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Abstract: Interpretation of multi-angle spectro-polarimetric data in remote sensing of atmospheric 

aerosols require fast and accurate methods of solving the vector radiative transfer equation (VRTE). The 

single and double scattering approximations could provide an analytical framework for the inversion 

algorithms and are relatively fast, however accuracy assessments of these approximations for the aerosol 

atmospheres in the atmospheric window channels have been missing. This paper provides such analysis 

for a vertically homogeneous aerosol atmosphere with weak and strong asymmetry of scattering. In both 

cases, the double scattering approximation gives a high accuracy result (relative error - 0.2%) only for 

the low optical path - 10-2
• As the error rapidly grows with optical thickness, a full VRTE solution is 

required for the practical remote sensing analysis. It is shown that the scattering anisotropy is not 

important at low optical thicknesses neither for reflected nor for transmitted polarization components of 

radiation. 
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1. Introduction 

A complete solution of the vector radiative transfer equation (VRTE) is time-consuming. At the 

same time, interpretation of the airborne (Chowdhary et al., 2001) as well as of the current (Dubovik et 

at., 2011) and future satellite multi-angle spectro-polmimetric measurements requires fast and sufficiently 

accurate methods of VRTE solution. The polarimetric accuracy of the POLDER-type instrument is -2% 

(http://smsc.cnes.fr/POLDERlA_calibration.htm). The more precise systems target the accuracy of 

-0.2% for "the measured orthogonal polarization states" (Mishchenko et al., 2007) or the degree of linear 

polarization (Diner et al. 2007, 2010). 

A fast approximate VRTE solution can be obtained using the first two orders of scattering. These 

approximations offer convenience by providing an analytical framework for the inversion algorithms. The 

Oliginal derivation for the first two scattering orders for Rayleigh scattering was given by Hammad and 

Chapman (1939), Hammad (1948) with numerical results presented in (Hammad, 1953). Later, Dave 

(1964) gave a solution and numerical analysis for the first three orders of Rayleigh scattering. In his 
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study, Dave (1964, p.313) concluded that " ... it is sufficient to consider only primary and secondary 

scattering when the scattering optical thickness is 0.05. But the number o.f necessary orders of scattering 

increases very rapidly with optical thickness and is about three and eight for optical thickness 0.1 and 

1.0, respectively" or higher to achieve 0.1 % level of accuracy. 

Using the adding-doubling method, Hovenier (1971) derived equations for the first few orders of 

scattering for the plane-parallel homogeneous atmosphere. This work used an analytical integration over 

the optical thickness and numerical integration over the angle. From analysis for the Rayleigh and two 

types of Henyey-Greenstein phase matrices and optical thickness in the range 0.25 to 64, it was concluded 

that "approximations, based on polarization by single scattering only ... lead to large errors. Adding 

polarization by second order scattering gives only a small improvement" for the intensity and degree of 

linear polarization (Hovenier, 1971). 

Kawabata and Veno (1988) developed algorithm for the vertically inhomogeneous media to 

compute the scalar intensity using the first three orders of scattering. This algorithm was advanced by 

Natraj and Spurr (2007) who provided the vector solution for the first two orders of scattering using the 

generalized spherical functions formalism (Gelfand et aI., 1963; Siewert, 2000). Natraj and Spurr (2007) 

gave a detailed accuracy study of the approximate solution in application to the oxygen A-band, reporting 

that "results are exact in the center of strong lines and most inaccurate (-30%· error in the Stokes 

parameter Q) in the continuum". 

Although the theoretical derivations of the low orders of scattering VRTE approximation were 

previously reported, their accuracy evaluation for the aerosol atmospheres in the atmospheric window 

channels has been missing. This paper presents an accuracy study for an arbitrary anisotropic scattering 

matrix and both reflected and transmitted radiation. We pursue a practical target of 0.2-0.5% in 

computation of polarized components of intensity. This level of accuracy dramatically limits the possible 

range of optical depths to Dave's (1964) assessment of 0.05. For this reason, this paper only considers the 

homogeneous case although the computational method could be generalized to include atmospheric 

vertical structure. For the same reason, the main accuracy analysis focuses on a conservative scatterIng 

case which provides the strongest constraint on the range of optical depths given the target accuracy. 

This paper is structured as follows: the statement of the problem, the algorithm of solution and 

computational relations, used in the paper, are given in Section (2). The definition of the cases, numerical 

results and discussion are presented in Section (3). The paper is concluded with a brief summary. 

