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Popular Summary 

In order to understand the water budget of the planet it is important to measure the 

rainfall distribution. We can now achieve relatively good rainfall estimates from satellites 

over almost the entire planet. Only measuring rainfall amounts is however not enough for 

understanding the underlying physical processes that determine where, when, and how 

much rainfall occurs. We must also observe and measure other atmospheric 

characteristics that are related to rainfall, such as the properties of clouds. In this paper 

we propose a method that will help us better understand what cloud mixtures the 

precipitation of the tropical region (covering about half the are of the planet and 

exhibiting the strongest rainfall intensities) originates from. We achieve this by 

combining different satellite measurements targeted to rainfall and cloud thicknesslheight 

estimations. One of our main findings is that in the tropics about half of the total rainfall 

comes from one particular type of cloud mixtures, associated with deep storm systems. 

Surprisingly, our combined datasets indicate that even these clouds are often (about half 

the time) not precipitating (raining); when they do they tend to precipitate more strongly 

over ocean than over land, also a somewhat unexpected result given that several measures 

of storminess are stronger over land. Our results can be used to check whether climate 

models assign their precipitation in accordance with the observations and to therefore 

indirectly assess whether predictions of future precipitation in a changed climate are 

reliable. 





Abstract 

We examine the daytime precipitation characteristics of the International Satellite Cloud 

Climatology Project (ISCCP) weather states in the extended tropics (35°S to 35°N) for a 

10-year period. Our main precipitation data set is the TRMM Multisatellite Precipitation 

Analysis 3B42 data set, but Global Precipitation Climatology Project daily data are also 

used for comparison. We find that the most convective weather state (WSl), despite an 

occurrence frequency below 10%, is the most dominant state with regard to surface 

precipitation, producing both the largest mean precipitation rates when present and the 

largest percent contribution to the total precipitation of the tropical zone of our study; yet, 

even this weather state appears to not precipitate about half the time. WS 1 exhibits a 

modest annual cycle of domain-average precipitation rate, but notable seasonal shifts in 

its geographic distribution. The precipitation rates of the other weather states tend to be 

stronger when occuring before or after WS 1. The relative contribution of the various 

weather states to total precipitation is different between ocean and land, with WS 1 

producing more intense precipitation on average over ocean than land. The results of this 

study, in addition to advancing our understanding of the current state of tropical 

precipitation, can serve as a higher order diagnostic test on whether it is distributed 

realistically among different weather states in atmospheric models. 
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26 Abstract 

27 We examine the daytime precipitation characteristics of the International Satellite Cloud 

28 Climatology Project (rSCCP) weather states in the extended tropics (35°S to 35°N) for a 10-year 

29 period. Our main precipitation data set is the TRMM Multisatellite Precipitation Analysis 3B42 

30 data set, but Global Precipitation Climatology Project daily data are also used for comparison. 

31 We find that the most convective weather state (WS 1), despite an occurrence frequency below 

32 10%, is the most dominant state with regard to surface precipitation, producing both the largest 

33 mean precipitation rates when present and the largest percent contribution to the total 

34 precipitation of the tropical zone of our study; yet, even this weather state appears to not 

35 precipitate about half the time. WS 1 exhibits a modest annual cycle of domain-average 

36 precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation 

37 rates of the other weather states tend to be stronger when occuring before or after WS 1. The 

38 relative contribution of the various weather states to total precipitation is different between ocean 

39 and land, with WS 1 producing more intense precipitation on average over ocean than land. The 

40 results of this study, in addition to advancing our understanding of the current state of tropical 

41 precipitation, can serve as a higher order diagnostic test on whether it is distributed realistically 

42 among different weather states in atmospheric models. 

43 
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43 1. Introduction 

44 The role of clouds in the water and energy cycle can not be overstated. Atmospheric heating 

45 rates (due to radiative and thermodynamical processes), surface energy budgets (radiative and 

46 turbulent), and precipitation rates have strong dependencies on cloud properties, and frequency 

47 of occurrence. While the average effect of cloud can be studied in aggregate, grouping the 

48 multitude of observed cloud systems into discernible cloud regimes and studying the energy and 

49 water budgets associated with them can be a far more useful approach for understanding the 

50 potential impact of cloud changes on future water and energy budget distributions. An additional 

51 advantage of such a holistic approach is that more physically-based diagnostics to evaluate 

52 Global Climate Model (GCM) hydrological and radiative budgets can be formulated. 

53 A number of recent studies have focused on the topic of objectively identifying distinct 

54 cloud regimes. The criterion commonly used for identifying cloud regimes is the co-variation of 

55 cloud location (expressed as cloud top height or pressure) and extinction (expressed as cloud 

56 optical thickness or reflectivity). Cloud mixtures exhibiting certain patterns in the co-variation of 

57 these quantities can be identified as distinct cloud regimes. The patterns can be identified with 

58 either neural network or k-means clustering techniques with the latter being generally easier to 

59 implement and therefore more popular (Jakob and Tselioudis 2003; Rossow et ai. 2005; Zhang et 

60 al. 2007; Gordon and Norris 2010; Greenwald et aI., 2010). The search for patterns can be 

61 performed on either a global dataset of joint height-extinction variations or on distinct climatic 

62 zones. The breakdown by climatic zone has the advantage that cloud regime identification can be 

63 fine-tuned so that cloud mixtures that may have otherwise been obscured in a larger data set can 

64 emerge from a more geographically targeted analysis. It also allows examing (dis)similarities 

65 between different parts of the globe with regard to the presence and occurence frequency of 
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66 different cloud mixtures. Once the regimes have been identified, a variety of properties that 

67 characterize them can be easily compiled. 

