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ABSTRACT 

 

A quantitative index is applied to monitor crop growth and 

predict agricultural yield in continental USA. The Climate-

Variability Impact Index (CVII), defined as the monthly 

contribution to overall anomalies in growth during a given 

year, is derived from 1-km MODIS Leaf Area Index.  The 

growing-season integrated CVII can provide an estimate of 

the fractional change in overall growth during a given year. 

In turn these estimates can provide fine-scale and aggregated 

information on yield for various crops. Trained from 

historical records of crop production, a statistical model is 

used to produce crop yield during the growing season based 

upon the strong positive relationship between crop yield and 

the CVII. By examining the model prediction as a function 

of time, it is possible to determine when the in-season 

predictive capability plateaus and which months provide the 

greatest predictive capacity. 

 

Index Terms— Remote Sensing, agriculture, image 

region analysis, modeling, GIS 

 

1. INTRODUCTION 

 

The interannual variations of crop yields are strongly 

affected by the environment and its variability. To get the 

pre-harvest information on crop yields, numerous crop 

growth simulation models are generated using crop state 

variables and climate variables at the 

crop/soil/water/atmosphere interfaces [1]. Most of these 

models require complex and detailed inputs to address the 

plant physiology process [2], soil water balance [3], as well 

as the interactions between soil and root systems [4]. In 

addition, plot-scale field experiments with specific soil 

types, water stress, nitrogen contents, and management 

processes are required for validation of the models [5].  

 

A second type of yield forecast is based on data 

collected from farm operations and field observations, which 

require numerous time and labor in order to get a full sample 

size. In addition, these field studies have to be repeated 

frequently throughout the growing-season. The National 

Agricultural Statistics Service (NASS) monitors the crop 

conditions and yields via monthly-conducted Objective 

Yield Surveys in thousands of fields. 

 

Since the early 1980s, vegetation indices derived from 

satellite data have been applied for crop monitoring and 

forecasting purposes.  These indices include the ratio of the 

reflectance at near infrared to red, the Normalized 

Difference Vegetation Index (NDVI), Vegetation Condition 

Index (VCI), and the Climate-Variability Impact Index 

(CVII) derived from MODerate resolution Imaging 

Spectroradiometer (MODIS) Leaf Area Index (LAI) [6-10]. 

In general, these remotely-sensed metrics of vegetation 

activity have the following advantages: a unique vantage 

point, synoptic view, cost effectiveness, and a regular, 

repetitive view of nearly the entire earth’s surface [11], 

thereby making them potentially better suited for crop 

monitoring and yield estimation at large scales. 

 

We have previously demonstrated that the LAI-based 

CVII can quantify the percentage of the climatological 

annual production either gained or lost due to climatic 

variability and that it has a potential application in crop 

monitoring and yield estimation [9-10].  As a continuation of 

this effort, in this paper we will analyze the relationships 

between the CVII and crop yield using two case studies for a 

drought year in Illinois (2005) and a drought year in North 

and South Dakota (2006).   

 

2. DATA AND METHODOLOGY 

 

In this research, we used the 1-km resolution MODIS LAI 

data, from 2000 to 2006, to generate the Climate-Variability 

Impact Index. The MODIS land cover map at 1-km 

resolution was used to select broadleaf and cereal crop 

pixels. Crop production estimates are given at county- and 

state- levels by the U.S. Department of Agriculture. 

Accordingly, we aggregated LAI over the same regions by 
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Unstandardized Coefficients 95% Confidence Interval 
Model 

B Std. Error 
t 

 

Sig. Lower Upper 

1  Constant 1.00 0.007 137.85 <.0001 0.985 1.014 

CVII 0.024 0.001 17.94 <.0001 0.021 0.026 

2  Constant 1.009 0.012 86.85 <.0001 0.986 1.032 

CVII 0.021 0.001 21.57 <.0001 0.019 0.023 

3  Constant 1.003 0.006 161.81 <.0001 0.991 1.015 

CVII 0.022 0.001 28.94 <.0001 0.020 0.023 

 

Table 1: Linear Model between Crop Production (dependent) and Climate-Variability Impact Index (independent) at county Level. The 

first model is generated from corn counties. The second model is generated from wheat counties. The third model is generated both 

corn counties and wheat counties.  

overlapping the LAI map with the county map and then 

calculated the Climate-Variability Impact Index for each 

county.  