2. Computational Relations 

We are considering the VRTE boundary problem without thermal sources for the homogeneous 

plane-parallel atmosphere over a black surface (Chandrasekhar, 1950). The VRTE solution is 
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decomposed into azimuthal Fourier series following Siewert (2000). The single scattering (SS) solution 

for the m-th harmonic can be obtained following van de Hulst (1948): 

(1) 

The following notations are used above: L = [I Q U V] is the Stokes vector, Lo is the initial 

vector for solar irradiance, the overhead symbol "~" indicates square matrices, L (0 S; L ::s LO) is the 

optical thickness, and COo is the single scattering albedo (SSA). The directions are given by the solar 

(SZA, 80 ) and view (VZA, 8) zenith angles (ll=cos8). The positive (Jl+ = Jl > 0) and negative directions 

correspond to transmitted and reflected light, respectively. The m-th Fourier term of the phase matrix is 

K 

pm (Jl, Jl') = L (2k + l)fr; (Jl)Pk fr ; (Jl'), (2) 
k=m 

where Pk is defined by the greek-constants (de Rooij and van der Stap, 1984). fr; (Jl) contains ~m (Jl) , 

R; (Jl) and Tt (Jl) polynomials related to generalized spherical functions (Gelfand et al., 1963; Siewert, 

2000). K is the maximal considered order of the polynomials. The azimuth-dependent solution is obtained 

from Eq.(1) after summation Fourier series over m. 

Using Eq.(1) as a source function in VRTE and applying analytical integration over 1" (Hovenier, 

1971), the following result for the second order scattering L~ (1", Jl) can be obtained: 

• Reflected radiance: 

(3) 

• Transmitted radiance: 
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In the developed code, a gaussian quadrature is used to perform integration in Eqs. (3) and (4). The 

singular points 1 I (~' -~) for ~ -?~' can be handled either by changing the order of quadrature to avoid 

view directions or by expanding the exponents in Taylor series. Below, the term "double scattered" (DS) 

will be used to describe contribution from the first two orders of scattering, L7Ct,~)+f:;('t,~) (Eqs. (1), 

(3), (4)). 

3. Numerical Results and Discussion 

The accuracy of SS and DS solutions was investigated using three types of scattering matrices 

with different scattering anisotropy. The first one is Rayleigh scattering matrix (Coulson et al., 1960) 

which has only two non zero expansion moments. The second one represents the fine spherical non­

absorbing aerosol particles described by the gamma distribution with effective radius 0.2 Jlm, variance 

0.07 Jlm, and real refractive index 1.44 (de Rooij and van der Stap, 1984). The scattering matrix at the 

wavelength 0.951 Jlm has the average scattering cosine ASC = [Pk=lJ
11 

=0.485 (see Eq.(2)) and K = 11 

expansion terms. It was used by Evans and Stephens (1991) and is provided at http://nit.colorado.edu/. 

The third one, used in the code comparison study of Kokhanovsky et al. (2010) and available at 

www.iup.physik.uni-bremen.de/-alexk. represents the coarse aerosol fraction described by a lognormal 

size distribution with effective radius 0.3 Jlm, variance 0.92 Jlm, and real refractive index 1.385. It is 

characterized by the ASC = 0.793 and K = 918 expansion moments. All K moments were kept in our 

computations. The phase matrices for aerosol cases are shown in Figure 1. 

The accuracy of the result can be estimated using the relative error, e.g. E, = (1- 1)100/1 [%], 

where I and 1 are the accurate and the approximate solutions, respectively. Because the polarization 

components Q, U, V may take zero values at certain points whose location is a priori unknown, we will 

further use the Chandrasekhar's vector with the first two components defined as It = (1 + Q)/2, Ir = (1 

Q)I2. hand Ir represent the parallel and perpendicular components of the polarized light intensity 

(Chandrasekhar, 1950; van de Hulst, 1957) which are non-negative. It may take a zero value only in the 

case of 100% linear polarization that rarely happens in the atmosphere. Thus, the accuracy is evaluated 

below using the following relative error [%]: 

(5) 
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The accuracy of SS and DS solutions in this work was established by comparison with the vector 

code MVDOM (Budak et al., 2010). The relative errors Ez and Er for the case of conservative Rayleigh 

scatteIing for the reflected and transmitted radiance were studied as a function of VZA for two solar 

zenith angles SZA = 20°,60° and five relative azimuths <p = 0°, 45°,90°, 135°, 180°. Two optical depths T 