68 A compelling question is whether distinct roles of cloud regimes in weather and climate 

69 can be determined. If the atmospheric conditions under which particular cloud regimes form 

70 have indeed identifiable features, it should be possible to associate changes in meteorological 

71 conditions with changes in hydrology and energetics through these cloud regimes. Studies along 

72 such lines have begun to emerge in recent years. Several previous studies (Jakob et al. 2005; 

73 Williams and Webb 2008; Oreopoulos and Rossow 2011; Haynes et al. 2011) have focused on 

74 the radiative characteristics of cloud regimes. Other studies have concentrated on precipitation 

75 characteristics. For example, Jakob and Schumacher (2008) combined cloud regimes, inferred 

76 from International Satellite Cloud CliInatology Project (ISCCP, Schiffer and Rossow 1983) 

77 . cloud retrievals, with collocated precipitation and latent heating data from the Tropical Rainfall 

78 Measuring Mission (TRMM) Precipitation Radar in the tropical western Pacific. By compositing 

79 TRMM precipitation amount and type into the ISCCP regimes they managed to distinguish 

80 between three major precipitation regimes and identify their surface precipitation rates and latent 

81 heat profile characteristics. Zhang et al. (2010) defmed cloud/precipitation regimes in the tropics 

82 from profiles of CloudSatiCALIPSO radar/lidar reflectivities and hydrometeor locations and then 

83 compared with the corresponding regimes of a GCM operating in weather forecast mode. 

84 Tromeur and Rossow (2008) found for the ±15° latitude zone that while the most convectively 

85 active cloud regime dominated by organized deep convection dwarfs the precipitation rate of all 

86 other regimes, the regime representing unorganized convection with much lower average 

87 precipitation rate has nearly the same contribution, because it occurs much more frequently. 
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88 In this paper we conduct a more extensive and detailed analysis of the precipitation of 

89 tropical (±35° latitude zone) cloud regimes (henceforth referred to as "weather states" following 

90 Rossow et al. 2005 who explain that they are associated with distinct atmospheric conditions; see 

91 also Jakob and Tselioudis 2003; Jakob et ai. 2005; Gordon and Norris 2010). One of our goals is 

92 to confirm that these mesoscale weather states as identified by ISCCP help in the understanding 

93 of tropical precipitation characteristics. Specifically, we examine the mean magnitude and range 

94 of surface precipitation rate produced by the weather states, their relative contribution to the total 

95 precipitation of the tropics, and the geographical distribution of weather state precipitation. We 

96 also seek to further clarify the degree to which the most convectively active weather states 

97 dominate the tropical precipitation, a topic also investigated by Rossow et aI. (2011) with a 

98 different analysis approach. Our results are featured in section 4 which is broken into 

99 subsections, each highlighting separate important aspects of the precipitation-weather state 

100 relationship. We discuss means, geographical variations and frequency distributions of each 

101 weather state's precipitation rates, and dependencies on the precipitation data set used. We pay 

102 special attention to the strongest precipitating weather state, its seasonal variations and its 

103 apparent effects on the precipitation of the other weather states when in close temporal 

104 proximity. 

105 

106 2. Data sets 

107 Our study uses three data sources: The ISCCP weather states for the extended tropics 

108 (Oreopoulos and Rossow 2011) to identify cloud regimes, and two precipitation products, the 

109 TMPA-3B42 (Huffman et aI., 2010), and GPCP-IDD (Huffman et aI., 2001). 
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110 Rossow et al. (200S) describe how the ISCCP weather state product is generated. Briefly, a 

111 search for distinctive patterns is conducted in the joint frequency distributions of cloud top 

112 pressure (Pc) and cloud optical thickness (r) constructed from individual daytime satellite image 

113 pixel retrievals (fields-of-view about S km in size) within 2.S0 regions provided in the 

114 International Satellite Cloud Climatology (ISCCP) D 1 dataset (Rossow and Schiffer, 1999). 

115 Cluster centroids representing specific histogram patterns describing cloud variability are 

116 identified using the "k-means" clustering algorithm (Anderberg, 1973). 

117 A weather state dataset derived as described above is now available for the period 1983-

118 2008 between 6S0S to 6soN divided in three geographical zones. This dataset can be downloaded 

119 from ftp://isccp.giss.nasa.gov/outgoing/PICKUPICLUSTERS/data11983-2008/. Here, we use the 

120 data corresponding to the so-called "extended" tropicaVsubtropical zone between 3SoS and 

121 3soN, ISCCP dataset Dl.WS.ET.dat. This dataset has been previously used by Mekonnen and 

122 Rossow (2011) and Oreopoulos and Rossow (2011). The optimal cluster centroids are shown in 

123 Fig. 1, while maps of weather state relative frequency of occurrence (RFO) are provided in Fig. 

124 2. The weather state indices were assigned according to classical understanding of associated 

125 convective activity strength, with indices increasing for the progressively more convectively 

126 suppressed weather states. Note that this indexing convention follows Rossow et al. (200S), but 

127 is opposite of that of Haynes et al. (2011). 

128 The weather state data are jointly analyzed with two precipitation datasets for a 10-year 

129 overlapping period from January 1998 to December 2007. One is based on the Tropical Rainfall 

130 Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMP A) algorithm which 

131 seeks to provide a "best" estilnate of quasi-global (SOOS to SOON) precipitation from the wide 

132 variety of modem satellite-borne precipitation sensors as well as gauge measurements where 

6 



·133 feasible. Estimates are provided at relatively fine scales, 0.25° xO.25°, 3-hourly (Huffman et al. 