 

The Climate-Variability Impact Index (CVII), defined 

as the monthly contribution to anomalies in annual growth, 

quantifies the percentage of the climatological production 

either gained or lost due to climatic variability during a 

given month. For a given pixel p, let L(p,m,y) be the LAI in 

month m and year y, ),(' mpL  be the climatological LAI in 

month m and ∑ )(' pL  be the climatological annual LAI. The 

index CVII(p,m,y) in month m and year y is then calculated 

as : 

CVII ( p , m , y ) = 100 ×
L ( p , m , y ) − L ' ( p , m )

Σ L ' ( p )   
 

A strong positive correlation is found between the crop 

production and the CVII for counties in both Illinois and 

North and South Dakota [Fig. 1]. While the CVII increases 

from negative 40% to positive 40%, the production anomaly 

increases from less than 10% to nearly 200% of the 

climatological mean. In general, fifty percent of the variance 

in crop production can be explained by the CVII. 

 

To test whether the regression coefficients are strongly 

dependent on crop types in the different study regions and 

for the two different crop types, we fitted three linear models 

for the 2000-2004 CVII and production anomalies. The first 

model uses all the corn sample counties from the study 

regions. The second model uses all the wheat sample 

counties. The third model uses both corn and wheat sample 

counties. The 95% confidence intervals of the coefficients of 

the three models overlap, which indicates that these three 

linear models are not significantly different from each other 

[as shown in Table 1]. Our results demonstrate that the 

CVII-production relationship appears to be crop-

independent for the study regions at county-level. 

 

3. RESULTS AND DISCUSSION 

 

3.1. 2005 corn yield forecast at Illinois 

 

In the 2005 growing season, Illinois suffered an extreme 

drought condition and corn yields were predicted to be 30% 

less than the record year of 2004 by NASS. However, after 

most of the corn had been harvested by the end of October, 

the Illinois Agricultural Statistics Service indicated the 

overall corn yield is 145 bushels per acre, or 7% below the 

previous 5-year average. 

 

In Figure 2, we compare the meteorological conditions 

represented by the 6-month SPI for March-August and the 

vegetative production represented by the integrated CVII 

map over the continental US in 2005 and 2002 (we show 

maps for 2002 because it had comparable crop losses to 

those expected in 2005 according to NASS). Focusing on 

Illinois, the 6-month SPI through the end of August indicates 

Illinois suffered a severe drought during the 2005 growing 

season, while conditions were slightly-above normal during 

2002. However, the April-August integrated CVII maps for 

Illinois suggest a decrease in vegetation growth of only 
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Fig. 1: Relationship between growing-season (Apr-Aug) CVII 

and crop production over the study regions of Illinois, South 

Dakota and North Dakota. MODIS landcover maps are used to 

select the cereal crops (wheat) and broadleaf crops (corn).  



 
 

Fig. 2: 6-month Standardized Precipitation Index (SPI) vs. the growing-season Climate-Variability Impact Index (CVII) in 

2002 and 2005.  Six-month SPI maps are produced by National Drought Mitigation Center 

(http://www.drought.unl.edu/monitor/spi.htm).  CVII values represent fractional loss (red) or gain (blue) of vegetation 

growth during the growing season (April-August), compared with the 2000-2004 mean. Only Broadleaf crops are shown.  

 

about 10% in 2005 compared with a 10-20% decrease in 

2002 [Fig. 2]. 