= 0.01 and 1" = 0.05 were chosen as in Dave (1964). The results obtained are in good agreement with those 

from the previous studies (Dave, 1964). At low optical depth, the error of SS approximation can be as 

high as several percent. It reaches 100% at 90° to the light incidence direction for the parallel component 

of intensity. In this direction, the amplitude of scattering of Iz component is zero in the first order of 

scattering, and thus all of I{ signal is created by the multiple scattering. This can be shown formally using 

the scattering matrix in Chandrasekhar's basis, which is given by the following expression 

(Chandrasekhar, 1950, Chapter 1, Eq.(201)) 

PCh (Y) = 1.5 diag [y2 1 Y Y J. (6) 

At 90° scattering angle, its cosine is zero (y = 0) which cancels the first order scattering contribution for 

the II component. With addition of the second scattering order, the error drops below 1-1.5 % except when 

close to the 900 scattering angle when the maximal error reaches 12-18% at 't=0.01 and 0.05, respectively. 

The error analysis for the fine aerosol fraction is presented in Figure 2 for the same view 

geometry. The top and bottom plots show the reflected and transmitted radiation, respectively. The dash 

and solid lines correspond to SZA=20° and 60°, respectively, and different azimuths are indicated by 

different colors. Compared to the Rayleigh case, the errors are a factor of -2 higher at the same optical 

thickness. The average errors Er and E{ of the DS solution are approximately 0.6-0.8% at 't=0.01 and 1.8-

2.5% at 't=0.05, while the errors of the SS solution are about a factor of 8 higher. The maximal error for 

the parallel component of light is shifted from 90° towards larger scattering angles, which follows from 

the Mie theory (van de Hulst, 1957, p. 147, figure 23). 

Figure 3 repeats the error analysis for the coarse aerosol model. In this case, N = 600 ordinates 

were used in computations with K = 918 expansion terms. The error decreases as compared to both the 

fine aerosol model (Figure 2) and Rayleigh case. It still remains at the level of several percent in the SS 

approximation, but drops down to 0.2-0.3% and 1-1.5% in the DS approximation at 't=0.01 and 0.05, 

respectively. 

The above analysis was conducted for the conservative scattering case. An aerosol absorption 

reduces the number of scattering events thereby increasing the accuracy of SS and DS approximations. 

However, the error changes insignificantly within the realistic range of aerosol SSA values 0.8-1. 

The analyzed approximate solution does not describe well the neutral points of polarization of the 

clear sky (Chandrasekhar, 1950). These points appear only in the DS approximation, but are shifted with 

respect to the true position (Hovenier, 1971). For example, at 1"=0.2, the Babinet and Brewster points (<p = 
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0°) are shifted towards incidence direction by approximately 3° and 5°, respectively, while the Arago 

point (SZA=78.5° and q>= 180°) is shifted 5° towards the horizon. 

The results presented above allow us to extend conclusion of Dave, made for the Rayleigh case, to 

the aerosol atmospheres. Namely, the first two scattering orders provide the high accuracy of polarization 

computations -0.2-0.5% only when the media is optically thin (,r<O.O 1) or there is a significant gaseous 

absorption which essentially eliminates higher orders of scattering (Natraj and Spurr, 2007). In the 

typical case of aerosol remote sensing in the atmospheric window channels, the accuracy of the DS 

solution deteriorates rapidly with the optical thickness making it impractical for the data analysis. 

One interesting finding of this analysis is a weak dependence of the relative errors E, and En only 

within a factor of 2-4, among the three considered cases with the large difference in the scattering matrix 

anisotropy. One explanation is that all considered examples were generated for the optically thin media 

('t:S0.1) where the first two scattering orders dominate the signal regardless of the scattering anisotropy. 

To confirm this statement, a numerical experiment was performed with the Monte-Carlo code (Marshak 

and Davis, p. 264) simulating the transfer of photons along a single line (1D transport). The photon can 

scatter forward with the probability p+=0.5·(l +g) or backward with the probability p_=0.5·(1 g), where g 

is the asymmetry parameter, or ASC. Figure 4 shows the number of photons scattered once (nl, blue line) 

and twice (n2, green line) and their sum (nJ + n2, red line) as a fraction of the total number of scattering 

events (N). These fractions correspond to the reflected (transmitted) radiation calculated using the first 

order or the two orders of scattering. The superscripts "r" and "t" denote the reflected and transmitted 

radiation, which was computed for SSA= 1 and three values of optical depth T = 0.1, 1, 10. The ratio 

between the forward and backward scattering (1 + g) I (1 - g) ranges from 5.67 to 9, 19, 199 for g = 0.7, 