134 2010). We use the post-processed research product which is based on calibration by the TRMM 

135 Combined Instrument (TCI) product and covers the period January 1998 to present. The research 

136 product system has been developed as the version 6 algorithm for the TRMM operational 

137 product 3842 (3842 V.6). Henceforth, we will call this product "TMPA-3B42". 

138 The other precipitation product used is the GPCP-1 DD version 1.1 precipitation product 

139 which was developed to support the Global Precipitation Climatology Project (GPCP) 

140 established by the World Climate Research Programme to quantify multi-year global 

141 distributions of precipitation. The product provides I-day (daily) precipitation estimates on a 1-

142 degree grid over the entire globe for the period October 1996 - present. The GPCP-1DD product 

143 is a complement to the GPCP Version 2 Satellite-Gauge (SG) combination product (Adler et al. 

144 2003). GPCP-I DD uses data from geostationary-satellite infrared sensors to compute the 

145 threshold-matched precipitation index (TMPI) and provide precipitation estimates on a lOx 1 ° 

146 grid at 3-hourly intervals within the 40oN-40oS latitude zone. The TMPI sequence of 

147 instantaneous 3-hourly estimates are summed to produce the daily value. Estimates outside this 

148 latitude zone (not used in this study) are computed based on recalibrated Television Infrared 

149 Observation Satellite Operational Vertical Sounder data from polar-orbiting satellites (Susskind 

150 et al. 1997). Additionally, the GPCP-1DD product is scaled in both data regions to match the 

151 monthly accumulation provided by the SG product which combines satellite and gauge 

152 observations at a monthly time scale on a 2.5°x2.5° grid. 

153 

154 

155 
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156 3. Analysis method 

157 The analysis method is fairly straightforward and is based on compositing the precipitation data 

158 as a function of weather state. The D1.WS.ET.dat file contains the weather state index in each 

159 2.5 0 grid cell for every daytime 3-hour interval. Due to their different temporal and spatial 

160 resolutions the two precipitation data sets have to be treated differently in the cOlnpositing 

161 process. The 3-hour resolution of the TMPA-3842 data allows temporal matching with the 

162 ISCCP weather state data. Spatial matching to the 2.5 0 resolution ISCCP weather state data is 

163 achieved by taking the mean of all non-missing 0.25 0 precipitation data that fall into the 2.5 0 grid 

164 cell. GPCP data are resampled from 10 to 2.5 0 via spatial interpolation. 

165 For each 3-hour time period, the TMPA-3B42 data are stlgregated for each weather state in 

166 order to calculate the state's precipitation statistics. However, something analogous cannot be 

167 perfonned for the daily-averaged GPCP-IDD precipitation data. We therefore pursue two 

168 avenues for segregating and compositing GPCP-IDD data: (1) we assign the same daily 

169 precipitation rate to all weather states encountered during the daytime period of a grid cell; or (b) 

170 we only consider those grid cells for which a single weather state persists during a day's daylight 

171 hours and assign the corresponding GPCP-l DD daily precipitation rate (cf. Rossow et al. 2011). 

172 Considering the above, only TMP A-3B42 composited precipitation can be characterized as 

173 actual daytime (i.e. during sunlit hours) precipitation. Because the temporal matching with the 

174 ISCCP weather states can be perfonned better, most of our analysis relies on TMPA-3B42 

175 precipitation data. The availability of GPCP-l DD precipitation rates, even without the temporal 

176 resolution of TMPA-3B42, may however still offer insight on certain aspects of weather state 

177 precipitation, as we will show below. To construct two precipitation composites that are more 

178 comparable, we also segregate TMPA-3842 precipitation as in method (2) of GPCP-IDD 
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179 compo siting, i.e., we consider the daily-averaged TMPA-3B42 precipitation rates of only those 

180 grid cells where a single weather state persists during daytime. 

181 As will be seen in the next section, precipitation data that have been segregated by weather 

182 state can be analyzed in terms of their range and variability, geographical distributions, relative 

183 contributions to the precipitation budget, and other features. 

184 

185 4. Characteristics of tropical weather state precipitation 

186 In this section we identify the relative importance of the various weather states to the tropical 

187 precipitation budget, examine the degree to which the weather states are hydrologically distinct, 

188 investigate whether a weather state's precipitation is affected by the state that telnporally adjoins 

189 it, examine the sensitivity of the results to the precipitation dataset used, and perform a separate 

190 more detailed analysis on the seasonal and geographical precipitation characteristics of WS 1, the 

191 most convectively intense weather state. 

192 

193 a. Means and geographic distribution ofTMPA-3B42 precipitation 

194 The geographic distribution of the 10-yr mean daytime precipitation rate for each weather state 

195 from TMPA-3B42 is shown in Fig. 3. These are mean rates (including zero precipitation) at the 

196 time of weather state occurence. It is immediately obvious that ISCCP joint histogram clustering 

197 succeeds in isolating the most intensively precipitating weather state, WS 1, with its large portion 

198 of high optically thick clouds (Fig. 1). WS1 's mean precipitation rate indeed dwarfs the 

199 precipitation of any other weather state in the tropics with vast regions of the tropical Pacific and 

200 Atlantic oceans exhibiting mean annual precipitation rates in excess of 25 mm/day. There are 

201 significant regional differences in WS I precipitation, like smaller rates over the Indian Ocean 
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202 and weaker precipitation over land (further discussed further). The mean precipitation rates for 

203 the remaining weather states generally decrease monotonically with their assigned index, with 

204 WS2 and WS3 producing significant precipitation (albeit always lower than 10 mmJday on an 

205 annual basis) consistent with their implied level of convective activity (convective anvils that 

206 often evolve from WS 1 convection in the case of WS2, and unorganized less penetrative 

207 convection in the case of WS3). From the convectively suppressed states WS4 to WS8 (grouped 

208 together in the precipitation frequency histograms of Rossow et al. 2011), WS8 is notable for a 

209 stronger precipitation presence over land areas. 

