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Systematic Sensor Selection Strategy (S4) User Guide 
 

T. Shane Sowers 
QinetiQ North America 
Cleveland, Ohio 44135 

1.0 Introduction 
This document presents a User Guide for the Systematic Sensor Selection Strategy (S4)—a 

methodical approach for identifying a suite of sensors that optimally meets engineering requirements for a 
given application. S4 was developed in an attempt to address the limitations of traditional aerospace 
sensor selection approaches that struggle to provide optimally effective sensor suite solutions for 
complex, interdependent system and subsystem requirements with sometimes difficult-to-identify and 
conflicting constraints. 

In aerospace vehicle design, the proper selection of sensors is necessary to ensure that operational, 
maintenance performance, and more recently, system health assessment requirements are met. Traditional 
approaches to measurement and sensor selection for aerospace propulsion applications are generally 
heuristic and are typically directed toward measuring performance characteristics rather than health 
diagnostics. A typical sensor selection process begins with component teams submitting lists of desired 
measurements. These measurements are used to support engine development, model verification and/or 
detection of structural limit violations. As the system design matures, the component teams supply more 
detailed specifications such as measurement ranges, response requirements, and so forth. This information 
along with reliability requirements is used to determine the type and number of sensors needed at each 
system location. The compiled list is then separated into categories associated with measurement use, 
such as ground test, flight, etc. Measurements are assigned a priority, with the highest priority given to 
measurements required for system control. The list is often condensed as the design matures due to 
factors such as accessibility, cable routing, or reduced need. A maximum number of sensors is determined 
based on storage and transmission capability, cost, and other considerations which may include arbitrary 
limits. The component teams and chief engineer then negotiate until the final suite is selected. 
Consequently, sensor selection approaches such as this draw heavily on domain expertise and do not 
utilize a consistent quantitative method to assess the implications of measurement choices on diagnostic 
capability. 

Research on methods for the systematic selection of sensors has been conducted in a variety of 
disciplines. Depending on the nature of the problem, these methods are designed to concentrate on 
various performance criteria such as observability, reliability, fault detectability, fault discrimination, and 
cost. Reference 1 presents a historical overview of several sensor selection approaches, comparing and 
contrasting their capabilities with those of S4. 

The Systematic Sensor Selection Strategy is a NASA-developed optimization-based approach that 
can be used to optimally identify a set of sensors that support a specific design objective, like health 
diagnostics. The methodology is flexible and is meant to be tailored to the specific application needs. 
Originally developed by NASA to support liquid propellant rocket engine health management (Ref. 2), 
the S4 architecture offers the flexibility and versatility needed to support a broad range of applications, 
such as air-breathing engines, power systems, life support systems, ground support equipment, and 
general integrated vehicle health monitoring. 

In developing S4, it was realized that a sensor selection process optimized for health assessment will 
specify a set of sensors to analyze system function and determine the type, source, and severity of system 
anomalies. The process should:  
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• Facilitate fulfillment of diagnostic system requirements for the target system such as fault 
detection and identification coverage for targeted fault conditions, missed detections, and false 
alarms 

• Utilize a user specified diagnostic model by which sensor suites can be properly, effectively, and 
efficiently compared 

• Access available and pertinent databases and simulations 
• Support sensor system decisions impacting health management capability over the design, 

development, and service life cycle of the target system 
 
Sensor selection processes can generally be categorized as employing either a general approach or a 

targeted approach. In a general approach, sensors are selected to provide complete fault detection and 
fault isolation for the system encompassing both known and unknown failures. While this is a desirable 
goal, it is generally unattainable since it is practically impossible to identify and optimize to every 
possible fault scenario. A targeted approach selects sensors to optimize detection and isolation capability 
for specific faults and/or fault sequences relative to a particular system health monitoring philosophy. S4 
utilizes a targeted approach. 

When applied to complex systems, sensor selection processes tend to produce a set of near-optimal 
solutions rather than a single comprehensive solution. A collection of satisfactory sensor suite solutions 
are often the outcome as opposing constraints may cause the optimal sensor suite sets to diversify. In 
addition, immature or novel systems introduce uncertainty or ambiguity into the process. Therefore, 
methodical variations in the sensor selection process should be employed to thoroughly explore the 
solution trade space in a logical fashion leading to a final sensor suite selection. 

The purpose of this guide is to familiarize the user with the details of the S4 methodology and assist 
the user toward applying the S4 procedure. Section 2.0 describes the main features of S4 through an 
explanation of the general functionality of each S4 element. The process to construct a S4 application is 
outlined and an example application is presented in Section 3.0. Finally, an overview of the software for 
the S4 example application is provided in Section 4.0. Source code for software that implements the 
example application is being made available through the NASA Glenn Research Center Software Catalog 
(Ref. 3). 

1.1 Glossary 
Common wording may have subtle but important interpretation differences when applied to detailed 

descriptions. To help avoid confusion, a list of selected terms and definitions is given to indicate their 
particular meaning within this guide. 

 
• Fault—An abnormal condition or defect that may lead to a system failure. In this guide, a fault is 

represented by a change in one or more health parameters within a system simulation that 
simulates off-nominal or fault operation. 

• Fault Detection—The process of determining that a fault condition exists through analysis of the 
sensor measurements. 

• Fault Isolation—The process of identifying the faulty component and characterizing the severity 
of the fault condition. 

• Fault Signature—A set of unique measurement values resulting from a fault condition. 
• Target System—The system to which the sensor selection process is being applied. 
• Health Parameter—A parameter within a system simulation that represents the performance 

level of a component of the target system. An example would be pump efficiency. 
• Sensor/Measurement—A sensed physical property specified by a location and a measurement 

type. An example would be a pump discharge pressure. 
• Nominal Value—The normal or baseline value while the target system has no faults or 

degradations at a particular operating state. 
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Figure 1.—Systematic Sensor Selection Strategy (S4) Framework 

2.0 Key Features 
The Systematic Sensor Selection Strategy is best described as a general architecture structured to 

accommodate application-specific components and requirements. Each element is intended to be 
customized for the target system application, and their general relationships are depicted in Figure 1. A 
Knowledge Base, Iterative Down-Select Process, and Final Selection Process comprise S4. A functional 
description of each S4 component is given in the following subsections. 

2.1 Knowledge Base 
The Knowledge Base is intended to be a repository for information pertaining to the target system and 

the sensors being considered for use in diagnosis of that system. The repository may contain historical 
information such as test data, or if historical data is not available, as is often the case during early 
development and design of the target system, experience from similar systems will provide a basis from 
which to define and collect pertinent health assessment information. The knowledge base can be 
partitioned into two modules: the Performance-Related Information and the System Simulation. 

2.1.1 Performance-Related Information 
Information is obtained from domain experts, manufacturer reports, failure modes and effects analysis 

(FMEA) studies and hazard analyses. The information includes fault signatures, fault progressions, 
component/sensor reliabilities, and sensor characteristics (e.g., noise). This data is used as inputs to 
establish the System Diagnostic Model, and defines key optimization parameters for the Sensor Suite 
Merit Algorithm and Down-Select Algorithm. In addition, this information is used to define the required 
system simulations for health assessment system development. 

2.1.2 System Simulation 
The System Simulation provides input in the form of data sets for the Iterative Down-Select Process 

and Statistical Evaluation Algorithm. This module may be a collection of simulations of varying fidelities 
and applicable at various stages of the system operation. The System Simulation for S4 can be developed 
using a process model, which can be as simple as algebraic relations between the monitored variables and 
faults, or more complicated dynamic system models that incorporate performance parameters. If available 
and appropriate, actual test data or flight data could be provided from this module. 
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2.2 Iterative Down-Select Process 
The Iterative Down-Select Process is an iterative procedure used to select a group of near-optimal 

sensor suites for health assessment. The process involves sequentially generating and evaluating a 
collection of candidate sensor suites, eventually converging towards an optimum sensor suite. The 
process can be repeated with systematic permutations to the initialization of the search process, until the 
results stabilize to a small set of near-optimal suites. The procedure includes a System Diagnostic Model, 
a Sensor Suite Merit Algorithm, and a Down-Select Algorithm. 

2.2.1 System Diagnostic Model 
The System Diagnostic Model represents the diagnostic procedure to be applied to the target system. 

