
A Software Development Simulation Model of a Spiral 
Process 

ABSTRACT: There is a need for simulation models of software development processes 

other than the waterfall because processes such as spiral development are becoming more 

and more popular. The use of a spiral process can make the inherently difficult job of 

cost and schedule estimation even more challenging due to its evolutionary nature, but 

this allows for a more flexible process that can better meet customers' needs. This paper 

will present a discrete event simulation model of spiral development that can be used to 

analyze cost and schedule effects of using such a process in comparison to a waterfall 

process. 

About the Authors 

Carolyn Mizell is a NASA employee at the Kennedy Space Center where she has served as a project 

manager for over 10 years. She is presently working on her PhD in Industrial Engineering at the University 

of Central Florida. 

Contact: Carolyn A. Mizell, NASA EA-C, Kennedy Space Center, FL 32899; phone: 321-867-8814; 

Carolyn.A.Mizell @nasa.gov 

Linda Malone is a professor at the University of Central Florida. She is a Fellow of the American 

Statistical Association. 

Software simulation models based on the traditional waterfall process exist as 

discrete event models and system dynamics models, but the literature points out the need 

to develop simulation models of other lifecycle processes. Since the traditional waterfall 

lifecycle development method has its drawbacks, other lifecycle approaches are gaining 

popularity, especially for large and complex software development projects. 

Of particular interest is the spiral development lifeycle which is gaining 

popularity for use in large government and military projects. The goal of this work is to

https://ntrs.nasa.gov/search.jsp?R=20120003465 2019-08-30T19:36:28+00:00Z



provide a new discrete event simulation model of a spiral development lifecyle and to use 

the new model to analyze the cost and schedule estimation effects of using such a 

development approach. 

This work is new because discrete event simulation models have not been used 

for comparison of cost and schedule estimation differences between the waterfall and the 

spiral development lifecycles. The benefits of performing such a comparison are 

important because experience with the waterfall process shows that only one-third of 

software development projects that follow a waterfall process are completed successfully 

within budget and schedule(Brooks 1998). Also, it is not realistic to assume that large 

and complex software development projects can follow a once-through sequential process 

like the waterfall process. Most large projects that attempt to follow a waterfall process 

end up being evolutionary and iterative in nature as requirements change and evolve, and 

this has a substantial impact on cost and schedule estimates. 

The spiral development model was developed by Barry Boehm and is based on 

experience with large government software projects (Boehm 1988). The goal was to 

provide a model with greater flexibility that could better serve these types of projects. 

Boehm describes the spiral development model as a risk-driven process model generator 

that consists of a cyclic approach to incrementally implementing a system while 

decreasing the degree of risk (Boehm 2000). 

The waterfall model is the traditional lifecycle development approach that was 

introduced by Winston Royce in 1970 (Royce 1970). This model consists of a sequential 

cycle of activities that include requirement analysis, design, coding, testing, and support. 

The spiral model can be thought of as a repeating waterfall model that emphasizes risk



assessment and that is executed in an incremental fashion. Each pass through the spiral 

model consists of risk assessment, requirements analysis, design, coding, testing, 

delivery, and evaluation. Figure 1 shows a graphical representation of a single increment 

of a spiral model.

Per Increment 

)ject Planningj	
Planning/Requirements Lessons 

Concept of I	 tAssessmentl	 Analysis, Design, Codin d 

______	 Testing, Delivery 
Operations 

Figure 1: Spiral Development Model 

This piocess has been shown to be successful in a variety of environments, 

including NASA's Marshall Space Flight Center (Hendrix and Schneider 2002). Figure 1 

depicts the fact that the waterfall phases of requirements analysis, design, coding, testing 

and delivery are accomplished for each increment along with additional phases of risk 

assessment and lessons learned. Initial overall project planning and development of a 

concept of operations is accomplished prior to the first increment to establish high level 

requirements and the overall conceptual framework for the product. Detailed 

requirements evolve during the spiral portion of the lifecycle. The number of spiral 

passes that must occur for each increment depends on the areas of risk and the 

development state of the product. The goal of the increments is to provide the customer 

with limited, but useable operational capability. The customer will eventually get full 

operational capability after several increments.