210 To gauge the hydrological importance of a weather state in the tropics, the contribution of 

211 the weather state to the total precipitation of the entire region is calculated. These results are 

212 shown in Fig. 4, as percentage contributions of each weather state to the total grid cell 

213 precipitation. Two important points need to be kept in mind for the interpretation of these 

214 figures. First, the contribution of each weather state to the total grid cell precipitation is not only 

215 a function of the mean precipitation intensity when the state occurs, but also of its frequency of 

216 occurrence in the particular grid cell. If for example, one compares the top panel of Fig. 3 with 

217 the top panel of Fig. 4 (WS 1) there is not much spatial correlation between mean precipitation 

218 rate and contribution. This is because areas where WS 1 produces large precipitation are often 

219 also areas where WS 1 rarely occurs. Second, areas where a particular weather state appears to be 

220 contributing significantly are not necessarily areas where that state produces significant 

221 precipitation. In other words, the fractional contribution of a state may be large, but with a small 

222 total grid cell precipitation, the absolute amounts of precipitation involved are small even for the 

223 largest weather state contributor. An example of this is WS3 with small precipitation amount 
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224 being the largest contributor of precipitation off the west coast of S. America, a generally dry 

225 area (Fig. 3). 

226 The domain-average annual daytime mean precipitation and fractional contribution of each 

227 weather state to the total tropical precipitation from TMPA-3B42 is shown in Fig. 5. To facilitate 

228 the interpretation of the fractional contribution, the domain-average annual RFO is also included 

229 in the graph. One can see that despite an RFO of only ~6%, WSI contributes about half of the 

230 total precipitation of the ±35° latitude zone. This is because the mean precipitation rate of ~ 19 

231 mmlday for this state is more than four times higher than the next strongest precipitating weather 

232 state (WS2). But WS2, as well as WS3, are still significant precipitation contributors, 

233 collectively contributing about 34% of the tropical precipitation, i.e., about 670/0 of the 

234 precipitation that does not come from WSl. The most frequent state, WS8, with an RFO ~380/0 

235 contributes less than 80/0 to the tropical precipitation budget because of its 2nd smallest (after 

236 WS7) mean precipitation rate of ~O.6 mmlday. 

237 Fig. 6 breaks down the results of Fig. 5 into land and ocean domain averages. A 2.5 0 grid 

238 cell is defined as "land" when is contains less than 25% water, "ocean" when it is more that 75% 

239 water and "mixed" in all other cases. According to this convention, in our latitude zone 23.1 % of 

240 2.5 0 grid cells are land, 71.4% are ocean, and the remaining 5.5% are "mixed". One striking, and 

241 somewhat unexpected finding is that the mean precipitation rate of WS I is significantly higher 

242 over ocean (21 mmlday) than over land (14 mmlday). This basic result was reproduced when 

243 GPCP-I DO data is used in place of TMPA-3B42 (not shown). The finding seems to contradict 

244 conventional wisdom about the greater vigor (i.e., stronger updrafts) of continental deep 

245 convection compared to oceanic deep convection. One possible explanation is the drier 

246 environment of continental convection causing the evaporation of a significant fraction of the 
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247 precipitation before it reaches the ground. This phenomenon, discussed by Geerts and Dejene 

248 (2005), who found radar reflectivity profiles peaking at high altitude and decreasing toward the 

249 ground in Africa, would be captured by the TMPA-3B42 and GPCP-IDD datasets because of the 

250 surface gauge rescaling employed. Another possible mechanism for less precipitation reaching 

251 the surface over land could be rain being swept in greater amounts out of the convective cores by 

252 the stronger updrafts of continental WS 1 systems. 

253 Fig. 6 also shows that while the ranking of the weather states with respect to their 

254 contribution to the total precipitation is not different between ocean and land, the relative 

255 importance of the different weather states as contributors to the precipitation budget exhibits 

256 some changes compared to the overall values. One can see, for example, that WS 1 is a larger 

257 fractional contributor to ocean precipitation than land precipitation, that the opposite is true for 

258 WS8, and that WS2 and WS3 are more on par in ocean precipitation contribution than in land 

259 precipitation contribution. Differences in the relative fractional contribution between land and 

260 ocean can come from the combination of changes in mean precipitation intensity and RFO. For 

261 WSI we see that the RFO over ocean and land is about the same (0.062 and 0.065, respectively) 

262 and the main factor making WSI a larger relative contributor over ocean is mean WSI 

263 precipitation being greater in marine grid cells. In the case of WS3, where both the mean 

264 precipitation and the RFO are substantially different between land and ocean, but in opposite 

265 directions, it appears that the greater RFO over land dominates the fractional contribution. 