The performance of the diagnostic model is measured for each candidate sensor suite at each relevant 
operational mode. The measures of performance are provided to the Sensor Suite Merit Algorithm. A key 
feature of this model is that it must be complete and capable of providing diagnostic analysis for all or 
any subset of the possible sensors. If the diagnostic system needs to be re-generated with each sensor 
suite, the sensor selection process will be very time consuming. In addition, the re-generation complicates 
comparison of diagnostic performance between sensor suites by incorporating diagnostic system 
development into system diagnostic performance. Developments of applied system diagnostic models to 
date have used system simulations and health-related information for fault characterization. During the 
Iterative Down-Select Process, the System Diagnostic Model receives sensor suite configuration 
information from the Down-Select Algorithm and outputs diagnostic performance information for those 
evaluated sensor suites to the Sensor Suite Merit Algorithm. 

2.2.2 Sensor Suite Merit Algorithm 
The Sensor Suite Merit Algorithm generates an evaluation score for each candidate sensor suite. It 

generates quantified metrics utilizing performance information from the System Diagnostic Model along 
with other pertinent characteristics of the measurement suite being evaluated. It receives sensor suite 
diagnostic performance information from the System Diagnostic Model, and it outputs scores to the 
Down-Select Algorithm. The Sensor Suite Merit Algorithm is normally in the form of an algorithmic 
function, where performance criteria of interest to the particular system can be combined. 

2.2.3 Down-Select Algorithm 
The Down-Select Algorithm is a search algorithm that utilizes an optimization technique employed to 

select sensor suites that will allow progression toward an optimal or near-optimal solution. The sensor 
selection optimization problem can be termed NP-Complete (Non-deterministic Polynomial time), which 
refers to the way the problem’s computation time scales as a function of the number of variables. Problems 
that are NP-Complete are the most difficult class of decision problems to solve. Any solution procedure that 
guarantees optimality cannot simultaneously guarantee computational time efficiency. Therefore, a trade-off 
between the level of optimality and the time to solution must be employed. Optimization techniques such as 
Genetic Algorithms (Ref. 4) produce acceptable results in a reasonable time. However, this particular 
module in the methodology could use any search algorithm suitable to the user. The Down-Select Algorithm 
receives system and sensor information from the Knowledge Base to establish any specific guidelines or 
constraints used in the sensor suite search. Merit value information is used to generate a collection of new 
candidate sensor suites that will generally progress toward improved performance. 

2.3 Final Selection Process: Statistical Evaluation Algorithm 
In the Final Selection Process, a collection of the best candidate sensor suites generated from the Iterative 

Down-Select Process is analyzed in more detail. The user inspects the output and determines how well the 
optimal sensor suite satisfies the performance criteria and whether some of the performance objectives within 
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the Sensor Suite Merit Algorithm need to be modified. Often times these results yield trends that encourage 
further trade studies to enhance the selection process and overall final sensor suite selection. 

The Statistical Evaluation Algorithm is intended as a final robustness test of each candidate sensor 
suite. When constructing the Iterative Down-Select Process, often there is a trade between simulation 
fidelity and diagnostic evaluation speed. Only a small number of fault scenarios can be utilized in the 
evaluation process or the processing time could be prohibitive. Therefore, a more rigorous evaluation is 
employed when a finite collection of “optimum” measurement sets has been determined. The Statistical 
Evaluation Algorithm replicates portions of the Iterative Down-Select Process with the addition of 
uncertainty effects such as sensor and system noise characteristics, and variations in fault dynamics. 
Large numbers of faults can be used to evaluate each sensor suite with the same System Diagnostic 
Model and Sensor Suite Merit Algorithm utilized in the Iterative Down-Select Process. The Statistical 
Evaluation Algorithm uses input from the Performance-Related Information and the System Simulation 
data to establish the high fidelity fault scenario data sets. Results from the Statistical Evaluation 
Algorithm enable a ranking or stratification of the near-optimal sensor suites for final selection. 

3.0 S4 Example Application 
This section describes an example application of the S4 methodology to an aircraft engine simulation. 

The intent of this demonstration is to permit a user to initiate and solve sensor selection problems that are 
specific to their area of interest.  As mentioned previously, the S4 methodology is not intended to be 
rigidly structured. Although detailed steps in formulating the problem and desired objectives are usually 
application specific by design, there is a great deal of flexibility in establishing an S4 architecture that is 
particularly suited to the user’s needs. Domain expertise and knowledge base information have a large 
influence on the selection and development of the particulars of the S4 components.  

While each application is unique, there is a common approach to applying the S4 methodology with 
the objective of health assessment improvement. General procedural steps required to construct the sensor 
selection framework are shown in Figure 2. The steps of this general approach are further described and 
demonstrated through the presented example application given below. 
 

 
Figure 2.—Procedure for Applying S4 to a Specific System 

Step 1
(Sec. 3.1)

Knowledge 
Acquisition

Step 2
(Sec. 3.2)

Define 
Sensor 

Suite Merit 
Algorithm

Step 3
(Sec. 3.3)

Define
System

Diagnostic 
Model

Step 4
(Sec. 3.4)
Choose 
Down-
Select 

Algorithm

Step 5
(Sec. 3.5)
Compile 
Data Sets

Step 6
(Sec. 3.6)
Develop 
Software
Modules

Step 7
(Sec. 3.7)
Create &
Conduct 
Iterative 
Down-
Select 

Process

Step 8
(Sec. 3.8)
Create & 
Perform 

Final 
Selection 
Process



NASA/CR—2012-215242 6 

1. Knowledge Acquisition 
• Identify all potential sensor locations; include sensors that will be available regardless of sensor 

selection process (e.g., control sensors, actuator position sensors). 
• Define system operational phases and control modes. 
• Identify faults of interest and, if possible, indicate criticality, probability of occurrence, and fault 

propagation information. If absolute values of fault criticality and probability of occurrence are 
not available, the relative values of the fault characteristics within the scenarios of interest are still 
useful. 

• Obtain available domain information, including relevant component design, simulations, and test 
data. 

 
2. Define Sensor Suite Merit Algorithm.  

• Define metrics of diagnostic performance. 
• Incorporate cost and user-specified design constraints. 

 
3. Define System Diagnostic Model. 

• Configure to at least one operational phase, but being applicable to multiple operational phases 
will maximize diagnostic coverage and permit sensor selection evaluation across phases. 

• Must be capable of providing fault detection and fault isolation of all failure scenarios of interest 
with the complete set of potential sensor locations. 

• Must be functional for any subset of the potential sensors. 
 
4. Choose Down-Select Algorithm 

• If feasible, a Brute Force or Exhaustive Search technique is preferred since it will examine every 
possible sensor suite to determine the true optimal solution. 

• In cases where complete evaluation of all sensor suite combinations is not possible, define the 
optimization goals and select an optimization algorithm. 

 
5. Compile Data Sets 

• Include the entire list of faults that the diagnostic system is designed to monitor. 
• Obtain any diagnostic information needed by the System Diagnostic Model. 

 
6. Develop Software Modules 

• Select a computational environment consistent with user preferences. 
• Develop software modules. 

 
7. Create and Conduct Iterative Down-Select Process 

• Perform iterative sensor selection process until the optimization goal(s) are realized. 
• While essentially an automated process, expert oversight and possible intervention may be 

required to ensure realistic performance from the process. 
 
8. Create and Perform Final Selection Process 

• Examine diagnostic performance of selected sensor sets to further stratify the sets and enable final 
selection. 

• May be performed with higher fidelity data sets and/or data scenarios outside of the constraints 
used during the initial iterative optimization process. 

 
The implementation of these common steps to the S4 example application is enumerated in the 

following sections. 
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3.1 Knowledge Acquisition 

Preliminary steps of the sensor selection process involve collecting data on the target system. A 
proper S4 framework is tailored for the specific application at hand. Information is gathered to ensure the 
setup and consequential analysis is correct, pertinent, and worthwhile to execute. Therefore, at the onset 
of the analysis it is helpful to ask some basic questions: 

 
• What is the system that S4 is being applied to? Can it benefit from a sensor selection procedure? 
• What sensors are available? What are their characteristics? 
• What are the sensors monitoring? What should they detect? 
• How is the information being used? What type of event is being monitored? Is it only fault 

diagnostics, or something more? 
• What is the system doing? What does it need to do? What is normal and what is abnormal? 
• What is the source of data for conducting the sensor selection process? Is actual data available 

or will a computer simulation be used? 
• What is the objective of the sensor selection process? What is being optimized? 
• What assumptions can be made to simplify the S4 procedure? 

