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Abstract* 

Composite spur gears were fabricated and then tested at 
NASA Glenn Research Center. The composite material served 
as the web of the gear between the gear teeth and a metallic 
hub for mounting to the torque-applying shaft. The composite 
web was bonded only to the inner and outer hexagonal 
features that were machined from an initially all-metallic 
aerospace quality spur gear. The Hybrid Gear was tested 
against an all-steel gear and against a mating Hybrid Gear. As 
a result of the composite to metal fabrication process used, the 
concentricity of the gears were reduce from their initial high-
precision value. Regardless of the concentricity error, the 
hybrid gears operated successfully for over 300 million cycles 
at 10000 rpm and 553 in.*lb torque. Although the design was 
not optimized for weight, the composite gears were found to 
be 20 percent lighter than the all-steel gears. Free vibration 
modes and vibration/noise tests were also conduct to compare 
the vibration and damping characteristic of the Hybrid Gear to 
all-steel gears. The initial results indicate that this type of 
hybrid design may have a dramatic effect on drive system 
weight without sacrificing strength. 

Introduction 
The components used in rotorcraft applications are designed 

such that the minimum weight is attained without sacrificing 
reliability or safety. Since the drive system is an appreciable 
percentage of the overall rotorcraft vehicle weight 

                                                           
*LERCIP Summer Intern at NASA Glenn Research Center 

(~10 percent), many approaches have been applied to improve 
the power to weight ratio of these components. 

Past and current government-funded efforts for drive system 
technology (Refs. 1 and 2) has used power to weight ratio as 
the most critical performance metric. Through clever design 
modifications, configuration arrangements, and advanced 
materials, great progress has been made.  

Material properties of composites make them very desira-
ble. Having a very low density and high strength are two 
important properties that directly impact power to weight 
ratio. Therefore application of these materials to rotorcraft 
transmission static and dynamic components can have a 
drastic effect on overall drive system weight (Refs. 3 and 4). 

The use of composites has been mostly limited in drive 
systems to housings and shafts (Ref. 5). A number of critical 
issues were identified and addressed in these applications. 
These issues include metal—composite attachment, corrosion, 
strength, etc. The objective of this research reported herein is 
to expand the use of composite materials to gears and to 
identify critical issues that may result in this application. 
Several tests were performed on the composite gears to 
identify the issues that need to be addressed to allow this 
technology to be suitable for rotorcraft drive systems. 

Composite Material—Metallic 
Gear Hybrid  

Components that are lightweight and high-strength are very 
important for aerospace drive systems. The composite portion 
of the hybrid gear was fabricated using a triaxial braid prepreg 
material made with T700SC 12K carbon fiber tows and a 
350 °F epoxy matrix material. A 0/±60 braid architecture was 
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TABLE 1.—MATERIALS AS USED IN THE TEST GEARS 
 Composite Material  AISI 9310 Gear Steel 

Modulus of elasticity (psi) Tensile - 6.4×106  

Compression - 6.1×106 
29×106 

Poisson’s ratio 0.3 0.29 
Density (kg/m3) 1800 7861 
Thermal conductivity (W/(m°C)) 9.4  

(T700 fiber – axial) 
55 

Useful maximum temperature (°C) as gear material 150 175 
Coefficient of thermal expansion (micro-m/m) 2 (in-plane) 13.0 
 Failure Strain (%) 

Tension - 1.89  
Compression - 0.94 

Elongation (%) 
15 

 
 

used so that in-plane stiffness properties would be nearly equal 
in all directions. Representative composite material properties 
are compared to that of the typical gear material AISI 9310, 
and are shown in Table 1. Materials with these characteristics 
have the potential to produce a design with a very high power 
to weight ratio. 

There are other reasons for using a hybrid of composite and 
metallic elements in a gear. For example, gear meshing 
vibration and noise should benefit from this configuration by 
altering the acoustic path between the gear-mesh generating 
the noise and the housing that re-radiates the vibration and 
noise. 

In theory it may be possible to produce a hybrid gear at 
reduced cost, as a portion of the machining required to reduce 
component weight would be eliminated. The manufacture 
process would have to be altered when making a hybrid gear 
to attain aerospace precision of the components. 

Unfortunately for all the positive implications of using this 
technology for dynamic drive system components, there are 
also some negative aspects. Some of these include: (i) attach-
ment to the metallic features to produce a hybrid gear (gear 
teeth to web, web to shaft, and bearings to shaft), (ii) heat 
conduction issues—composite material through thickness 
conductivity, and (iii) operation during extreme thermal events 
such as loss-of-lubrication. In current drive system component 
design, the gears and shafts are one-piece and the bearing 
inner raceway is typically part of the gear-shaft component. 
Use of a hybrid gear would require attachment in some 
manner from the composite material web-shaft to the gear 
teeth. 