A key difference between the waterfall and spiral models is that the waterfall 

model considers requirements to be fixed from the beginning of the project with fixed 

documents being produced as a result of each phase of the lifecycle. Therefore, this 

process is not flexible enough for some projects, especially when requirements are not 

known at the beginning of a project. Changes in requirements later in the process lead to 

major cost and schedule overruns, especially for very large projects. This approach can 

lead to other problems such as: delayed integration, late risk resolution, and focus on 

documents and review meetings as opposed to tangible increments of the product (Royce 

1998). Therefore, more and more software development projects are following lifecycle 

models other than the waterfall model. 

The spiral model is designed to be flexible and to evolve into other types of 

models such as evolutionary or even waterfall based on the results of risk assessments 

and where key risks exist (Boehm and Belz 1990). It is also considered product driven 

rather than document driven like the waterfall process (Royce 1998). The government 

and military are using this process more often in order to overcome the limitations of the 

more traditional processes. The US Dept. of Defense has determined that the spiral 

development model is the preferred method/process for software-intensive development 

lifecycles (Surber 2004). 

Disadvantages of the spiral model include continual deferral of planned 

functionality in order to stay on schedule and within budget. The deferral of work can 

accumulate until an insurmountable amount of work is left for the end of project. This is 

known as the "Death Spiral " (Brown 2004). Projects that follow this type of



development process will most likely cost more and take longer but should better meet 

customers' needs and expectations. 

A discrete event process simulation model of the spiral development lifecycle 

process will allow for evaluating different scenarios in projects using this type of 

approach. A process model for spiral development can also enable analysis of the effects 

of using this type of approach versus the traditional approach in terms of effort and 

schedule. The waterfall approach assumes all requirements are known up front and yet 

this is often unrealistic. Changes to requirements will affect size and therefore, the cost 

and schedule of the project. In order to handle changes that occur as a project evolves, 

NASA's Manager's Handbook for Software Development recommends that a minimum 

of five re-estimates should be made after the initial estimate at key life cycle phase points 

(SEL 1990). This will allow for more accurate estimates to be developed as the project 

progresses and as more information becomes available. The handbook states that the 

uncertainty of an estimate will decrease from completely uncertain at the initial estimate 

to almost certain with the sixth estimate after system test. 

Cost estimation is an especially difficult area of software development project 

management. The impacts of uncertainty in key areas such as product size, productivity, 

and defect injection rates can dramatically affect a project's cost and schedule. The job 

of estimating becomes even more difficult when requirements are allowed to evolve 

throughout a project as is the case for a spiral lifecycle process. The same unknowns of 

size, productivity, and defect injection rates exist, but there is also the additional 

unknown of the number of spirals that will need to be completed before an incremental 

product is delivered. The evolutionary nature of the process allows requirements to



change and this makes the job of estimating size even more difficult and uncertain. Since 

most software development projects do undergo changes, it is beneficial to consider the 

ijmpacts on cost and schedule which can be used to develop a more realistic estimate. 

Figure 2 shows the layout for a typical software development process simulation 

model of a waterfall type project. 

Independent Verification and Validation 

Process	 Requirements	 Architecture &	 Coding &	 Integration &	 Installation & 
Implementation	 Analysis	 *	 Detailed	 Unit Testing	 Qualification	 Acceptance 

Design	 Testing 

System Integration/Planning 

Figure 2: Waterfall Process Simulation Model 

An existing software development process simulation model will serve as the core 

for the spiral process simulation model. The Process Analysis Tradeoff Tool, PATT ©, 

is a discrete event process simulation model that was developed for NASA to assess the 

benefits of Independent Verification and Validation (IV&V) on the IEEE 12207 software 

development process which is a waterfall type process and which is represented by 

Figure 2 (Raffo and Wakeland 2003). The model typically uses industry average data for 

input variables such as product size, productivity (LOCIHr), and defects (per KSLOC).



The user provides number of resources, % of overall effort that should be allocated to 

each process step, and the number of desired staff for each step. The model outputs the 

size, effort, rework effort, entire process duration, average duration, number of injected 

defects, detected defects, and corrected defects. 

Model Development 

The approach to developing the spiral model was to add steps to the existing 

PATF waterfall model and to repeatedly run through the steps to represent increments for 

the entire project. 

Figure 3 shows how PATT serves as the core of the spiral model. 