3.1.1 Benefit Assessment 
An important first step is to determine if the system will benefit from a sensor selection procedure. 

Before time and effort is invested, it is a good idea to confirm that performing a selection analysis is 
prudent. In the first benefit assessment, the complexity of the system is evaluated. Sensor selection 
techniques are generally not applied to simple systems as their solutions tend to be trivial. As a result, 
there is a focus toward complex systems where conflicting objectives such as performance, cost, and 
weight need to be satisfied simultaneously along with a need to reduce or minimize the sensor set. In 
another benefit assessment, the feasibility of altering the sensor suite of the system is evaluated. 
Measurement sets of systems in production tend to be difficult to adjust. As a result, selection procedures 
are usually applied to systems in development during which design changes are more feasible and 
economical. This is also when knowledge of the system is relatively immature causing more dependence 
on prior experience with similar systems or on engineering judgment of domain experts. A further benefit 
determination is based on how well the consumers of the sensor data are characterized. A comprehensive 
understanding of data use is needed to properly select and construct the components of the process. Once 
its benefit is recognized, the sensor selection procedure is designed and implemented. 

3.1.2 Target System 
The target system selected for the S4 example application is the Commercial Modular Aeropropulsion 

System Simulation or C-MAPSS) (Ref. 5). Principle factors in this selection were user availability, 
freedom to define the problem, and sufficient technical complexity. C-MAPSS is a non-linear 
aerothermodynamic aircraft engine model developed by the NASA Glenn Research Center for control 
and diagnostic algorithm research. As such, it incorporates the capability to simulate realistic fault 
conditions, mainly in terms of rotating component efficiencies and flow capacity shifts from nominal 
conditions. The model is coded in Matlab/Simulink (The Mathworks, Inc.) and provides a non-proprietary 
model of a large commercial high-bypass, twin-spool, turbofan engine in the 90,000 lbf thrust class. Its 
operating envelope covers sea-level to 40,000 ft, Mach 0 to 0.90, and sea-level ambient temperatures 
from –60 to 103 °F. 

With C-MAPSS as the target system, assumptions and other restrictions are made about the extent of 
the S4 procedure to simplify the example application. These assumptions and restrictions include: 

 
• Realistic faults are used to evaluate the candidate sensor suites. 
• Only steady-state conditions are considered so that sensor response timing can be ignored. 
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• There are no sensor or actuator faults. All faults occur within the engine components, and the 
sensor measurements and actuator positions are assumed to be unbiased. 

• All faults are of equal importance with no preference based on fault severity, probability of 
occurrence or any other factor. 

• All of the sensors have similar cost, reliability, weight, etc. 
• Data from a single flight operating point is utilized with cruise being selected for its significance 

in a typical commercial flight profile and because it is consistent with the steady-state assumption 
of this example. 

• The set of control sensors are assumed to always be present. Additional candidate sensors are 
being selected to supplement the control sensor set. 

• The sole objective of the selection process is to improve engine health assessment capabilities for 
the selected faults. Other potential operational objectives are not considered. 

• Sensor noise is assumed to be zero-mean, normally distributed white noise. 
 
 

With C-MAPSS as the target system, performance data is generated from a system simulation rather 
than from ground test or flight performance data. This arrangement is typical as actual data are rarely 
complete enough to evaluate all of the candidate measurements across all relevant operating scenarios. 
Within C-MAPSS, component faults are simulated by adjusting one or more engine component health 
parameters. C-MAPSS’s engine component health parameters include flow capacity, efficiency, and 
pressure ratio modifiers. Complex faults may require correlations to multiple health parameters to more 
accurately represent the fault condition. Additionally, candidate sensor measurements are related to 
system simulation output variables. Sensor type, such as pressure, temperature, shaft speed, etc., and 
location are used to determine the most appropriate output variable. For this demonstration, sensors are 
simply chosen from the C-MAPSS output variable list. In other applications, a sensor-to-variable 
correlation may not exist. When this happens, either the system simulation is modified to make the 
desired output variable available or the sensor is excluded from consideration. 

The sensor selection procedure will employ the C-MAPSS simulation at a single operating state. 
From a typical flight profile, the cruise operating condition was selected with a set of properties assumed. 
The assumed cruise flight condition is an altitude of 35,000 ft, Mach 0.84, throttle setting of 65 percent 
under standard atmospheric conditions.  

3.1.3 Sensor Measurements 
In this example application, there are two classifications of sensor measurements. There are control 

sensors which are always present, and candidate sensors which will augment the control sensor set. This 
arrangement is representative of a situation where an existing set of sensors is being augmented with 
additional measurements. Control sensors typically include a subset of sensors that measure ambient 
conditions. In this example application, the ambient condition sensors are not included because they 
measure conditions outside the propulsion system and only vary due to changes in the flight environment. 
They are insensitive to the fault conditions within the engine and provide no information to improve 
health assessment. The approximate locations of the control and candidate sensors are shown in Figure 3. 
Table 1 summarizes the individual sensors assessed in this study along with their corresponding sensor 
noise levels, nominal values, and assigned sensor classification. 
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Figure 3.—C-MAPSS Diagram with General Sensor Location and Classification 

 
TABLE 1.—SENSORS USED IN EXAMPLE APPLICATION 

Variable Description Classification Baseline Noise standard 
deviation 

T24 Low pressure compressor exit temperature Control 526.1 R 2.6307 
T30 High pressure compressor exit temperature Control 1,229.3 R 9.2199 
Ps30 High pressure compressor exit static pressure Control 129.9 psia 0.6494 
Wf Fuel flow rate Control 1.3 pps 0.0130 
Nf Low pressure shaft speed Control 1,936.2 rpm 4.8405 
Nc High pressure shaft speed Control 7,920.8 rpm 19.8020 
T48 Low pressure turbine inlet temperature Control 1,503.3 R 11.2748 
P15 Bypass discharge static pressure Candidate 7.1 psia 0.0355 
T21 Fan exit temperature Candidate 489.5 R 3.6711 
P25 High pressure compressor inlet pressure Candidate 8.8 psia 0.0439 
T50 Low pressure turbine exit temperature Candidate 986.9 psia 7.4021 
P50 Low pressure turbine exit pressure Candidate 4.5 psia 0.0227 

 
Measurement data from the System Simulation are conditioned before use in the S4 procedure. The 

conditioning process provides numerical stability for data that contain a variety of measurement types and 
engineering units. It also assists the user by transforming the data into a form that is easier to comprehend 
from a health monitoring perspective. Measurement values are conditioned according to the following 
relation,  

 𝑦 𝑖 = �𝑦𝑓𝑎𝑢𝑙𝑡,𝑖−𝑦𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑖�
𝜎𝑖

 (1) 

where  
𝑦𝑖 conditioned value for sensor measurement yi 
𝑦𝑓𝑎𝑢𝑙𝑡,𝑖 observed value for sensor measurement yi during a fault  
𝑦𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑖 nominal value of sensor measurement yi 
𝜎𝑖 standard deviation of sensor measurement noise for yi 
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Typically, a Gaussian distribution is assumed for measurement noise about a mean value, and σi is set 
to the standard deviation value of the measurement signal. For each sensor measurement, the 
normalization is simply the change of the measurement from its nominal value to the current fault level, 
divided by the measurement noise. The conditioned value, therefore, represents the number of uncertainty 
intervals by which the signal varies for a given fault scenario. The noise estimates shown in Table 1 are 
approximations based on engineering judgment. They are expressed as percentages of the nominal 
operating value of the sensor measurements at a particular flight condition. 

3.1.4 Faults  
A critical part of the selection process is the definition of faults used in the evaluation of the candidate 

sensors. Each fault will have a fault signature in the sensor measurement set that is an input to the System 
Diagnostic Model. Because there may be a very large number of faults for any given target system, care 
should be given in compiling a list of pertinent faults. The faults should be focused and appropriate. 
Improper fault selection can misdirect the optimization process and adversely affect selection results. 
Operational objectives, environmental considerations, and other system requirements define the relative 
importance of such factors as fault severity, probability of occurrence, timing, and mitigating response 
availability. These factors are investigated through analysis to determine the faults of interest. 