Hybrid Gear Design and Manufacturing 
The basic gear design used for this study is summarized in 

Table 2. These gears have been used in the past for loss-of-
lubrication testing and other experimental work within NASA 
(Refs. 6 to 8). Gears used were representative of aerospace 
precision prior to modification to a hybrid configuration. 

Turning the gears into a hybrid configuration started with a 
portion of the web being machined away. The metallic teeth 
and attachment regions were kept. A hexagonal region was 

removed. This arrangement was chosen due to the number of 
teeth (42) on the gear to be modified. By using a six-sided 
feature, no sharp edge was located near a tooth fillet—root 
region where the highest bending stress is reached. 

 
 

TABLE 2.—BASIC GEAR DATA FOR COMPONENTS TESTED 
Number of teeth ........................................................................ 42 
Diametral pitch ......................................................................... 12 
Circular pitch ..................................................................... 0.2618 
Whole depth ......................................................................... 0.196 
Addendum (in.) .................................................................... 0.083 
Chordal tooth thickness (in.) .............................................. 0.1279 
Pressure angle (deg) .................................................................. 25 
Pitch diameter (in.) .................................................................. 3.5 
Outside diameter (in.) .......................................................... 3.667 
Root fillet (in.) ........................................................... 0.04 to 0.06 
Measurement over pins (in.) .............................................. 3.6956 
Pin diameter (in.) ................................................................. 0.144 
Backlash ref. (in.) ................................................................. 0.006 
Tip relief (in.) ..................................................... 0.0005 to 0.0007 
Weight all-steel gear (lbf) .................................................. 0.8375 
Weight hybrid gear (lbf) .................................................... 0.7147 
 
 
Two unique ply stacks were used for this configuration. The 

first ply stack was larger than the metallic portion that was 
machined away and had a circular outside geometry. This 
created an overlap onto the surface of the outer rim. This 
overlap created a bonding surface that was critical for proper 
composite to metal adhesion. The second ply stack configura-
tion was cut to match the hexagonal region that was machined 
away from the metal gear. This tight fit provided a load path 
from the outer rim to the metallic inner hub. 

An epoxy prepreg in conjunction with a quasi-isotropic 
braided fabric was chosen as the composite material. The 
fabric provides nearly in-plane isotropic properties that react 
similarly to that of the metallic features. 

Prior to molding, any portion of the metallic features that 
were to come in contact with the composite were sandblasted 
and surface primed to promote good adhesion and increase 
bond-line strength. 
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A special fixture was then designed and fabricated to locate 
the gear rim and the gear hub prior to composite material lay-
up. The gear teeth outer rim was located using the “measure-
ment over pins” (Ref. 9). The inner metallic hub was located 
via its inner bore. 

The first step in the lay-up process was to place the inner 
metallic hub by locating it around the feature in the mold 
center. During the assembly process, the larger ply stack was 
created by 12 layers of the prepreg. Each layer was rotated 60° 
in one direction to encourage the best isotropic behavior. With 
the first ply stack positioned and debulked, a film adhesive 
was added and the outer metallic ring was placed on top. The 
second ply stack was created in the void between the two 
metal features. The same “clocking” procedure was performed 
on these plies. Another layer of film adhesive was added and 
the final ply stack was added in the same fashion as the first. 

The composite material lay-up process is shown in Figure 1. 
This figure shows the assembly procedure used prior to curing 
the finished part. 

The gear mold assembly was placed into a press and subject-
ed to a 100 psi load. The press was then heated at a ramp rate of 
4 °F per minute to a temperature of 250 °F. A 1-hr dwell was 
held at 250 °F to allow time for the metal and composite to 
reach a consistent temperature. The temperature was then 
increased to 350 °F using the same ramp rate. The temperature 
was held at 350 °F to fully cure the composite prepreg. After the 
cure cycle was complete the part was removed from the mold 
and any excess resin flashing was removed. 

The finished hybrid gear is shown in Figure 2 and Figure 3. 
There was no optimization of the arrangement at this point, 
but the gear produced was still on the order of 20 percent 
lighter than the all-metal one. 

 

 
Figure 1.—Hybrid gear assembly steps. 

 

 
Figure 2.—Hybrid gear. 
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Figure 3.—Hybrid gear manufacturing details. 

 
 
 
 
Free—Free Vibration Modes 

A series of experiments using a modal impact hammer was 
conducted on a standard AISI 9310 steel spur gear and a hybrid 
spur gear specimen. The objective was to experimentally 
determine the modal properties of the hybrid spur gear and 
compare them to those of its conventional steel counterpart. 