266 

267 b. Comparisons between different datasets and compositing approaches 

268 We now examine whether global values of mean precipitation and contribution are similar when 

269 daily-averaged GPCP precipitation is composited. Because of the different temporal resolution of 
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270 the GPCP dataset, additional assumptions have to be employed for compositing. The comparison 

271 between TMPA-3B42 and GPCP-1DD weather state precipitation is shown in Fig. 7. The top left 

272 panel of this figure is the same as in Fig. 5, which shows the domain-average daytime mean and 

273 contribution to the total precipitation from our "best" compo siting method of TMPA-3B42 data 

274 that are temporally matched with ISCCP weather state data. The other panels show results using 

275 the alternate compo siting approaches discussed in section 3, necessitated by the daily-average 

276 nature of the GPCP-1DD data set. The upper right panel shows domain average values obtained 

277 by assuming that the GPCP-1DD precipitation is constant throughout the day: all weather states 

278 identified during the sunlit period of a grid cell are assigned the same value of precipitation, the 

279 (spatially interpolated to 2.5°) diurnal average provided by GPCP-1DD. The lower left panel 

280 shows values obtained using only those grid cells for which the same weather state persists 

281 during the day's daylight hours. Presumably, for the grid cells satisfying the single weather state 

282 condition, the assumption of constant precipitation rate throughout the entire daytime period is 

283 better. Note that because close the International Date Line daylight hours may be split between 

284 two UTC days containing GPCP-1DD data, this area is under-represented in this form of 

285 conditional compositing. In the lower right panel the TMP A-3B42 are composited the same way, 

286 i.e., using the daily-averaged TMPA-3B42 precipitation and only those grid cells with 

287 occurences of only one weather state during the entire daytime period. 

288 The RFOs are comparable between the two panels that use all weather state data (upper 

289 row panels) and the two panels that use only the fraction of grid cells with the same persistent 

290 weather state throughout the day (lower row panels). The RFOs of the lower row panels increase 

291 relative to those of the upper row panels for the states that have the largest fractions of grid cells 

292 with a persistent daytime weather state. This is most notable for WS8 which has an RFO of 
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293 0.383 when all the grid cells are accounted for, and an RFO of 0.528 when we only consider the 

294 grid cells with no diurnal variability of weather state occurrence. Indeed, for WS8 the fraction of 

295 grid cells of the latter type is 18.4%, larger than the counterpart fraction of any other weather 

296 state. On the other hand, the RFO of (weakly precipitating) WS7 drops from ~0.085 to 0.039 

297 when implementing this screening because only 6.3% of grid cells (lowest of all weather states) 

298 containing WS7 maintain this weather state for the entire daytime period; in other words, WS7 

299 rarely persists during the daytime in the tropics. Overall, the fraction of grid cells with a single 

300 weather state during daytime is about 13%, i.e., about 87% of data are discarded to produce the 

301 lower two panels of Fig. 7. 

302 Contrasting the upper two panels reveals that using the GPCP-1DD data and the constant 

303 daytime precipitation assumption leads to a notably different, but not surprising, picture on the 

304 precipitation intensity and relative importance of the three most convective states, compared to 

305 TMPA-3B42. The precipitation rate of WS 1 falls from ~ 19 mmlday to ~ 14.5 mm/day and the 

306 fractional contribution from 0.49 to 0.33. On the flip side, the mean precipitation rate and 

307 fractional contribution of WS2 and WS3 increase: the ratio of WS2 and WS 1 fractional 

308 contributions increases from 0.32 for TMPA-3B42 to 0.60 for GPCP-1DD, while the ratio of 

309 WS3 to WS1 fractional contributions increases from 0.38 to 0.68. It appears therefore that when 

310 WS2 or WS3 are observed in a grid cell on the same day as WS1, the constant daytime 

311 precipitation assumption assigns to WS2 and WS3 day-averaged precipitation estimates inflated 

312 by the occurrence of WS1 in the hours before or after (this is further examined later). One can of 

313 course view this misassignment of precipitation also from the WS 1 perspective, with weaker 

314 precipitation assigned to WS 1 in grid cells where convectively weaker states have also occurred 

315 in the same day. Such misassignments seems to be also "benefiting" the convectively suppressed 
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316 states WS4 to WS8, making them appear somewhat stronger precipitation producers and 

317 contributors according to GPCP-lDD compared to TMPA-3B42. 

318 As pointed out earlier, one can attempt to bring the two precipitation data sets on a more 

319 equal footing by including in the compositing only the grid cells with a single weather state 

320 during daytime. The results from this analysis are shown in the lower two panels of Fig. 7. The 

3 21 domain-averag~ annual precipitation rates and fractional contributions from the two satellite data 

322 sets look in this case more similar when partitioned by ISCCP weather state. Some differences 

323 remain, such as the different relative contribution strengths of WS2 and WS3 which are closer in 

324 GPCP-lDD than TMPA-3B42, but the most important aspect of the analysis, WSI 's dominance, 

325 has now been restored in GPCP-lDD to the same level as in TMPA-3B42. 

326 The above analysis confirms the significant daytime variations in tropical precipitation 

327 indicated by previous studies (e.g., Nesbitt and Zipser 2003). These variations can significantly 

328 affect the outcome of compositing a daily-averaged product like GPCP-lDD. 

329 

330 c. Distributions a/precipitation within weather states 

331 So far we have been examining only the mean annual precipitation of the ISCCP weather states 

332 either on a domain-average or regional scale. With the aid of cumulative precipitation rate 

333 histograms we will now look into the distribution of precipitation rates in order to gain better 

334 understanding on the range and variability of a state's precipitation. Rossow et al. (2011) discuss 

335 in detail other ways of constructing conditional precipitation histograms and their dependence on 

336 spatial gridding. 

337 Four sets of cumulative histograms are shown in Fig. 8, where each panel corresponds to 

338 the same data set and compositing assumptions as in Fig. 7. The cumulative frequencies are 
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339 nonnalized relative to the number of each state's RFO. The first bin is considered non-

340 precipitating and includes all precipitation values below 0.048 mm/day, the lowest precipitating 

341 value in the original spatial resolution TMPA-3B42 dataset. 