The fault modeling capability of the System Simulation can influence the compiled listing of the 
faults of interest. If a fault cannot be modeled, the System Simulation is enhanced or the fault is removed 
from consideration. Accurate fault signatures are important for effective sensor selection. 

To produce measurement data for the faults of interest, the fault simulation capability of C-MAPSS is 
examined. C-MAPSS has an input array of thirteen user adjustable health parameters. For each of the five 
rotating engine components, there is a flow capacity and efficiency. Additionally, for the fan, low 
pressure compressor, and high pressure compressor, there is a pressure ratio modifier. Table 2 lists all of 
the health parameters used in the S4 example application. As can be noted in the table, the low pressure 
compressor and the pressure ratio modifiers for the fan and the high pressure compressor were not 
included. Generation of the fault data is described in Section 3.5. 
 

TABLE 2.—C-MAPSS HEALTH PARAMETERS 
USED FOR FAULT SIMULATION IN 

THE S4 EXAMPLE APPLICATION 
Engine component 

Fan efficiency 
Fan flow capacity 
High pressure compressor efficiency 
High pressure compressor flow capacity 
High pressure turbine efficiency 
High pressure turbine flow capacity 
Low pressure turbine efficiency 
Low pressure turbine flow capacity 

 
As was done for the sensor measurement data, fault data are conditioned before they are input into the 

S4 procedure. This improves numerical stability and simplifies user interpretation. While C-MAPSS 
already has fault data in a normalized format, this may not be the case with other system simulations. In 
those instances, faults should be conditioned using a relation such as the following: 

 𝑥𝑗 = �𝑥𝑓𝑎𝑢𝑙𝑡,𝑗−𝑥𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑗�
𝑥𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑗

 (2) 

where 
𝑥𝑗 conditioned value of fault xj 
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𝑥𝑓𝑎𝑢𝑙𝑡,𝑗 fault value of fault xj 
𝑥𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑗 nominal value of fault xj 
 
The conditioned fault value represents the fractional shift from the nominal baseline value for a given 

fault. The values of xfault,j and xnominal,j in Eq. (2) can be directly obtained from the system simulation. If 
actual hardware is used, fault values usually cannot be directly measured and would need to be estimated 
using the sensor values. 

Not all fault data can be conditioned in the same manner. For instance because leak flows have a 
baseline value of zero, they require special treatment to avoid division by zero. Leak values may be 
transformed to the value of the baseline flow through the duct where the leak occurs. For example, given 
a leak of 2 lbm/sec in a duct with a baseline flow of 50 lbm/sec, the fault is conditioned in two steps as 
follows. 

 𝑥𝑑𝑢𝑐𝑡 = �(50−2)−50�
50

= −0.04    
 
⇒     ∆𝑥leak = −∆xduct = 0.04     

Since the conditioned value of –0.04 represents the amount subtracted from the duct flow, but added to 
the leak flow; the final conditioned value of the leak fault is 0.04. 

3.1.5 Figures of Merit 
During the knowledge acquisition phase, it is important to determine what characteristics are essential 

in the final sensor suite. In the S4 example application, health diagnostics in terms of fault detection and 
isolation are the central items of interest. In a more realistic application, the merit algorithm could be 
expanded to include other operational considerations such as life cycle cost, reliability, weight, power 
requirements, communication bandwidth or ease of installation. This information would be used to design 
the Sensor Suite Merit Algorithm and influence the implementation of the System Diagnostic Model.  

3.1.6 Analysis Environment 
A final S4 framework design consideration is the analysis environment in which the sensor selection 

process is performed. Because S4 is flexible, the user has a great deal of freedom in this decision. S4 has 
been applied using software developed in C/C++, FORTRAN and MATLAB. In each of these 
applications, the chosen programming environment had advantages and disadvantages. Compiled 
languages such as C/C++ and FORTRAN offer rapid execution speeds and enable intricate software 
architectures if required. Conversely, interpreted languages are generally easier to employ when the setup 
of the selection process is dynamic. Some interpreted programming environments such as MATLAB have 
mechanisms that facilitate elaborate software architectures. They can incorporate compiled libraries 
which improve execution speeds and allow incorporation of third party software packages. They may also 
have built-in functions that support analysis of S4 results. When all of this is considered, the user has a 
great deal of latitude in selecting the computing environment. Therefore, user preferences along with 
application considerations will direct this decision. For the S4 example application, MATLAB is selected 
as the software environment for ease of programming and acceptable execution speed. 

3.2 Define Sensor Suite Merit Algorithm  

With the initial design decisions made for the S4 process setup, the first module to be constructed is 
normally the Sensor Suite Merit Algorithm. Of the elements in the Iterative Down-Select Process, the 
Sensor Suite Merit Algorithm is the most influential. It quantifies the degree to which a sensor suite 
satisfies the desired characteristics by combining a set of potentially competing metrics into a single merit 
value. The assignment of merit values will guide the progression of sensor suites output from the Down-
Select Algorithm. 
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When designing the Sensor Suite Merit Algorithm, there are common interface requirements that will 
be necessary for practically every application. On input, the current collection of candidate sensor suites 
is needed. This is to identify the sensors included so that relevant Knowledge Base information can be 
extracted. These data are combined with diagnostic performance information and other relevant properties 
to compute a sensor suite’s merit value. The user may incorporate a wide range of metrics that are limited 
only by the imagination and programming ability of the user. On output, a single value is computed that 
represents the worth or goodness of the sensor suite to the application at hand. 

NOTE: The Sensor Suite Merit Algorithm presented here is provided for demonstration purposes and 
is solely intended to support the S4 example application. Alternate approaches may more accurately 
reflect diagnostic performance. Modifications to the method are encouraged to accommodate application-
specific requirements. 

The example merit algorithm is focused solely on system health assessment. Its logic flow, shown in 
Figure 4, is summarized as follows. A sensor suite is selected from a group of candidate sensor suites and 
is evaluated by the System Diagnostic Model. The System Diagnostic Model will calculate a diagnostic 
performance score which is then integrated with other factors represented by the penalty term and utility 
measure to compute the sensor suite merit value. The process repeats until each sensor suite in the 
collection of candidate sensor suites is evaluated. 

To begin the formulation process, a merit function for sensor suite k is defined that combines the 
metrics of interest into a single algebraic equation. For the S4 example application, the diagnostic 
performance term is integrated with factors that characterize the advantages and disadvantages of each 
candidate sensor suite. This is done by generating a diagnostic performance score, Dk, that is multiplied 
by a penalty term, Pk, and a utility measure, Uk, to produce a merit value, Meritk, as shown in Eq. (3). 
With this merit function formulation, higher merit values reflect better sensor suites. The merit value 
calculation is given by, 

 𝑀𝑒𝑟𝑖𝑡𝑘 = 𝐷𝑘 ∙ 𝑃𝑘 ∙ 𝑈𝑘 (3) 

 
 

 
Figure 4.—Sensor Suite Merit Algorithm Logic Flow Diagram 
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As shown in Eq. (4), the utility measure, Uk, is the average of the utility measures, u1…m, for each of 
the m sensors within suite k. 

 𝑈𝑘 = ∑ 𝑢𝑖𝑚
𝑖=1
𝑚

 (4) 

Here, each ui quantifies the good and bad characteristics of sensor i, while Uk broadly quantifies the 
characteristics of sensor suite k. The characteristics and quantification methods used to determine each ui 
are selected by the user. They may include cost, weight, power requirements, ease of installation, etc. In 
this formulation, a ui with value less than one signifies a sensor with a detrimental influence, and a ui with 
value greater than one indicates a sensor with a beneficial effect. In the S4 example application, every 
sensor has a uniform and neutral setting of 1.0.  