Additionally, a model of the conventional spur gear was 
generated using finite element software and subsequently 
compared with experimental data obtained from the test 
specimen. A further effort is underway to include hybrid 
material parameters into the model and correlate with modal 
data acquired from these experiments.  

A series of modal experiments was conducted on a baseline 
steel gear and the hybrid gear to identify natural frequencies 
and calculate modal damping. An electric impact hammer was 
used to impact the gears in multiple orientations, with an 
accelerometer at the tip of hammer providing a trigger for the 
acquisition of acceleration data from the gear. In all cases, the 
single accelerometer was placed on the metal hub of the test 
gear with the accelerometer axis parallel to the rotational axis 
of the gear. This placement was chosen for convenience 
because it was accessible on both test specimens. Finite 
Element Analysis (FEA) demonstrated that most displacement 
would be in the axial direction for the modes of interest. 

Figure 4 shows the experimental configurations in which the 
impact experiments were performed. The test gear was suspend-
ed on rubber bands hanging on a rubber cord, with this soft 
support at the twelve o’clock position. The accelerometer was 

mounted on the metal hub in the six o’clock position. Both the 
steel gear and the composite gear were subjected to a series of 
impacts in the radial direction and a series of impacts in the axial 
direction. Axial impacts were concentrated at approximately the 
seven o’clock position on the gear at a radius just inboard of the 
teeth. For the composite gear, this location was at the edge of the 
composite portion of the gear. For radial impacts, a tooth near 
the ten o’clock position was impacted at the tip. A nylon bolt on 
either side of the tip was used to more effectively set the standoff 
distance between the tip and the gear, enabling more consistent 
impacts between tests. A total of ten impacts were performed in 
each of these four configurations. 

Impact Study 
The time-domain data signal was imported into an automated 

signal analysis and filtering software package. The data was 
then filtered to isolate the signal associated with the natural 
frequency corresponding to the first non-rigid body mode. The 
log decrement was calculated for each filtered data set. From 
this calculation, modal parameters of the hybrid specimen and 
its steel counterpart were estimated and compared. Figure 5 
depicts an example of both a raw and a filtered data set. 

Additionally, the unfiltered results of each impact were 
viewed in the frequency domain to compare results within 
configuration groups. These are depicted in Figure 6. These 
figures each show the frequency data from four of the ten 
impacts for each configuration. 
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Figure 4.—Impact locations shown for hybrid gears (similar for all-steel gear). 

 
 

 
Figure 5.—Sample data raw. (a) Time domain signal. 

(b) Filtered data. 

 

Figure 6.—Frequency domain results, axial location impacts. All 
steel gear. (b) Hybrid gear. 
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TABLE 3.—SPECIMEN MODAL PROPERTY ESTIMATES 
Impact position Axial Radial 
Gear specimen 9310-T42 Hybrid 42 9310-T42 Hybrid 42 

Log decrement (δ) Mean 0.0145 0.1296 0.0261 0.0543 
Standard deviation 0.0004 0.0263 0.0028 0.0122 

Damping ratio (ζ) Mean 0.0023 0.0206 0.0042 0.0086 
Standard deviation 0.0001 0.0042 0.0004 0.0019 

General damping constant (c) (lbf-sec/in.) Mean 0.4843 2.9887 0.8725 1.2520 
Standard deviation 0.0143 0.6053 0.0928 0.2821 

Natural frequency (ωn) (Hz) 9310-T42 7219 ± 43 n=19 data samples 
Hybrid 42 6236 ± 62 n=14 data samples 

 
Using the basic log decrement relationships, modal proper-

ties of the gears were estimated. These estimates are presented 
in Table 3. As expected, the hybrid gear exhibits higher 
damping properties than its steel counterpart. This has the 
potential to reduce transmitted vibration as compared to all-
steel gears. Note, that the damping properties vary somewhat, 
depending upon the impact position. The experimentally 
determined mean and standard deviation of the natural frequen-
cy corresponding to the first non-rigid mode are also provided. 

FEA Modal Study—Steel Gear 
A modal analysis was conducted for the 42-tooth steel gear 

to verify natural frequencies identified in the experiment and to 
provide information on the associated mode shapes. The solid 
model of the gear captures the tooth geometry to a reasonable 
extent, but does not include subtle geometric features such as 
tip relief. For the purposes of a modal analysis however, the 
solid model is a close approximation to the test specimens. 