0.8, 0.9, 0.99 respectively. The leftplots of Figure 4 at 't=0.1 shows that the relative contribution of the 

first two scattering orders (nz/N and n2/N) changes little while the asymmetry of phase function changes 

significantly with g. This, however, is not the case when higher orders of scattering become prominent at 

larger optical depths 't= 1, 10. Note that for larger optical depths (right panels), the single scattering 

contribution to the total reflected or transmitted radiation decreases with the increase of the phase 

function anisotropy. 

All of our previous results considered an optically thin case. At the opposite end of very high 

optical depths, the accuracy of SS and DS solutions for Q and U components rises again because the high 

scattering orders with alternating sign from rotation of the reference plane effectively cancel each other. 

This effect is illustrated in Figure 5 showing Stokes components for radiation reflected from a cloud with 

't=50 (SSA=l). The "cloud" model (Kokhanovsky et al., 2010), available at www.iup.physik.uni­

bremen.de/-alexk, is characterized by an effective radius 5 ~Lm, variance 0.4 ~m, and maximal droplet 

size of 1 00 ~m. Although the approximate result has a rather low accuracy, the DS-solution captures a 

large part of Q and U components, unlike I and V which require accumulation of all orders of scattering. 
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4. Conclusion 

This paper studied the accuracy for the first two scattering orders using code MVDOM as a 

reference. Although the previous studies conducted for Rayleigh scattering (Dave, 1963) showed that the 

DS approximation has a good accuracy only at low optical depths (T < 0.05), it was not clear whether this 

conclusion holds for the aerosol atmospheres with higher scattering anisotropy which tends to reduce the 

effect of light polarization on the total intensity (Mishchenko et al., 2006). Our analysis, which included 

two aerosol scattering matrices with weak and strong anisotropy, corroborated Dave's conclusion showing 

that DS approximation provides an accuracy of better than 0.2-0.5% at T-O.Ol, and 1-2% at T-0.05, 

however a full multiple scattering solution is required at higher optical depths. At low optical depths, this 

error has a weak dependence on the anisotropy of the scattering matrix. 

Although we demonstrated that the DS approximation cannot be used at T > 0.05, it has a certain 

didactic value as an approximate solution for the degree of polarization at the near 900 scattering angles 

as well as for the V-component of the Stokes vector. In these cases, the primary scattering gives a zero 

contribution (e.g., see Figure 5), and the signal is created by the higher orders of scattering. Presently, 

both theory and passive remote sensing applications pay little attention to the atmospheric ellipticity as V­

signal is much weaker than the other components of the Stokes vector. On the other hand, as well as the 

total intensity, V-component does not depend on the choice of the reference plane, and its information 

content is not reduced by the higher orders of scattering contrary to the Q and U components. The DS 

approximation thus may serve as a useful constraint for the V-component in accurate computations. 
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Figure 1. Phase matrices for aerosol cases defined in the paper. The maximal values of the phase 

functions al of the fine and coarse fractions are approximately 4 and 1500 respectively; al, a3, 

hI, h2 are the [1, 1], [3, 3], [1,2] and [3, 4] elements of the phase matrix respectively. 

Figure 2. Relative error (%) for the parallel (Figures 2(a) and 2(b)) and perpendicular (Figures 

2( c) and 2( d)) components of the reflected (VZA = 90° ... 180°) and transmitted (VZA = 0° ... 90°) 

radiation for the tIne aerosol model. The error is computed for five different azimuthal angles 

<p=0°, 45°, 90°, 135°, 180° shown by different colors (refer to the legend, Figure 2(e)), and two 

solar zenith angles SZA=20° (dash lines) and 60° (solid lines). The results are shown for two 

values of optical thickness, 't = 0.01 and 't = 0.05 at SSA=l. Figures 2(a) and 2(c) show the result 

for the single scattering approximation. Figures 2(b) and 2(d) show the result for the double scat­

tering approximation. 

Figure 3. The same as in Figure 2 but for the coarse aerosol fraction. The legend is shown in Fu­

gure 2(e). 

Figure 4. The Monte-Carlo simulations of the number of single scattered photons (n 1, blue line), 

re-scattered photons (n2, green line) and their sum (nI + n2, red line) as a fraction of all scattered 

photons (N). SSA = 1 (see sec. 3). The superscripts "r" and "t" refer to the reflected and trans­

mitted photons respectively. The ASC is the average scattering cosine. 