 

Although on a continental scale the CVII maps 

integrated over the growing season agree with the growing 

season water deficit conditions represented by 6-month SPI 

through August, our results highlight the need for explicit 

monitoring of vegetation growth when estimating yield. The 

case study in Illinois is particular demonstrates that drought-

monitoring indices based upon meteorological data alone, 

such as SPI, may miss important variability in vegetative 

production because they can both overestimate (2005) and 

underestimate (2002) impacts upon vegetation in drought-

stricken regions [Fig. 2]. However, the CVII maps appear to 

have better success capturing the crop yield. The CVII 

model predicts a 7% decrease in 2005 corn yield in Illinois 

(compared to the previous 5 year average or 145 bushel/acre 

overall), which is almost identical to the actual state-wide 

corn yield from NASS released after the harvesting (8% 

decrease, or 143 bushel/acre). 

 

3.2. 2006 Yield Forecast at North and South Dakota 

 

In 2006, the persistence of anomalous warmth made the 

summer the second warmest June-August period in the 

continental US in the past 110 years. An area stretching 

from south central North Dakota to central South Dakota is 

identified as drought-stricken, with the potential for 

significant crop loss according to the US drought monitor 

map released in August 2006. Using the CVII model, the 

2006 corn and wheat production are predicted at county- and 

state-level in North and South Dakota. The model predicts a 

23% decrease compared to the climatological mean in wheat 

and 4% decrease in corn, compared with the latest state-wide 

NASS estimates of 15% decrease in wheat and 1% increase 

in corn (released in November).  While not as accurate as 

the 2005 predictions for Illinois, they actually represent a 

better prediction than the NASS September forecasts 

released concurrently with the CVII-based estimates 

 

3.3. Possibility of early yield forecast using CVII 

 

Because the satellite data used to derive the CVII are 

available in near real-time, satellite-based data can provide 

yield estimates before the end of the growing season. For 

instance, the forecast of 145 bushel/acre (7% decrease 

compared to the climatological mean) at Illinois was 

produced in mid-September, compared with the USDA’s 

forecast of 136 bushel/acre at the same time, and the 

USDA’s forecast of 145 bushel/acre released in October and 



November. As such, acceptable model forecasts of corn 

yield could be obtained at least one month prior to the end of 

the growing season due to the advantages of the satellite 

data. In the following, we examine the possibility of early 

forecast using our model.  

 

Figure 3 shows the relationship between actual corn 

yield, NASS’s forecasts released in August, September and 

October, and our model predictions made during July, 

August, and September using CVII for South Dakota from 

2000 to 2006. The model predictions based on integrated 

CVII have a typical lag of approximately 2 week. As such, 

the April-July/August/September integrated CVII 

predictions are concurrent with the NASS estimates released 

in August/September/October respectively. The actual corn 

yield of South Dakota is estimated by NASS after harvesting 

in each year and is used as the actual yield for the given 

year. The in-season CVII model shows predictability 

comparable to the concurrent NASS estimates [Fig. 3]. For 

instance, in mid-August 2006 the CVII model predicted a 

corn yield of 108 bushel/acre for South Dakota, which is 

almost identical to the actual yield of 107 bushel/acre.  In 

comparison, the NASS estimate released in August predicted 

a yield of 100 bushel/acre and in October predicted a 105 

bushel/acre. 
 

While the satellite-based estimates of yield are not 

necessarily a substitute for those provided by ground-based 

methods (as done by agricultural services for instance), 

satellites can provide a secondary, independent estimate that 

can pinpoint regions where agricultural failure is greatest. 

Overall, the high temporal and spatial resolution as well as 

the availability of the timely access to the needed MODIS 

products makes CVII a useful tool for near real-time crop 

monitoring and yield forecasts before harvesting. More 

importantly, the cost effectiveness and repetitive, near-

global view of earth’s surface suggest this LAI-based CVII 

may significantly improve crop monitoring and yield 

estimation at regional scales. Furthermore, with inclusion of 

fine temporal resolution MODIS data, future applications of 

the 8-day and 16-day CVII maps may provide detailed crop 

monitoring at different growth stages and provide earlier 

warning signals. 
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Fig. 3: The actual corn yield and the estimated yield in South 

Dakota made by NASS and CVII model over the course of the 

growing season. The NASS estimates (blue bars) are released 

in August, September and October for each year. The CVII 

model predictions (red bars) are based upon the CVII values at 

the end of July, August, and September. The actual yield is 

observed by NASS after harvesting. 