The next factor in the merit function is the penalty term, Eq. (5), which enforces a preferred sensor 
suite characteristic. In this implementation, the penalty term includes a normalizing term, a discrepancy 
term, and a user specified weighting term. The normalizing term is embodied by the “1” in the 
denominator and is intended to prevent divide-by-zero errors in the function implementation. The 
discrepancy term measures the sensor suite’s deviation from the desired characteristic. In this case, it is 
the absolute value of the difference between the actual number of sensors in the sensor suite and the 
desired number of sensors in the final solution. A weighting term is used to regulate the influence of the 
penalty term. The penalty term is computed by, 

 𝑃𝑘 = 1
1+�𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦∙�𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑁𝑘,𝑎𝑐𝑡𝑢𝑎𝑙��

 (5) 

where 
Wpenalty penalty weighting term 
Ndesired desired number of sensors in solution sensor suite 
Nk,actual actual number of sensors in candidate sensor suite k 

 
Consideration should be given in selecting the value for the penalty weighting term, Wpenalty. When 

the penalty weighting term is small, there is more exploration of the solution space as it is easier for 
sensor suites of varying size to be formed. However, the resulting sensor suites may contain an unwanted 
number of sensors. When the penalty term is large, the resulting sensor suites will tend to have the desired 
number of sensors, but might not be as optimum. Experimentation is often needed to find the proper 
penalty weighting term that will balance these potential conflicts. For the S4 example application, a 
penalty weighting term value of 0.1 is used. 

With this merit function formulation, a penalty weighting term value of “1” denotes no penalty. This 
occurs when Wpenalty is set to zero by the user or when the number of actual sensors is the same as the 
number of desired sensors specified by the user. Therefore, performing a selection study with a Wpenalty of 
zero with this formulation will disable the penalty term and determine the optimal solution regardless of 
the desired number of sensors. 

The final factor in Eq. (3) is the diagnostic performance score, Dk. The calculation of this factor will 
be described in detail in Section 3.3. 

The merit algorithm process is illustrated by a simple demonstration of the calculations for a single 
sensor set. Assume that sensor suite k has three sensors while the desired number is two, and that the 
weight of the penalty term is 0.1. Also assume that suite k is evaluated by the System Diagnostic 
Algorithm with a resulting diagnostic performance score of 10.0. Further, assign each sensor a utility 
measure of 1. With these assumed inputs, the merit function, Eq. (3), may be evaluated as follows: 
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 𝑀𝑒𝑟𝑖𝑡𝑘 = �∑ 𝑢𝑖𝑚
𝑖=1
𝑚

� ∙ � 1
1+�𝑊𝑝𝑒𝑛𝑎𝑙𝑡𝑦�𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑁𝑘,𝑎𝑐𝑡𝑢𝑎𝑙��

� ∙ 𝐷𝑘   (6) 

  = �1+1+1
3

� ∙ � 1
1+(0.1×|2−3|)

� ∙ (10) 

 = (1) ∙ (0.909����) ∙ (10) 

 = 9. 09���� 

The merit value of 9. 09���� is used by the Down-Select Algorithm to characterize the worth of this sensor 
suite. 

3.3 Define System Diagnostic Model 

The next S4 component to be constructed is the System Diagnostic Model. Though characterized as 
an independent element throughout this guide, the System Diagnostic Model is actually a vital sub-
component of the Sensor Suite Merit Algorithm. As such, it tends to be implemented within the Sensor 
Suite Merit Algorithm. It is shown separately within this document to highlight its importance in the over-
all Iterative Down-Selection Process. With its influence on the Sensor Suite Merit Algorithm, the System 
Diagnostic Module should be identical to, or at the very least representative of, the actual operational 
diagnostic system. 

Even though this module is usually highly customized, there are common interface inputs and outputs 
that are appropriate for nearly any diagnostic module. To begin, there is a specification of the candidate 
sensor suite under evaluation so the diagnostic method has an indication as to which measurements are 
available and which are not. Another prerequisite is for a series of observation data for the faults of 
interest. Given this information the System Diagnostic Model will attempt to diagnose the occurrence of 
any faults. Finally, information about the true system condition is to be provided so that a grade or score 
can be given on how well the diagnostic system performed. On output, the System Diagnostic Module 
returns the computed diagnostic performance score, Dk. The diagnostic performance score is a scalar 
value that represents the quality or rating of the given candidate sensor suite to the diagnostic problem. It 
is subsequently provided as an input to the Sensor Suite Merit Algorithm as shown in Eq. (3). 
NOTE: The System Diagnostic Model presented here is provided for demonstration purposes and is 
solely intended to support the S4 example application. Alternate approaches may more accurately reflect 
diagnostic performance. Modifications to the method are encouraged to accommodate application-
specific requirements. 

For the S4 example application, a general purpose System Diagnostic Model is employed that 
consists of a fault detection element and a fault isolation element. Fault detection is executed on each set 
of sensor observations to determine if the observed condition deviates significantly enough to indicate a 
system anomaly. When a system anomaly is detected, the fault isolation component is activated and 
attempts to identify the faulty system component. The sensor observations used in the diagnostic 
evaluation are noise-free and contain a single fault magnitude for each fault type. The general system 
diagnostic process is illustrated in Figure 5.  
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Figure 5.—System Diagnostic Model Logic Flow Diagram 

3.3.1 Fault Detection 
In fault detection, the observed sensor values are examined for the indication of a fault. In this 

example, two types of fault detection checks are used on the conditioned sensor data. When a threshold is 
violated in either of these two checks, fault detection is declared. With the first check, each signal in the 
sensor suite is examined to determine if the absolute value of the sensor signal’s magnitude surpasses a 
minimum detection threshold of three times the sensor signal’s standard deviation value. In the second 
check, the combined root-mean-squared (RMS) value of the entire candidate sensor suite is compared to a 
detection threshold of 0.5. The sensor suite’s RMS value for each observation is computed by, 

 𝑅𝑀𝑆 = �1
𝑚
∑ 𝑦𝑖2𝑚
𝑖=1  (7) 

where 
RMS root-mean-square value of sensor suite 
m number of measurements in the sensor suite 
yi conditioned value of sensor i 
 
The threshold limits for the fault detection checks described above were established arbitrarily. In a 

normal application, the threshold limits are set using design criteria. For instance, threshold limits could 
be set to prevent specific faults from becoming catastrophic. Alternately, detection thresholds could be set 
according to missed detection (false positive) and/or false alarm (false negative) goals. 

Results of the fault detection test dictate the next action in the diagnostic process. If the fault is not 
detected, the diagnostic performance score for the fault detection test is set to zero because the 
measurement set did not sense the fault. If the fault is detected, a fault isolation algorithm is utilized to 
identify the source of the system anomaly. The fault isolation algorithm utilized in the S4 example 
application is described in the following section. 

3.3.2 Fault Isolation 
In the S4 example application, an Inverse Model is employed for fault isolation. An Inverse Model is 

a parameter optimization technique that performs model inversion to determine the fault type and 
magnitude that best recovers, or matches, the observed measurement values. In the methodology utilized, 
each known fault or fault hypothesis is individually evaluated. The fault hypothesis that most closely 
matches the observed fault signature is assumed to be the correct fault condition. The ability of the 
Inverse Model to accurately discriminate between correct and incorrect fault hypothesis reflects the 
suitability of the sensor suite under evaluation for fault isolation. 

Determine if Fault Test 
Case is Detectable

Perform Fault Isolation

Set Diagnostic Value to 
Zero

No

Yes

Sensor Suite Fault Test Case

Detected?

Calculate Diagnostic Value
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The Inverse Model used in this study assumes measurement parameters are piecewise linear functions 
of the fault conditions. For each fault j, an ordered sequence of interpolation points 𝑥𝑗1 < 𝑥𝑗2 < ⋯ < 𝑥𝑗𝑠 is 
selected, in part, to ensure the validity of the linearity assumption in each subinterval �𝑥𝑗

𝑞 , 𝑥𝑗
(𝑞+1)�. 

Consequently, interpolation points may not be evenly spaced as regions with increased non-linearity may 
contain more interpolation points while more linear regions may contain less. 

