measured/simulated spectrum values to
those from the true one could be used as an indicator of poor
estimates. It was found that this technique was not reliable
in that regard. Four cases were shoN\ n that demonstrated the
problem, one where the p-values were high and the estimates
were poor, and vice versa — as well as cases where the p-
value was high and the estimates were good, and vice versa.
This was also borne out with a scatterplot of the parameter
estimates and p-values. Even when choosing the maximum
p-value over the different goodness of fit tests, the correla-
tion of p-value and quality of the parameter estimate was
reasonable — but not great.

Since the parameter estimation technique used the global
minimum of the log-likelihood function, random errors in the
spectrum could result in significant errors when trying to es-
timate the location of the turbulence along the line of sight.
An important step in improving the parameter estimation was
fitting the model-based likelihood function to the empiri-
cal one. In addition to incorporating the turbulence length
scale parameter into the fitting, a weighting function was in-
troduced into the likelihood estimation methodology. The
weights were close to one for most of the n values deemed
to be in the earth's atmosphere, and decreased rapidly out-
side those bounds. This not only allowed for the elimination
of the most egregious outliers, but it also lead to improved
parameter estimates from the data interior to the weighting
function's effective region. Finally, it was shown that, due
to reducing the random errors, spectral averaging greatly im-
proved parameter estimation. These smaller errors then prop-
agate through the parameter estimation resulting in more ac-
curate estimates. It was seem that spectral averaging was far
superior to the weighting function in improving the parame-
ter estimates. The methods developed for the analysis of the
simulated data was then applied to the analysis of real occul-
tation data. In the two cases presented, it could be seen that
the general characteristics seen in the simulated data were
also seen in the real data — which is encouraging.

Future work includes the implementation of a three-
parameter estimation algorithm including the length scale,
and a more thorough analysis of real occultation data. This
is especially needed for phase data. Some analysis has been
performed with simulated and real phase data, with encour-
aging results, but the extensive analysis presented here with
the amplitude data has not been performed. There are dis-
tinct issues regarding trend removal with the phase time
series. A local polynomial fitting method was discussed
briefly; however, the frequency content in the data resulting
from polynomial fitting is highly dependent on the order of
the polynomial used and the window over which the fit is
performed. This indicates that a more robust methodology
needs to be developed.

As mentioned above, future work should include the ef-
fects of inhomogeneities (including layered structures) and
anisotropy. The reason that the inclusion of layered media is

difficult is because large-scale layers will refract the incom-
ing wave, which then means that the straight-line approxima-
tion for the propagation path needs to be modified. The per-
mittivity field is separated into background and random parts.
(Note that in this context, "background" refers to all aspects
of the deterministic permittivity field.) One could then re-
write the original differential equation in a non-Cartesian co-
ordinate system, e.g., a local one which has as its axes the
tangent, normal and binormal vectors to the "main" propa-
gation path — for example that described by geometrical op-
tics. These are so-called trajectory coordinates (see for exam-
ple: Hill, 1985; Mazur and Felsen, 1987). Another technique
is to use a path integral approach to determine the Green's
function in a multiple scattering context (Mazur, 2002). Yet
another approach is to use the so-called Distorted-Wave Born
(or Rytov) Approximations (see for example: Beylkin and
Orista(ylio, 1985; Devaney, 1979). In this method, one as-
sumes that the permittivity field is separated into background
and random parts, however the heuristic model is that the in-
coming waves are refracted by the background and are then
scattered by the random field. The contribution of all such
scattered fields is then what is measured at the receiver. That
is, it is a single-scattering process, but the electric field at the
scatterer is now "distorted" by the background field. Of the
three methods, this is probably the most tractable one.
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