The finite element mesh is a solid mesh consisting of 19152 
linear tetrahedron elements and having a total of 31002 nodes. 
The characteristic element size is approximately 0.10 in. The 
gear specimens are made from AISI 9310 steel, which is 
represented in the analysis as a linear isotropic material with 
Young’s modulus of 29×106 psi (2.0×1011 Pa), Poisson’s ratio 
of 0.29, and mass density of 0.284 lbm/in.3 (7861 kg/m3). The 
analysis is conducted on the unconstrained gear (free-free). 

The first six modes identified in the analysis are rigid body 
translations and rigid body rotations; one mode is associated 
with each translational or rotational degree of freedom. There-
fore starting at mode 7 to 12 the frequencies associated with 
these modes are shown in Table 4. The mode shape for mode 7 
is shown in Figure 7. The mode shapes found illustrated that 
the modal displacements are primarily in the axial direction for 
the modes of interest, guiding accelerometer placement. 
 

TABLE 4.—ALL STEEL GEAR FREQUENCIES 
FOR MODES 7 TO 12 

Mode number Frequency,  
Hz 

7 7187 
8 7270 
9 12304 

10 12853 
11 12924 
12 15237 

 
Figure 7.—All metallic gear mode shape. 

FEA Modal Study—Hybrid Gear 
A modal analysis was also conducted for the 42-tooth hybrid 

gear to verify natural frequencies identified in the experiment 
and determine the associated mode shapes. As in the case of the 
steel gear, the tooth geometry is a reasonable representation but 
does not include all subtle features of the teeth. The deviation 
of the model geometry from the physical specimens is expected 
to have a negligible effect on the modal results. 

The finite element mesh is a solid mesh consisting of 25672 
linear tetrahedron elements and having a total of 39166 nodes. 
The characteristic element size is approximately 0.10 in. The 
composite portion of the gear is constructed of prepreg. tri-
axial braided carbon fiber with alternating orientation between 
adjacent layers, and resin. Due to the anisotropic nature of the 
material, consideration was given to modeling each individual 
ply with orthotropic properties. However, due to the large 
number of plies, it was determined that the composite portion 
of the gear could be modeled using isotropic properties.  

The hub and ring portions of the gear were modeled using 
properties of AISI 9310 steel, which is represented in the 
analysis as a linear isotropic material with Young’s modulus of 
29×106 psi (2.0×1011 Pa), Poisson’s ratio of 0.29, and mass 
density of 0.284 lbm/in.3 (7861 kg/m3). The composite portion 
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of the gear is modeled as a linear isotropic material with 
Young’s modulus of 6.4×106 psi (4.4×1010 Pa), Poisson’s ratio 
of 0.30, and mass density of 0.055 lbm/in.3 (1522 kg/m3). The 
analysis is conducted on the unconstrained gear (free-free), and 
the components are treated as welded together (node-to-node 
constraint at the interfaces). It is notable that the calculated 
bulk modulus properties for the composite are not linear as the 
tensile elastic modulus of 6.4×106 psi compares to a compres-
sive elastic modulus of 6.1×106 psi when using bulk properties, 
a difference of 5 percent. Based on the relatively minor 
difference and the square root dependence of frequency on 
stiffness, the bulk tensile modulus was used in this simplified 
case. Based on these small differences, it was decided to use 
the bulk properties to simplify the analysis. 

Modes 7 to 12, identified in the analysis, are shown in  
Table 5. The first 6 modes are related to the rigid body transla-
tions and rigid body rotations. The mode shape for mode 7 is 
shown in Figure 8. 
 

TABLE 5.—HYBRID GEAR FINITE ELEMENT 
VIBRATION MODES AND FREQUENCIES. 

Mode number Frequency,  
Hz 

7 7780 
8 7913 
9 13745 

10 14592 
11 15725 
12 16483 

Comparison of FEA to Experiment—
Natural Frequencies 

A comparison between the finite element output and the 
experimental results was conducted in the first step of validat-
ing the FEA model. Figure 9 depicts a comparison between the 
measured frequencies of the steel spur gear specimen and the 
predicted frequencies of the finite element model. An exact 
frequency match falls directly on the diagonal. The result 
shows good agreement between model predictions and the 
experimental results. 

For the hybrid gear on the other hand, modes identified in the 
experiment generally shifted to lower frequencies, whereas the 
model predicted a shift to higher frequencies. In the model, this 
is an expected result since the composite has a higher ratio of 
elastic modulus to density than steel, and the area moment of 
inertia is considerably larger for the cross section of the hybrid 
gear. However, the FE model assumes adjacent surfaces in 
components are bonded together. 