Figure S. I, Q, U, and V components of the Stokes vector of reflected light for a cloud (Kokha­

novsky et al., 2010) with 'C = 50 (see sec. 3). The view geometry is described by SZA=30°, <p=45° 

(Fig. 5a), and <p=135° (Fig. 5b). The green, blue and red lines represent the single scattering (SS), 

double scattering (DS), and the full multiple scattering (MS) solutions. 



10
4 

0.2 

Aerosol fine fraction I I 0 

10
2 

I ............... Aerosol coarse fraction 
~ -02 i:j . 

~ 

" i:j 
(""l 

100 1 

~ -0.4 

-0.6 -. 

10-2 
-0.8 

0 30 60 90 120 150 180 0 30 60 90 120 150 180 

0.5 r-, --..-------.----r----..---..--i 1.5~, ----~----~----~--~----~----~ 

lr----__ ~.· 

0 1 W"I"""""" 0.5 
~ ~ 

i:j i:j 

" " 0 ~ C'r') 

~ i:j 

-0.5 -0.5 

-1 - . 

-1~1 ----~----~------~----~----~----~ 
o 30 60 90 120 150 180 

-1.5 L-' ---'-------'----'------'-------'--------' 

o 30 60 90 120 150 180 
Scattering angle, deg. Scattering angle, deg. 



20, 

~ 15~··· 
~ 
o 
~ 
~ 10 
(J) 

:> .-
~ 

,.......; 

(J) 5 
~ 

't = 0.01 

o~' ~~~~~~~~~~~~ 

90 120 150 180 

20 

~ 15 
~ 
0 

r ~ 
~ 10 
(J) 

:> 
t .-~ 

~ 
,.......; 
(J) 

5, ~ ,-...---- ",,' 

30 60 90 
VZA, deg. 

't = 0.05 
50~j ~~~~~~~~~~~~ 

20 

10 

o~! ~~~~~~~~~~~~ 

90 120 150 180 

50 

40 

30 

20 

10 

0 
0 30 60 90 

VZA, deg. 



o 
~~~~~~~~~~~~~~ 00 

~ 

0 
tn 
~ 

tn c: 
0 
II 
p 

0 
N 
~ 

00 

o 
~~~~~~~~~~~~~~ 00 

~ 

0 
tn 
~ 

~ 

0 
0 
II 
p 

0 
N 
~ 

C'-l tn ~ tn 
~ 0 

% '10113 gA qBIg'N 

0 
\0 

0 
('f"') 

o 
0\ 

0 
\0 

0 
('f"') 

on 
Q) 

'"d 

<t 
N 
> 

b1) 
Q) 

'"d 

<t 
N 
> 



't = 0.01 't = 0.05 
10 35 

8 
30 

~ 
~ r 25 0 
~ 6 ~ 20 a) 

> .,....; 
~ 

~ 4 -1 15 ,.......( 

a) 

~ 

2 i 10 

5 
90 120 150 180 90 120 150 180 

6 20 

~ 15 -
i 4 
~ 
~ lO-a) 

> .,....; 
~ 

..:s 2 
~ ~ 5 

0 1 0 
0 30 60 90 0 30 60 90 

VZA, deg. VZA, deg. 



o 
~~~~~~~~~~~-'~~I 00 

~ 

0 0 V") \0 
~ 

V") 
bJ) 
Q.) c; '"d 

0 <i 
" N p :> 

0 0 M rrl 
~ 

o 
~~~~~~~~~~~~~~~ 00 

~ 

0 0 V") \0 
~ 

~ 
bJ) 
Q.) 

0 '"d 
0 <i II N p :> 

0 0 M rrl 
~ 

~ lr1 
o 

00 \0 ~ M 
o 0 0 0 

0iJ 'lOllH gAqBTg"M % 'lOllH gA!lBTg"M 



SZA::: 20° 

SZ/\::: 2(f 

SZA::: 20° 

Az ::: 135°~ SZi\::: 20° 

Az::: 180°. SZA::: 20° 

--l\Z == 0°, SZi\ ::: 60° 

Az == 45°. SZA::: 60° 

SZl\::: 60° 

j\z == 135°, SZi\::: 60° 

--- .~z == 80°, SZJ\.::: 60° 



o 
~~~~~~~~~~~-=~~ 00 

......-I 

0 0 if) \0 
......-I 

if) 
biJ 
Q) 

0 '"0 
0 <{ 
II 
p N 

> 0 
("(l 0 
......-I ~ 

o 
~~~~~~~~~~~~=-~ 00 