342 Once again, the upper left panel, based on TMPA-3B42 corresponds to the best possible 

343 temporal matching between weather state identification and precipitation. The first, perhaps 

344 surprising, feature seen in this panel is that even for the strongest precipitating state, WS 1, about 

345 half the time WS 1 is not precipitating according to TMPA-3B42. The frequent occurrence of 

346 non-precipitating WS 1 cloud systems reminds us that the ISCCP weather states are only 

347 statistical descriptions of cloud regimes that encompass a substantial variety of cloud mixtures. 

348 These mixtures may include clouds with significantly higher and lower than WS 1 centroid 

349 average cloud top pressures and optical depths respectively, that are still more closely related to 

350 the WS 1 cluster centroid than any of the other centroids. A cursory analysis with one year of 

351 ISCCP D 1 data indicated that the average cloud top pressure and cloud optical thickness of grid 

352 cells containing WS1 was 317 hPa and 10.6 when TMPA-3B42 indicated no precipitation and 

353 291 hPa and 13.5 when precipitation was detected. This finding suggests significant height and 

354 extinction differences between non-precipitating and precipitating WS1 'so Variability among 

355 tropical WS 1 has also been implied in the results shown in Fig. 6 of Oreopoulos and Rossow 

356 (2011) showing very wide WSI shortwave and longwave cloud radiative effect histograms. 

357 Finally, some zero precipitation WS 1 occurences may be due to space and time mis-matches: 

358 TRMM obtains an instantaneous sample within a 3-hour period and so does ISCCP, but they do 

359 not necessarily coincide within that time interval time, with separations high as 1-2 hours 

360 possible. Likewise, because the ISCCP data is spatially salnpled at 30 km, and TRMM Inay not 
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361 be looking at the same pixels, different areas within the same grid cell may be captured by the 

362 two datasets. 

363 The fraction of non-precipitating WS 1 occurences drops dramatically when daily-averaged 

364 precipitation values are used (the other three panels). This indicates that when WS 1 appears in a 

365 grid cell at some point during daytime it is highly unlikely that no precipitation will be recorded 

366 at some other time during the same day. Indeed, regardless of what data set or assumption is used 

367 for compositing daily precipitation, there is never a higher than 10% chance that a grid cell 

368 containing WSI will remain precipitation-free for the entire day. 

369 The frequency of non-precipitating cloud mixtures increases rapidly as one progressively 

370 moves to the most convectively suppressed weather states. For example, even for WS3, 86% of 

371 occurences are not associated with any precipitation according to TMPA-3B42 (upper left 

372 panel). These frequencies are again smaller when daily precipitation averages are composited: 

373 the other three panels agree that only ~450/0 of grid cells containing WS3 at some point during 

374 daytime will maintain zero precipitation throughout the day. 

375 At the high end of the precipitation distribution we note from the upper left panel of Fig. 8 

376 that while about 26% of WSI occurences are associated with rain rates above 24 mm/day, the 

377 corresponding percentage drops to about 7% for WS2, 4% for WS3 and more rapidly therafter to 

378 values below 0.5% for WS5 to WS8. This part of the histogram changes less by the details of 

379 compositing (s result also found by Rossow et al. 2011). For example, the upper right panel 

380 based on GPCP-lDD has counterpart values for WSl-WS3 of 23%, 7% and 30/0 indicating that 

381 strong precipitation also tends to be persistent. The cumulative histograms of the last four 

382 weather states form a group of histogram curves that is clearly distinct from the other weather 
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383 states, also characterized by well-separated histograms. This reinforces the fact that the ISCCP 

384 weather state centroids are good classifiers of the various tropical precipitation regimes. 

385 

386 d. Precipitation dependence on weather state transitions 

387 Another approach for assessing precipitation variability within weather states is to examme 

388 whether a state's precipitation depends on the weather state that precedes or follows it. 

389 Intuitively, one would expect some dependence because a particular state's realization may have 

390 features that fluctuate according to what preceded or what follows. For example, a cloud mixture 

391 classified as WS3 may have diffemt features when it follows WS 1 instead of (probably more 

392 rarely) WS2. 

393 Figure 9 shows the annual-domain averaged precipitation of a weather state as a function of 

394 the weather state that either preceded (top panel) or followed (bottom panel). Such an analysis 

395 can obviously only be performed with the 3-hourly TMPA-3B42 data set. For all weather states, 

396 the mean precipitation rate is stronger when the state is preceded or followed by WS 1 (squares 

397 enclosed by the red dashed rectangle and the WSI-WSI square along the diagonal). The 

398 frequency with which transitions to or from WS 1 happen is, of course, different for each weather 

399 state and does not affect the values in the figure which are simply the mean precipitation rates 

400 when the state occurs. Interestingly, except for the case it is preceded or followed by itself, WSI 

401 exhibits the strongest precipitation when it is preceded or followed by WS8 than any other 

402 weather state, including the ones that are convectively stronger. The transition from WS8 to WS 1 

403 and vice-versa is however rare (not shown). One other interesting feature seen in the bottOln plot 

404 is that the mean precipitation of WS2, WS3 and WS4 falls within the same range of 9-12 

405 mmlday when followed by WSI. This is especially surprising for WS4, which is a rather weakly 
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406 precipitating state when the analysis is not conditional on close temporal proximity of WS l. But 

407 when WS 1 precedes, WS2 precipitates more that WS3 and WS4 (top plot). Because of their 