Each Increment 

PATE 

Repeat for Each Spiral 

Planning,
Acceptance 

Add Risk Process
Support	 Learned 

Et	
tem	

jIntnite&Test	

lnstlalion &	
Add Lesns 

Implement	 ,Detailed Design, Code & Unit Test. 

Figure 3: Use of PATT for Spiral Model 

Mode! Inputs 

The following information is input to either the IEEE 12207 PATI model or the 

spiral model: size of product (lines of code), number of resources, productivity (lines of



code/hour), defect injection rate (defects/ksloc), % of overall effort for each process step, 

and desired staff for each process step. Industry averages or theoretical probability 

distributions can be used for productivity and defect injection rate. 

The following table provides guidelines for percentage of effort by phase that is 

based on several literature sources (Boehm 1981; SEL 1993; Boehm, Abts et at. 2000; 

Hendrix and Schneider 2002). 

Table 1: Percentage of Effort by Phase for Waterfall and Spiral Processes 

Waterfall Activity % Effort 
(Boehm 
2000)

% Effort 
(SEL) 
__________

Spiral Activity 

_______________________

% Effort 

_______________________ 
Plan/Requirements 8% 12% Risk Assessment

_______________________ 
5% 

Product Design 
__________________________

18% 
____________

8% 
____________

Planning/Requirements 
Analysis

5% 

Detailed Design 25% 15% Product Design
_________________________ 
20% 

Coding/Unit Test 26% 40% Detailed Design 17% 
Integration/Testing 31% 25% Coding/Unit Test 26% 

______________________ Integration/Testing 22% ______________________ 
_______________________ _______________________ Lessons Learned 5%

Note that the % effort for a waterfall process based on data found in Estimating with 

COCOMO II totals to 108%. This is due to the assumption that all plans and 

requirements for a waterfall approach will be completed prior to the beginning of a 

project. Data in the second % Effort column for waterfall is based on Software 

Engineering Laboratory data and totals to 100%. Data from Table 1 will serve as the % 

of overall effort input for the models. 

Industry averages from the literature suggest an average productivity of 3.6 

LOC/Hr (Jones 2000) and defect injection rates of 60 defects per thousand lines of code 

(CeBASE 2004). For this work, data from the NASA environment was used to populate 

the model for analysis. Productivity and defect injection rates tend to be lower for the 

NASA environment with an average productivity of about 3.2 LOG/Hr (SEL 1993) and 



defect injection rates of approximately 30 errors per KSLOC (CeBASE 2004). Since 

productivity and defect injection rates are affected by project factors that are very 

dynamic, the use of average values does not adequately account for the range of values of 

these key parameters. In order to better represent the range of values that can occur for 

productivity and defect injection rates in a similar development environment, probability 

distributions were developed and used in the models. These distributions are based on 

data collected during the 25 year history of the Software Engineering Laboratory (SEL 

1993; CeBASE 2005). The following provides the distributions and parameter values 

used as inputs to the models for defect injection rates: 

Table 2: Defect Injection Rates by Phase 
Requirements Lognormal (2.62, 7.1) 

Design Lognormal (17.13, 73.35) 

Coding Weibull (28.39, 0.81) 

Testing Exponential (40.9)

A distribution of Erlang (1.36, 3) was used for productivity. 

Analysis 

In general, large NASA soffware development projects begin with a bottoms-up 

estimate prior to the start of a project. For this analysis, assume a staff of 350 was 

available. The bottoms-up estimate included size estimates for each increment that added 

up to 3.425 Million LOC. Funding was provided based on a total size of 3.8 Million 

LOC, 1400 labor years, and a schedule of five years. At this point, a Concept of 

Operations with high level requirements was completed. The goal was to follow an 



incremental development process that consisted of 10 increments and allowed 

requirements to evolve during the project. 