The value of sensor i at each interpolation point q for fault j is provided by the engine simulation 
model as indicated by the relation below 

 𝑦𝑖𝑗
𝑞 = 𝑓𝑖�𝑥𝑗

𝑞�  𝑓𝑜𝑟  𝑖 = 1,2, …𝑚;   𝑗 = 1,2, … ,𝑛;   𝑞 = 1,2, … , 𝑠;  (8)   

where 
𝑛 number of faults 
𝑚 number of measurements 
s number of interpolation points for each fault j 
𝑥𝑗
𝑞  value of fault 𝑥𝑗 at interpolation point q 
𝑦𝑖𝑗
𝑞  predicted value of measurement 𝑦𝑖 when 𝑥𝑗 = 𝑥𝑗

𝑞 and all other faults remain at their nominal 
values (i.e., equal to 0) 

𝑓𝑖  effective functional relation for sensor i 
 
To implement the piecewise linear approximation, fault j influences on measurement changes over 

fault j subintervals �𝑥𝑗
𝑞 , 𝑥𝑗

(𝑞+1)� are represented by constant influence coefficients 𝐴𝑖𝑗
𝑞 . For the solution of 

a single fault, the dimensionless change in any sensor i from its nominal value is approximated by the 
linear relation:  

 𝑦�𝑖 = 𝑓𝑖�𝑥�𝑗� = 𝐴𝑖𝑗
𝑞 �𝑥�𝑗 − 𝑥𝑗

𝑞� + 𝑦𝑖𝑗
𝑞  (9) 

where 
𝑥�𝑗 estimated value of fault j  
𝑦�𝑖  estimated value of sensor i due to estimate fault 𝑥𝚥�  

 
with the appropriate fault parameter interpolation points 𝑥𝑗

𝑞 such that 

 𝑥𝑗 =∈ �𝑥𝑗
𝑞 , 𝑥𝑗

(𝑞+1)�    for fault j  

and with the appropriate subinterval influences defined by the relation  

 𝐴𝑖𝑗
𝑞 =

𝑦𝑖𝑗
(𝑞+1)−𝑦𝑖𝑗

𝑞

𝑥𝑗
(𝑞+1)−𝑥𝑗

𝑞  

for fault j and for each measurement i = 1, 2, …, m. 
A modified Levenberg-Marquardt nonlinear optimization algorithm (Refs. 6 and 7) is used to solve 

the nonlinear optimization problem shown in Eq. (10) as a means of predicting the fault value 𝑥�𝑗 for each 
set of observations. Stated differently, for a given hypothesized fault, j, the algorithm minimizes the 
Euclidian norm of a vector of measurement residuals between the observed sensor values and the 
estimated sensor values, from Eq. (9), by adjusting the estimated fault, 𝑥�𝑗, 
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 𝑚𝑖𝑛 ��∑ 𝑦�𝑖2𝑚
𝑖=1 �   by selection of  𝑥�𝑗, where 𝑦�𝑖 = 𝑦𝑖 − 𝑦�𝑖 (10) 

Equation (10) can be termed the cost function or the objective function of the optimization process. 
The Levenberg-Marquardt algorithm will attempt to find the 𝑥�𝑗 that minimizes this equation. In the event 
that there is more than one 𝑥�𝑗 solution which minimizes Eq. (10), the minimum solution (i.e., the solution 
nearest the starting point) will be selected. 

The Inverse Model diagnostic procedure is briefly summarized as follows. Interpolation points are 
selected for each targeted fault. At each interpolation point, information that relates fault values to sensor 
values is obtained and is referred to as Inverse Model reference data. With this data and a fault magnitude 
approximation, estimates of associated sensor values are calculated using Eq. (9). Measurement residuals 
are then processed according to Eq. (10) which defines the Levenberg-Marquardt objective function. The 
Levenberg-Marquardt algorithm uses the Euclidian norm of the measurement residual vector to perturb 
the estimate of the fault magnitude until the norm in Eq. (10) falls below a user-defined tolerance limit. A 
number of iterations threshold is also used by the algorithm to stop the iteration process when a non-
converging solution occurs—presumably when the fault condition being recovered is not the true cause. 
When the optimization process terminates, the fault solution is determined.  

In this example application, the Inverse Model will be applied to recover each potential fault type, 
one fault at a time. The hypothesized fault type that best matches the observed fault signature will be 
classified as the fault type. Depending on the problem setup, it may be possible to solve for all faults 
simultaneously. 

3.3.3 Diagnostic Performance Score 
A diagnostic performance score is assigned by the System Diagnostic Model where each candidate 

sensor suite is evaluated against a prescribed set of faults. The diagnostic performance score is a 
summation of fault criticality weighting factors multiplied by the fault diagnostic performance metric for 
all of the test cases. The relation is given by, 

 𝐷𝑘 = ∑ 𝑑𝑗𝑛
𝑗=1 = ∑ 𝐶𝑗𝑍𝑗𝑛

𝑗=1  (11) 

where 
Dk diagnostic performance score for candidate sensor suite k 
dj diagnostic performance score for fault test case j 
Cj criticality factor of fault test case j 
Zj fault diagnostic performance metric for fault test case j 
 
The diagnostic performance score of Eq. (11) is comprised of two parameters—a criticality factor and 

a fault diagnostic performance metric. The criticality factor, Cj, serves as a weighting term that allows the 
user to prioritize each fault test case by criticality and/or probability of occurrence. In the S4 example 
application, this weighting term is set to 1.0 for all fault types.  Therefore, there is no difference in 
criticality across all of the fault test cases. For fault test cases that are detectable, the fault diagnostic 
performance metric, Zj, is calculated as,  

 𝑍𝑗 = ∑ 𝑎𝑅𝑙𝑛
𝑙=1  (12) 

where 

𝑎 �−1 if fault case hypothesized = true fault case input (if 𝑙 = 𝑗)
   1 if fault case hypothesized ≠ true fault case input (if 𝑙 ≠ 𝑗)

� 

𝑅𝑙  measurement residual metric for hypothesized fault l 
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The measurement residual agreement metric, Rl, an output from the Inverse Model, is an indicator of 
the quality of the recovered solution for hypothesized fault type l. During the Inverse Model diagnostic 
evaluation, each fault is recovered individually along with the set of measurement residuals at the 
recovered solution. The measurement residual metric is used as an indicator of the quality of the 
recovered solution by combining the measurement residuals into a root-mean square value using Eq. (13). 
The measurement residual metric is computed for each fault hypothesis and is combined to construct the 
fault diagnostic performance metric, Zj, for the given fault test case. The fault diagnostic performance 
metric should reflect a preference for small residuals, or a small value of Rl, when the true fault type 
matches the hypothesized fault type and large residuals, or a large value of Rl, when the fault types do not 
match. The measurement residual agreement metric is determined by, 

 𝑅𝑙 = �1
𝑚
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑚
𝑖=1  (13) 

where 

Rl measurement residual agreement metric for fault hypothesis l 
m number of measurements in the sensor suite 
yi  input (true) measurement value for sensor i 
𝑦�𝑖 recovered (estimated) measurement value for sensor i  

3.4 Choose Down-Select Algorithm 

The remaining element of the Iterative Down-Select Process is the Down-Select Algorithm. This 
module selects a manageable collection of sensor suites to be evaluated by the System Diagnostic Model 
and the Sensor Suite Merit Algorithm. The resulting merit values are then re-evaluated by the Down-
Select Algorithm to generate a new set of sensor suites. With each cycle of the Iterative Down-Select 
Process, the set of sensor suites should be improving and converging toward an effective solution to the 
sensor selection problem. Details of the sensor selection application such as number of candidate sensors, 
complexity of the sensor selection problem, and user preference will influence the choice of the proper 
Down-Select Algorithm.  

As implied above, the Down-Select Algorithm has common interface requirements for almost every 
application. On input, the set of sensor suites along with their merit values are required. This information 
is used to generate a new set of sensor suites to be returned as output. As previously stated, the output set 
of sensor suites should, in a general sense, be an improvement on the input set of sensor suites. 

If the number of sensor suite combinations is computationally feasible to evaluate in full, an 
exhaustive search (i.e., brute force) may be applied. Because every possible sensor suite combination is 
evaluated with this methodology, an exhaustive search has the advantage of finding the true optimum 
sensor suite as defined by the Sensor Suite Merit Algorithm. For this reason, exhaustive search is the 
preferred Down-Select Algorithm when possible.  

When the number of sensor suite combinations is computationally intractable for complete 
evaluation, other optimization techniques are to be employed. This typically occurs in situations when a 
large number of sensors are being considered such as in a test-stand application. Optimization techniques 
like Genetic Algorithms and Random Search have been applied to these larger problems with success 
(Refs. 8 and 9). Genetic Algorithms emulate evolutionary biological processes while Random Search will 
randomly generate and evaluate a large number of sensor suite permutations. Without a complete 
evaluation of every sensor suite possible, the best performing sensor suite can only be assumed to be near-
optimal. While they may not be truly optimal, these solutions are acceptable if they achieve the 
operational objectives. To increase confidence in sensor selection results, comparisons to the findings of 
other studies or to expert opinion should be made if possible. 