408 lower values, the precipitation characteristics of other combinations of weather state transitions 

409 (i.e., squares within the black dashed rectangle) do not merit further discussion here. We do, 

410 however, show the geographical distribution of the sum of the precipitation values enclosed 

411 within the black and red rectangles in the middle panel of Fig. 10. This is simply the map of the 

412 mean precipitation rate originating from all weather states except WSI, i.e., WS2 to WS8. This 

413 map should be contrasted with the counterpart maps in the top and bottom panels which shows 

414 again mean precipitation rates originating from WS2 to WS8, but this time only considering the 

415 cases where WS 1 either precedes (top panel) or follows (bottom panel), i.e., the same values 

416 used for obtaining the means within the red dashed rectangle of Fig. 9. WS2 to WS8 are 

417 precipitating stronger everywhere when they are in temporal proximity to WS 1, and more so 

418 when they precede WS 1 rather than follow it. These transition results can be explained by the 

419 changing weather states representing different parts of the same stonn system. The domain-

420 average precipitation rates for the three panels from top to bottom are 8.l6, l.56 and 10.71 

421 mmJday. 

422 

423 e. Seasonal variations ofWSl 

424 Our analysis so far has clearly demonstrated that WS 1 is by far the most important weather state 

425 for tropical precipitation. This comes as no surprise, since it simply expresses the fact that deep 

426 convection is a major contributor of tropical precipitation. In this subsection we perfonn 

427 additional analysis of WS 1 precipitation characteristics, focusing on seasonal variations. The 

428 seasonal variations of the other states' precipitation were also examined but are not shown 

19 



429 because both the precipitation rates and their relative seasonal variability are appreciably weaker. 

430 From a domain-average perspective, even the WSI annual cycle of mean precipitation is not 

431 particularly strong (Fig. 11), a result also found by Tselioudis and Rossow (2011). The 

432 maximum value occurs in June, but is only ~6% higher than the annual mean; the minimum 

433 value occurs in March, but is only ~4.50/0 below the annual mean. Seasonal variations in the 

434 fractional contribution relative to the annual mean are even lower (2.50/0 above annual mean in 

435 October and 2.70/0 below annual mean in June are the highest deviations). This is because months 

436 with relatively high precipitation rates have also relative low RFOs and vice-versa. 

437 Even though the seasonal variations of WS 1 domain-average precipitation are not strong, 

438 geographical distributions vary significantly with season. The 10-year average seasonal daytime 

439 precipitation totals (in imn) of WSI are shown in the top four panels of Fig. 12. There are 

440 substantial zonal movements of WS 1 precipitation in accordance with movements of WS 1 

441 occurences (shown in the bottom four panels of Fig. 12 as absolute counts). The band of deep 

442 convection known as the ITCZ moves northward from DJF to JJA and this is reflected in the 

443 northward displacement of WS 1 precipitation. WS 1 produces the lowest precipitation totals over 

444 Africa and S. America in JJA and the highest precipitation totals over south Asia, including India 

445 and the bay of Bengal. The eastern equatorial Pacific WS 1 precipitation is also stronger during 

446 JJA. DJF marks the return of WS 1 precipitation south of the equator in Africa and S. America, 

447 and is also characterized by high precipitation totals in the South Pacific Convergence Zone and 

448 the western part of the maritime continent where WS 1 occurence peaks. Thus, while the WS 1 

449 precipitation totals of the entire geographical zone do not change by much, the zonal and 

450 meridional precipitation Inovements are quite prOlninent. Overall, the seasonality of tropical 
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451 precipitation geographical shifts seems to come primarily from WS 1, with other states not 

452 exhibiting much geographical motion. 

453 

454 5. Summary and discussion 

455 We provide a comprehensive picture of the relationship between ISCCP weather states (also 

456 called cloud regimes by some authors) and precipitation for the entire tropics (35°S to 35°N), 

457 thus significantly expanding the limited knowledge frOlTI prior studies which were more 

458 geographically restricted. Our analysis relies on the concepts of conditional sampling/sorting and 

459 composite averaging. By employing these concepts on two widely used merged (satellite and 

460 surface) precipitation data sets, TMPA-3B42 and GPCP-IDD we gain insight on how the 

461 tropical precipitation budget is partitioned among the various weather states identified by 

462 analysis of ISCCP-retrieved cloud properties. We focus primarily on the TMPA-3B42 

463 precipitation dataset because it has the same 3-hour temporal resolution as the ISCCP weather 

464 states. Because weather states can only be identified during daytime when cloud optical 

465 thickness from passive visible observations is available, our findings, based on 10 years of 

466 measurements, only apply to daytime precipitation. GPCP-IDD precipitation compositing 

467 applies by nature to diurnally-averaged precipitation. 

468 We find that the mixture of high and optically thick clouds represented by weather state 

469 with index "1" (WS 1) in the ISCCP data set and considered the most convectively active is 

470 associated with almost half the tropical precipitation despite the fact that it occurs only about 6% 

471 of the time. This is because its mean precipitation rate at the time of occurrence is about 19 

472 mmlday, more than four times higher than the second most active state (WS2) which happens to 

473 also have the second highest mean precipitation rate. The presence of WS 1 affects the apparent 
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474 precipitation of the other weather states: when WS 1 occurs in a grid cell before or after another 

475 weather state, the precipitation assigned to that state is stronger. It seems therefore that weather 

476 states occuring before or after WS 1 are affected by its convective progenitors or descendants. 