Of interest is the question of how does a waterfall approach compare with a spiral 

approach, especially when developing early estimates. First, the IEEE 12207 process 

model and the spiral model will be run with the same input data so that the output effort 

and duration data from each can be compared. For this first analysis, the assumption will 

be that the size estimate is accurate (which would be highly unlikely at the beginning of a 

project and thus favors the waterfall model), so a total size of 3425 KSLOC will be input 

to the IEEE 12207 model. Table 3 provides size for each increment of the spiral model: 

Table 3: Size Estimate Per Increment 
Increment Number Size 

1 100 

2 250 

3 675 

4 700 

5 650 

6 200 

7 325 

8 300 

9 175 

10 50

The spiral development approach assumes that there will often be more than one 

pass through the development phases. Therefore, the discrete event spiral simulation 



model will include an additional probability distribution for the number of spirals that 

must be completed within each increment. This will be set to a Uniform [1, 3] 

distribution for this analysis. 

Table 4 provides the output data from each type of model: 

Table 4: Comparison of Outputs for Waterfall and Spiral Models 
Output Waterfall Spiral 

Mean Duration 5.9 years 8.27 years 

Mean Effort 1391 labor years 1520 labor years

This data shows that a budget of 1400 labor years and a schedule of five years are 

very risky for this project, even if a waterfall process is followed. This data also shows 

that a spiral process will take longer than a waterfall process and this should be expected, 

although it may not be considered when preparing a budget. The spiral process should 

take longer and cost more because the process is repeated and has additional process 

steps. The analysis of the spiral process may actually lead to a more realistic estimate 

since software projects historically have evolving requirements and phases of 

development. This makes a one time estimate done at the beginning of a project very 

impractical. A rough estimate can be developed, but detailed phased funding should be 

considered so that more accurate estimates can be developed based on an incremental 

basis rather than for the entire project. The intended benefit of spending more time and 

money on such a process is that the user will get a better product and will get incremental 

functionality with each delivery. 

Size growth due to requirements changes and unknowns can be extensive. The 

literature points out that very early size estimates are likely to be much lower than the 



actual final size of the project due to requirements changes and unknowns(SEL 1994; 

Boehm, Abts et al. 2000). This is often the case with either the waterfall or spiral 

process, even though requirements should not drastically change in a true theoretical 

waterfall lifecycle. Requirements evolution is a key part of a spiral process and therefore, 

plans for accommodating size changes should be considered when estimating a project 

that will follow such a process. This is a more realistic view of the situation for large, 

complex projects than a theoretical waterfall process. 

Since the project was set up for ten increments, each increment will have a 

uniform size distribution with parameters: (Increment Size Estimate, 2 X Increment 

Size Estimate) LOC. The uncertainty in the size at this point in the project when only 

high level requirements are understood is based on data from the literature (Boehm, Abts 

et al. 2000). Table 4 provides the size inputs to the model for each increment: 

Table 5: Incremental Size Distributions 

Increment Size (KSLOC) 
1 Uniform [100, 200] 
2 Uniform [250,500] 
3 Uniform [675,1350] 
4 Uniform [700,1400] 
5 Uniform [650,1300] 
6 Uniform [200,400] 
7 Uniform [325,650] 
8 Uniform [300 ,600] 
9 Uniform[175,350} 
10 Uniform [50,100]

At the beginning of each increment, a draw will be taken from a probability 

distribution for the number of spirals that are to be completed and the total increment size 

will be divided by the number of spirals to provide the size for each spiral. This will be 

compared to the waterfall model. For this analysis, the waterfall model will be run with a 



size distribution of Uniform [3425, 6850] and the % of effort in Table 2 that totals to 

100% to represent a more realistic waterfall where requirements analysis is done as part 

of the project. 

Table 6: Comparison of Spiral Model to Waterfall Model with Uncertain Requirements 
Waterfall Spiral 

Mean Duration 9.89 years 14.67 years 

Mean Effort 2356 labor years 2414.6 labor years

This data also shows that the spiral process should cost more and take longer than 

a waterfall approach. This is expected since a waterfall process theoretically proceeds 

sequentially through each phase one time with no substantial changes in requirements. 

The spiral process, however, is more representative of the typical iterative nature that 

most software development projects actually follow. Therefore, the process of developing 

cost and schedule estimates that consider uncertainty in a development process that is 

iterative in nature should lead to a more realistic estimate. The analysis also shows the 

significant impact size uncertainty has on a project's cost and schedule for either lifecycle 

approach. A benefit of following a spiral process that consists of multiple spirals per 

increment is that particular risk areas can be resolved by expending only a portion of the 

increment's budget. The spirals serve as a risk resolution plan that should enable 

deliverable functionality for each increment. The fact that this type of process will 

provide benefits but may take longer and cost more must be considered when developing 

estimates for a project that will follow this approach. 