......-I 

0 0 if) \0 ......-I 

......-I 
bJJ 

0 
Q) 

'"0 
0 <{ 

1/ 
p N 

> 0 
("(l 0 
......-I 

~ 



0 0 t.n \0 
~ 

t.n 
on 
It) 

0 ""d 
0 <{ 

1/ 
p N 

>-
0 0 C"l 
~ 

~ 

-

0 0 t.n \0 
~ 

~ 
b1) 

0 
It) 

""d 
0 <{ 
II 
p N 

>-
0 0 
C"l ~ 
~ 

- 00 \0 \0 . . . . 
000 0 000 0 

% '101.1tI gAPUIg'M % '1011tI gA pUIg'M 



o 
~~~~~~~~~~~~~~OO 

~ 

0 0 In \D 
~ 

In 
oJ) 
Q) 

c: '"0 
0 

~ 

" p N 
>-

0 0 N ~ 
~ 

o 
~~~~~~~~~~~~=-~ 00 

~ 

0 0 In \D 
~ 

OJ) 
~ 

0 
Q) 

'"0 
0 

" 
~ 

p N 
>-

0 0 N ~ 
~ 

---........---1---'--''-'---...l-........... -'--'--L.......--'--'--''--'L.....L.-."'--'-.........JO 

o 00 \D ~ N O~ 
'!"""""i 



't = 0.01 't = 0.05 
1 10 

~ 0.8 8 
~ 
0 
~ 0.6t 
~ 

""" "1 6 
Q) 
;>-

-1 . .0 0.4t" 4 
C\.! ........ 
Q) 

~ 0.2 2 

0 0 
90 120 150 180 90 120 150 180 

1.51 inl 10 

~ 
8 

~ 1 0 
t I 6 ~ 

~ 
Q) 
;>-

[ I 4-...... ...... 
~ 0.5 

Q) 

~ 2 

0 00 60 0 30 60 90 30 90 
VZA, deg. VZA, deg. 



't = 0.1 't=1 't = 10 
0.25 

t:: 0.8 

1 
O.2r 0 I .-~ n ~/Nr 0.6 cd .-~ 0.6: 

r INr ;...... 

"'d 
n

2 O.se 1 0.15 ' 
~ 0.4· (n~+n;)INr 
Q) 

~ 
Q) 

~ 0.2 O. 

0 0.2" 0.05& 
0.7 0.8 0.9 1 0.7 0.8 0.9 1 0.7 0.8 0.9 1 

X 10-3 

t:: 0.8 
0 .-~ 

n~/Nt 0.7 cd .-"'d 
~ 0.6. 

n;INt O. 
"'d 

Q) 
~ t t t 

~::t .'§ 0.4 (n
j

+n
2

)IN 2L 
C/) 

t:: 
cd . 
~ 0.2: f 1 

0 

0.21; 0 
0.7 0.8 0.9 1 0.7 0.8 0.9 1 

ASC ASC 



2 
X 10-3 

0.25 

0-
0.2 

0.15 -1- -2 
too...... ~ 

0.1 . . . . -. ~.. 
-4 

0.05 • ,. _ •• « .... -6 

0 -8 
90 120 150 180 90 120 150 180 

VZA VZA 

x 10-3 
X 10-6 

20 8 

15 - 6 

10 4 
~ ~ 

5 2 

0 0 

-5 -2 
90 120 150 180 90 120 150 180 

VZA VZA 



X 10-3 

0.25 2 

0 
0.2 

-2 

0.15 -4 
~ C)l 

0.1 -6 ~ 

-8 
0.05 

-10 

0 -12 
90 120 150 180 90 120 150 180 

VZA VZA 

4 
x 10-5 

0.Q25 t .. 
0.02 ... 

j 
3 

0.015 2 
~ 0.01 

~ 

1 
0.005 .. 

0 
0 

-0.005 1 -1 
90 120 150 180 90 120 150 180 

VZA VZA 



1. The double scattering model has accuracy below 0.2-0.5% at 't < 0.01 in the conservative case; 

2. The error rapidly grows with optical depth, so the full VRTE solution is required for the 
practical aerosol remote sensing; 

3. At low optical depths, the relative error for low scattering orders weakly depends on the 
scattering anisotropy. 