477 But even this weather state appears to be precipitation-free about half the time according to a 

478 frequency distribution analysis of TMP A-3B42 precipitation rates. Another feature of WS 1 is 

479 that it has the strongest seasonal variability of all weather states, still relatively weak on a 

480 domain-averaged basis, but with prominent geographical variations. When the precipitation data 

481 are composited separately over land and ocean grid cell differences emerge. WS 1 precipitates 

482 less over land suggesting that updraft strength considerations may be superseded by 

483 environmental humidity and its effects on precipitation evaporation. Also, over land the relative 

484 contribution of WS3 goes up significantly reaching a value close to half of that of WS 1 (over 

485 ocean the relative contribution is closer to a quarter of that of WS 1). 

486 The choice of the precipitation data set used in the compo siting affects the results 

487 noticeably. The GPCP-l DD precipitation represents the grid cell diurnal average and cannot be 

488 combined with ISCCP weather state data available every 3 hours without further assumptions. 

489 When the same daily precipitation rate is assigned to every weather state that may occur within 

490 the grid cell during sunlit hours, the contrast between the three most convective weather states is 

491 tempered. The domain-average precipitation rates and contributions become much more 

492 consistent between the two datasets, as might be expected, when most data are discarded in favor 

493 of grid cells with a single weather state persisting during daytime. Apparently, for those cases the 

494 GPCP-l DD daily average is a much better representation of the state's precipitation. Diurnally 

495 averaged precipitation composites cannot capture as well the frequency of non-precipitating 
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496 WS 1 occurences, revealing that once WS 1 appears in a grid cell it very uncommon that the cell 

497 will remain precipitation-free for the entire 24-hour period. 

498 Since clouds are the most prominent regulators of radiation and precipitation, it is natural to 

499 explore in future work the connections between precipitation, radiation, and the state of the 

500 atmosphere as a function of cloud regime within the weather state framework. Some work along 

501 these lines has already been performed to some extent (e.g., Gordon and Norris 2010; 

502 Oreopoulos and Rossow 2011; this work), but the unifying effort that will fully integrate the 

503 physical relationships between atmospheric dynamical and thermodynamical states and the 

504 budgets of radiation and precipitation into a coherent picture has not yet materialized. Once such 

505 an effort is completed, a better foundation on how to conjointly analyze cloud regimes and 

506 associated meteorology with energy and water budgets will be available for climate models to 

507 capitalize on. This can lead to significant leaps in the quality of model hydrology and energetics. 

508 
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570 Figure Captions 

571 Figure 1. Cluster centroids for the 8 weather states of the extended tropics geographical zone 

572 (35° S to 35° N) derived from ISCCP Dl data. Each plot shows the normalized frequency of 

573 occurrence (in 0/0) within Pc- r bins. 

574 Figure 2. The geographical distribution of the relative frequency of occurrence (RFO) of the 8 

575 weather states of the extended tropics geographical zone for the period 1998-2007. Values are 

576 normalized relative to the total number of weather state occurrences with valid TMPA-3B42 

577 precipitation measurements within the geographical area for this period. 

578 Figure 3. Geographical distribution of the 10-yr mean precipitation rate (mm/day) for each of 

579 the 8 extended tropics weather states. 

580 Figure 4. Geographical distribution of the fractional contribution to the total 10-yr grid cell 

581 precipitation rate of each weather state. 

582 Figure 5. Domain-average values of the mean precipitation rates and fractional contributions 

583 shown in Figs. 3 and 4. Also included is the domain-average RFO of each weather state. 

584 Figure 6. As in Fig. 5, but when TMPA-3B42 precipitation is aggregated separately over ocean 

585 (left) and over land (right). 

586 Figure 7. (upper left panel): As in Fig. 5; (upper right panel): as the upper left panel, but using 

587 GPCP-l DD precipitation rates, assumed constant throughout the day; (lower left panel): as the 

588 upper right panel, but using only those grid cells with the same weather state occurring during 

589 daytime; (lower right panel): as the upper left panel, but with precipitation diurnally averaged for 

590 those grid cells with the same weather state persisting during daytime. 
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591 Figure 8. Cumulative histograms of precipitation rate for each weather state for the precipitation 

592 datasets and compositing assumptions used in Fig. 7. 

593 Figure 9. Mean TMPA-3B42 precipitation rate of each each weather state (with "0" designating 

594 cloud-free 2.5 0 cells, and grey squares indicating non-existent combinations) at time T as a 

595 function of either the weather state 3 hours earlier, T-3h (top) or 3 hours later, T+3h (bottom). 

596 The values within the dashed red rectangle of the upper (lower) panel come from the same 

597 precipitation data used for the top (bottom) panel of Fig. 10. The black dashed rectangles contain 

598 means from precipitation data used in the middle panel of Fig. 10. 

599 Figure 10. (middle): Geographical distribution of mean total (combined) daytime precipitation 

600 rate from TMP A-3B42 of weather states 2 to 8; (top): same as the middle panel, but when the 

601 weather state occuring three hours earlier is WS 1; (bottom): same as the middle panel, but when 

602 the weather state occuring three hours later is WS 1. The domain average values are 1.56, 8.16, 

603 and 10.71 mmJday, respectively. These panels show the geographical distribution of the sum of 

604 the means highlighted in the black and red dashed rectangles of Fig. 9, as explained in the 

605 caption of that figure. 

606 Figure 11. 10-yr mean annual cycle ofWSl TMPA-3B42 precipitation when present, fractional 

607 contribution to domain precipitation, and RFO. 

608 Figure 12. Geographical distribution of the yearly average seasonal precipitation total (in mm) 

609 for WS 1 (top four panels) and the average number of WS 1 occurrences (bottom four panels). 

610 
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