Summary 

This work has developed a new software development process model that enables 

assessment of an incremental or spiral lifecycle approach. This provides a new insight 

into the effects of developing cost and schedule estimates for an iterative development 

process that is a more realistic representation of most large software development 

projects. The waterfall process provides for a structured sequential process, but this is 

often not realistic since requirements tend to evolve and phases of the lifecycle may need 

to be repeated. This article presents a unique approach to developing initial estimates and 

has demonstrated some of the differences in estimating between a waterfall approach and 

a spiral approach. Because software development can be very complex and uncertain, the 

iterative spiral lifecycles are gaining popularity and provide a more realistic estimate that 

has not been developed using existing estimating tools and techniques that are based on 

the waterfall process.. Using estimation data from the NASA environment, this work has 

analyzed a project's early cost and schedule estimate using both a waterfall and spiral 

approach. The results show that the cost and schedule estimates for a spiral process may 

be higher than for a waterfall process and this is in agreement with military experiences 

(Brown 2004). This type of process should provide a quality product that better meets 

users' needs by allowing evolution of requirements and by providing functionality with 

each increment. This process emphasizes risk management and is designed to be 

flexible. This should lead to more realistic budgetary planning since it is obvious that 

requirements will change and cost and schedule will be affected throughout the project. 

This work also shows that uncertainty in areas such as size, productivity, and defects 

should be accounted for when developing an estimate, no matter which lifecycle is



selected. The spiral process model can be used throughout a project to analyze the 

project as more information becomes available. For instance, data from early increments 

can serve as inputs to the model and an estimate to complete based on this data can be 

assessed. More work can be done to refine the spiral model based on other projects' 

expenences.



References 

Boehm, B. (2000). Spiral Development: Experience, Principles and Refinements, Spiral 
Development Workskhop SEI Report. W. J. Hansen. Pittsburgh, Carnegie-Mellon 
University, Software Engineering Institute: 49. 

Boehm, B. and F. Belz (1990). "Experiences with the spiral model as a process model 
generator." IEEE: 43-45. 

Boehm, B. W. (1981). Software Engineering Economics. Englewood Cliffs, Prentice 
Hall. 

Boehm, B. W. (1988). "A spiral model of software development and enhancement." 
IEEE Computer 21(5): 61-72. 

Boehm, B. W., C. Abts, et al. (2000). Software Cost Estimation with COCOMO II. 
Upper Saddle River, Prentice Hall PTR. 

Brooks, A. (1998). "Estimating cost with project management software can boost 
efficiency." Computing Canada 24: 34. 

Brown, D. (2004). Evolutionary Acquisition and Spiral Development, Defense 
Acquisition University: 34. 

CeBASE. (2004). "eWorkshop on Software Inspections and Pair Programming." from 
www.cebase.org . 

CeBASE. (2005). "Software Engineering Laboratory Data." from www.cebase.org . 

Hendrix, D. T. and M. Schneider, P. (2002). "NASA's TReK Project: A Case Study in 
Using the Spiral Model of Software Development." Communications of the ACM 45: 
152-159. 

Jones, C. (2000). Software Assessments, Benchmarks, and Best Practices. Boston, 
Addison-Wesley. 

Raffo, D. and W. Wakeland (2003). Assessing IV&V Benefits Using Simulation. 28th 
Annual NASA Goddard Software Engineering Workshop. 

Royce, W. (1970). Managing the Development of Large Software S ystems: Concepts and 
Techniques. Wescon. 

Royce, W. (1998). Software Project Management: A Unified Framework, Addison-
Wesley.



SEL (1990). Manager's Handbook for Software Development. Software Engineering 
Laboratory Series. Greenbelt. 

SEL (1993). Cost and Schedule Estimation Study Report. Software Engineering 
Laboratory Series. Greenbelt: 3-3. 

SEL (1994). An Overview of the Software Engineering Laboratory, Software 
Engineering Laboratory: 55. 

Surber, D. C. (2004). Spiral Evolution Applied to Legacy Avionics Systems. IEEE A&E 
Systems Magazine. 19: 3-9.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18