In the S4 example application, a Genetic Algorithm (GA) (Ref. 4) is employed as the Down-Select 
Algorithm. Even though Exhaustive Search is a feasible option for the given number of candidate sensors, 
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the GA is used to illustrate the cyclic nature of the Iterative Down-Select Process. In an Exhaustive 
Search, all possible sensor suites are evaluated in a single iteration. Therefore, a GA is presented because 
it is often employed, and because it provides for a more complete demonstration of the S4 methodology. 

As there are variations on GA implementations, the particular features of the S4 example application 
are described here. Initially, a population of candidate sensor suites and their associated merit values are 
encoded. Each individual member of the population is referred to as a chromosome and represents a 
single candidate sensor suite. Each chromosome is composed of bits called genes that are associated with 
the individual sensors. Binary encoding of the gene (1 or 0) indicates if the particular sensor associated 
with the gene is present within the sensor suite represented by the chromosome. A chromosome mask is 
employed to force the selection or omission of particular sensors as desired. In the S4 example 
application, the chromosome mask allows for the control sensors to always be present. Each chromosome 
in the input population has an assigned merit value received as input from the merit algorithm. Elitism is 
used to advance a user-defined number of best sensor suites to the next generation without modification. 
To populate the remainder of the next generation, parents are chosen using roulette-wheel selection 
(Ref. 4) whereby sensor suites with higher relative merit values have an increased probability of 
becoming a parent. Once a pair of parent suites is selected, a random number calculation is made to 
determine if crossover occurs. If it does, single-point crossover is employed to construct offspring sensor 
suites. In this process, a crossover point is selected randomly, and genes are copied from the parents to the 
children as depicted in Figure 6. If crossover does not occur, the parents are simply copied to the next 
generation. Mutation or random bit-flipping occurs during parent-to-child gene copying for its 
diversifying effects. As generations progress, the population will increasingly converge to a group of 
similar sensor suites providing good diagnostic capability. Mutation assists in evolving away from local 
optima in the solution space. The process repeats for a user-defined number of generations. Experience 
has found for the given example application that there is little benefit in iterating for more than 20 
generations. Beyond this number of generations, the population has converged to such a degree that 
mutation has little to no effect. The basic steps of the GA employed are outlined below. The actions to 
determine the next generation are shown in Figure 7. 
 
 
 

 
Figure 6.—Single Point Crossover as Used By Genetic 

Algorithm-Based Down-Select Process 
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Figure 7.—Genetic Algorithm Logic Flow Diagram to Populate Next Generation 

 
1. Initialize—Input population of sensors (initial population is randomly generated) and their 

corresponding merit values are calculated by the Sensor Suite Merit Algorithm. 
2. Elitism—Automatically advance a user-specified number of sensor suites with the highest merit 

value to the next generation. 
3. Selection—Select two sensor suites using roulette-wheel selection. 
4. Crossover—Determine if crossover occurs. 

a. No Crossover—Both parents advance to the next generation without modification. 
b. Crossover—Apply single point crossover with the possibility of mutation as each gene is copied. 

5. Repeat—Return to Step 3 until next generation is populated. 
6. Output—Output the new generation of sensor suites for next initiation of the Iterative Down-Select 

Process. 
7. Repeat—Return to Step 1 until target number of generations is reached. 

3.5 Compile Data Sets 

In this stage, all data sets needed to conduct the sensor selection process are obtained. Data can be 
gathered from any appropriate source. In a typical application, data is acquired from a computer model 
that constitutes the System Simulation. While other sources of data are possible, a computer simulation is 
usually the only means to obtain a data set for all of the candidate sensors for all of the faults. While 
computer simulations are effective, caution should be exercised. Verification of the simulation is 
necessary to ensure the results are accurate within some acceptable tolerance. In addition, the boundaries 
of the simulation’s operating envelope are to be recognized. Excursions beyond simulation limits may 
produce unrealistic results. Care should be taken so that the data is as correct as possible. 
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In a typical application, two types of fault scenario data are required. In the first, the System 
Diagnostic Model requires data for training or reference purposes. This is referred to as Inverse Model 
reference data. In the second, the Sensor Suite Merit Algorithm utilizes test case data to evaluate the 
candidate sensor suites. These data are typically generated from the System Simulation for the fault 
scenarios and operating conditions of interest. 

In the S4 example application, test case data are selected from the available Inverse Model reference 
data. For each fault, an Inverse Model reference data interpolation point is used as the fault test case. This 
is further illustrated in Section 3.5.2. 

3.5.1 Inverse Model Reference Data 
The System Diagnostic Model uses Inverse Model reference data to classify the fault. For each fault 

type, nine evenly spaced interpolation points from nominal to the maximum fault magnitude limit are 
selected that characterize the fault magnitude and associated measurement values. 

C-MAPSS allows a user to adjust internal engine health parameters to generate simulated engine 
measurement data for the component-level faults. Although there are five rotating engine components, 
only four will have fault condition data generated. Prior C-MAPSS experience has revealed that faults 
associated with the low pressure compressor are especially difficult to discern. As a result, those 
component faults scenarios are not included in the S4 example application. 

For each engine component fault under consideration, the efficiency and flow capacity health 
parameters are simultaneously adjusted while all other health parameters remain at their nominal settings 
as documented by Simon (Ref. 10). Fault ratio and fault magnitude are inputs to Eq. (14) to determine the 
adjustments to flow capacity and efficiency to characterize the elements of the engine component fault. 
The fault ratio, γ:η, between flow capacity, γ, and efficiency, η, is constant. Because Inverse Model 
reference data is being generated, nine evenly spaced incremental fault magnitudes, FMagnitude, are 
computed from 0 percent to the maximum fault magnitude. The maximum fault magnitude and fault ratio 
for each engine component fault is shown in Table 3. The resulting efficiency and flow capacity 
adjustments for each fault magnitude are shown in Table 4. Both of these adjustments are inputs to 
C-MAPSS and define a single component fault. In the following descriptions, the component fault 
magnitudes, not the individual adjustments to efficiency and flow capacity, are used to reference the fault 
magnitude. 

 𝜂𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝐹𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒

�1+(𝛾:𝜂)2
 

 𝛾𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝜂𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 × (𝛾: 𝜂) (14) 

 
TABLE 3.—ENGINE COMPONENT FAULT CONDITIONS 
Engine component fault Maximum fault 

magnitude 
Fault ratio 

(γ:η) 
FAN 0.07 1.50 
High pressure compressor 0.07 1.50 
High pressure turbine 0.07 –0.75 
Low pressure turbine 0.07 –0.75 

 
With the health parameter inputs in Table 4, C-MAPSS is used to generate the data sets for the S4 

example application. In the subsequent data tables, the raw model output is given followed by the 
conditioned values that are used in the S4 procedure. The conditioned data are calculated using Eq. (1) 
and the baseline and noise values shown in Table 1. The resulting fan fault scenario data are shown in 
Table 5 and Table 6. The high pressure compressor fault data are displayed in Table 7 and Table 8. 
Likewise, the high pressure turbine fault data are located in Table 9 and Table 10 and the low pressure 
turbine fault data in Table 11 and Table 12. 
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In the S4 example application, all C-MAPSS data is generated under closed-loop control operating 
conditions. C-MAPSS has a fan speed controller, so no deviation in Nf occurs under any of the 
aforementioned fault scenarios.  