Based on actual construction methods, the interfaces may 
have a lower effective stiffness such that the experiment would 
produce modes at frequencies lower than predicted. Changes to 
the interfaces can be made in the model to bring the natural 
frequencies within the ranges of the experiment, but this may 
not provide additional physical insight to the properties of the 
interface. However, such an approach may be employed to 
improve the model for subsequent stress analysis. 

 
Figure 8.—Hybrid gear mode shape. 

 

 
Figure 9.—Comparison of experimental and finite element 

natural frequencies. 
 
Unlike the steel gear, comparison between the hybrid gear 

finite element results and the experimental results did not 
produce similar mode frequencies as the all steel gear. From the 
experiments, the hybrid gear exhibits two significant peaks at 
approximately 6270 and 9743 Hz. The modes found from finite 
element analysis did not compare well to the experiments. It is 
expected that further model development will reduce some of 
these inconsistencies with the experimental data. 

Dynamic Testing 
Two types of dynamic tests were conducted to determine if 

gears could be considered as possible composite candidates in 
future rotorcraft drive systems. The first set of tests measured 
vibration and noise at four speeds and four levels of torque. 
The second test was an operational endurance test.  
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The dynamic tests for noise and vibration were conducted 
with four different gear arrangements at four different rotation-
al speeds and four different levels of load. The gears were 
installed in the test rig in the following configurations: (1) all 
steel both sides, (2) hybrid gear left side, all steel gear right 
side, (3) all steel gear left side, hybrid gear right side, and 
(4) hybrid gear both sides. When the facility is operating, the 
left side gear is the driving gear and the right side is the driven 
gear. All vibration measurements were made on the driven side 
support bearing housing as show in Figure 10. 

For the four configurations mentioned above, tests were run 
at 2500, 5000, 7500, and 10000 rpm and at 133, 238, 448, and 
658 in.*lb torque. The vibration level in “g’s” is shown in 
Figure 11. The noise level was measured via a hand-held sound 
level meter at a distance of 1 in. from the test gearbox cover. 
The sound level was recorded on an A-weighted scale. The 
results of the sound level data are shown in Figure 12. The four 
test rig configurations are shown at four speed and load 
conditions. 

 
Figure 10.—Test facility shown with cover removed. 

Accelerometers are located on the right side driven gear. The 
hybrid—all steel gear arrangement shown in the photograph. 

 
 
 
 

 
Figure 11.—Vibration data taken for four speeds and four load levels. 
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Figure 12.—Sound level measurements made for the four different test arrangements made at four different 

speed and load conditions. 
 
 
 

From the vibration data shown in Figure 11, the hybrid gear 
generally reduced the overall vibration level with a mixed or all 
hybrid configurations. For the noise data of Figure 12 the 
mixed hybrid gear arrangement and all hybrid arrangement 
produced less noise for the two higher speed conditions. 

Although some vibration and noise reduction was seen with 
the hybrid gears, the results were not as dramatic as expected. 
There are several reasons why noise and vibration had only 
modest reduction. First, the manufacturing process used to 
fabricate the hybrid gear did not result in aerospace quality 
accuracy. The composite curing actually reduced the backlash 
of the components due to stretching of the metal outside rim. 
The backlash also was not consistent around the gear. Both of 
these “manufacturing errors” could be corrected by post-
composite-attachment final grinding of the gear teeth. The 
noise data is related to how well the teeth mesh during opera-
tion. In effect the noise measured at a small distance from the 
cover is a combination of airborne and structure borne from the 
meshing gear teeth being reradiated from the test facility cover. 

Long-Term Testing 
An endurance test was conducted on the hybrid gears in 

NASA’s Spur Gear Test Facility. The hybrid gear arrangement 
was run for over 300×106 cycles (gear revolutions) at 

10000 rpm, 250 psi torque load (553 in.*lb torque) with an oil 
inlet temperature of ~120 °F. The hybrid gears operated 
without any problem during this extended test period. The 
gears did not show any signs of fatigue during post-test 
inspection. 

Summary and Conclusions 
Based on the results attained in this study the following 

conclusions can be made: 
 
1. Hybrid gear arrangement shows promise as the gears were 

operated for an extended period of time at a relatively high 
speed and torque. 

2. Power to weight improvement could be possible – as steel 
webs could be replaced by lightweight composite material. 
For the gears tested, a ~20 percent decrease in weight was 
realized without optimization of the components. 

3. Reduced noise and vibration would be expected when 
manufacturing processing produces aerospace quality 
gears. The hybrid gears test only show modest improve-
ments in vibration and noise. More significant improve-
ments are possible with improved manufacturing processes 
and possible material tailoring through the composite 
structure. 
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