 
 

TABLE 4.—C-MAPSS HEALTH PARAMETER ADJUSTMENT FOR ENGINE COMPONENT FAULTS 
Po

in
t FAN  

Po
in

t High pressure compressor 

Magnitude ηadjustment γadjustment  Magnitude ηadjustment γadjustment 

1 0.0000 0.0000 0.0000  1 0.0000 0.0000 0.0000 
2 0.0088 –0.0049 –0.0073  2 0.0088 –0.0049 –0.0073 
3 0.0175 –0.0097 –0.0146  3 0.0175 –0.0097 –0.0146 
4 0.0263 –0.0146 –0.0218  4 0.0263 –0.0146 –0.0218 
5 0.0350 –0.0194 –0.0291  5 0.0350 –0.0194 –0.0291 
6 0.0436 –0.0243 –0.0364  6 0.0436 –0.0243 –0.0364 
7 0.0525 –0.0291 –0.0437  7 0.0525 –0.0291 –0.0437 
8 0.0613 –0.0340 –0.0510  8 0.0613 –0.0340 –0.0510 
9 0.0700 –0.0388 –0.0582  9 0.0700 –0.0388 –0.0582 

Po
in

t 

High pressure turbine  

Po
in

t 

Low pressure turbine 

Magnitude ηadjustment γadjustment  Magnitude ηadjustment γadjustment 

1 0.00000 0.0000 0.0000  1 0.00000 0.0000 0.0000 
2 0.00875 –0.0070 0.0053  2 0.00875 –0.0070 0.0053 
3 0.01750 –0.0140 0.0105  3 0.01750 –0.0140 0.0105 
4 0.02625 –0.0210 0.0158  4 0.02625 –0.0210 0.0158 
5 0.03500 –0.0280 0.0210  5 0.03500 –0.0280 0.0210 
6 0.04357 –0.0350 0.0263  6 0.04357 –0.0350 0.0263 
7 0.05250 –0.0420 0.0315  7 0.05250 –0.0420 0.0315 
8 0.06125 –0.0490 0.0368  8 0.06125 –0.0490 0.0368 
9 0.07000 –0.0560 0.0420  9 0.07000 –0.0560 0.0420 

 
 

TABLE 5.—UNCONDITIONED (RAW) FAN FAULT DATA 

 

Fan fault magnitude increment 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 526.14 526.04 525.93 525.81 525.68 525.55 525.42 525.28 525.14 
T30 1229.32 1227.88 1226.42 1224.87 1223.25 1221.56 1219.80 1217.96 1216.03 

PS30 129.88 129.12 128.34 127.41 126.45 125.47 124.46 123.44 122.39 
Wf 1.30 1.29 1.28 1.27 1.26 1.24 1.23 1.22 1.20 
Nf 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 
Nc 7920.79 7915.22 7909.51 7903.54 7897.32 7890.86 7884.13 7877.12 7869.83 
T48 1503.30 1500.55 1497.74 1494.82 1491.77 1488.59 1485.26 1481.77 1478.13 
P15 7.11 7.09 7.07 7.05 7.02 7.00 6.97 6.94 6.91 
T21 489.48 489.24 489.00 488.74 488.46 488.18 487.88 487.58 487.26 
P25 8.77 8.76 8.74 8.71 8.69 8.66 8.63 8.60 8.57 
T50 986.95 985.53 984.10 982.73 981.30 979.81 978.24 976.59 974.86 
P50 4.55 4.54 4.52 4.51 4.49 4.48 4.46 4.45 4.43 
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TABLE 6.—CONDITIONED FAN FAULT DATA 

 

Fan fault magnitude increment 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 0.0000 –0.0401 –0.0807 –0.1269 –0.1750 –0.2244 –0.2753 –0.3274 –0.3810 
T30 0.0000 –0.1563 –0.3152 –0.4833 –0.6591 –0.8422 –1.0334 –1.2329 –1.4414 
PS30 0.0000 –1.1749 –2.3691 –3.8023 –5.2855 –6.7988 –8.3454 –9.9262 –11.5425 
Wf 0.0000 –0.7768 –1.5641 –2.4741 –3.4151 –4.3771 –5.3624 –6.3714 –7.4050 
Nf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Nc 0.0000 –0.2809 –0.5693 –0.8709 –1.1851 –1.5115 –1.8514 –2.2051 –2.5735 
T48 0.0000 –0.2444 –0.4928 –0.7519 –1.0226 –1.3050 –1.6006 –1.9094 –2.2325 
P15 0.0000 –0.4986 –1.0019 –1.7227 –2.4683 –3.2196 –3.9765 –4.7391 –5.5076 
T21 0.0000 –0.0643 –0.1302 –0.2015 –0.2759 –0.3531 –0.4334 –0.5166 –0.6031 
P25 0.0000 –0.3921 –0.7863 –1.3938 –2.0220 –2.6517 –3.2826 –3.9146 –4.5474 
T50 0.0000 –0.1913 –0.3844 –0.5699 –0.7629 –0.9647 –1.1764 –1.3994 –1.6335 
P50 0.0000 –0.5355 –1.0761 –1.7183 –2.3775 –3.0444 –3.7203 –4.4054 –5.0998 

 
 
 
 
 

TABLE 7.—UNCONDITIONED (RAW) HIGH PRESSURE COMPRESSOR FAULT DATA 

 
High Pressure Compressor Fault Magnitude Increment 

Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 
Fault 

magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 526.14 526.34 526.54 526.74 526.94 527.15 527.36 527.57 527.79 
T30 1229.32 1232.95 1236.61 1240.30 1244.03 1247.77 1251.51 1255.28 1259.09 

PS30 129.88 129.72 129.56 129.40 129.24 129.07 128.89 128.70 128.52 
Wf 1.30 1.31 1.31 1.32 1.32 1.33 1.34 1.34 1.35 
Nf 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 
Nc 7920.79 7927.19 7933.66 7940.22 7946.87 7953.51 7960.07 7966.70 7973.42 
T48 1503.30 1510.92 1518.63 1526.40 1534.25 1542.28 1550.62 1559.06 1567.58 
P15 7.11 7.11 7.11 7.11 7.11 7.11 7.11 7.12 7.12 
T21 489.48 489.50 489.52 489.54 489.56 489.58 489.60 489.62 489.64 
P25 8.77 8.78 8.79 8.79 8.80 8.80 8.81 8.82 8.82 
T50 986.95 992.76 998.65 1004.59 1010.60 1016.74 1023.12 1029.59 1036.12 
P50 4.55 4.55 4.54 4.54 4.54 4.54 4.54 4.53 4.53 
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TABLE 8.—CONDITIONED HIGH PRESSURE COMPRESSOR FAULT DATA 

 
High pressure compressor fault magnitude increment 

 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 0.0000 0.0752 0.1510 0.2271 0.3036 0.3817 0.4624 0.5438 0.6256 
T30 0.0000 0.3932 0.7906 1.1908 1.5949 2.0011 2.4059 2.8151 3.2280 
PS30 0.0000 –0.2446 –0.4914 –0.7398 –0.9887 –1.2500 –1.5320 –1.8165 –2.1033 
Wf 0.0000 0.4374 0.8778 1.3196 1.7648 2.2157 2.6814 3.1501 3.6211 
Nf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Nc 0.0000 0.3233 0.6501 0.9813 1.3171 1.6524 1.9835 2.3184 2.6579 
T48 0.0000 0.6757 1.3592 2.0485 2.7451 3.4571 4.1967 4.9451 5.7012 
P15 0.0000 0.0236 0.0472 0.0709 0.0946 0.1188 0.1436 0.1686 0.1936 
T21 0.0000 0.0055 0.0111 0.0166 0.0222 0.0279 0.0337 0.0396 0.0454 
P25 0.0000 0.1368 0.2741 0.4115 0.5490 0.6891 0.8332 0.9779 1.1229 
T50 0.0000 0.7855 1.5807 2.3832 3.1955 4.0251 4.8872 5.7602 6.6430 
P50 0.0000 –0.0758 –0.1523 –0.2293 –0.3060 –0.3861 –0.4692 –0.5532 –0.6380 

 
 
 
 
 

TABLE 9.—UNCONDITIONED (RAW) HIGH PRESSURE TURBINE FAULT DATA 

 
High pressure turbine fault magnitude increment 

 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 526.14 526.55 526.96 527.38 527.81 528.23 528.66 529.05 529.43 
T30 1229.32 1226.70 1224.06 1221.35 1218.65 1215.95 1213.26 1210.57 1207.88 
PS30 129.88 128.59 127.29 125.99 124.70 123.43 122.19 120.95 119.73 
Wf 1.30 1.31 1.32 1.33 1.35 1.36 1.37 1.38 1.39 
Nf 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 
Nc 7920.79 7909.47 7898.08 7886.35 7874.78 7863.36 7852.09 7840.98 7830.02 
T48 1503.30 1518.98 1535.10 1552.02 1569.06 1586.21 1603.50 1620.98 1638.62 
P15 7.11 7.11 7.11 7.12 7.12 7.12 7.12 7.12 7.12 
T21 489.48 489.52 489.56 489.60 489.64 489.69 489.73 489.77 489.81 
P25 8.77 8.79 8.80 8.81 8.82 8.84 8.85 8.86 8.87 
T50 986.95 998.76 1010.92 1023.71 1036.59 1049.60 1062.71 1076.00 1089.44 
P50 4.55 4.54 4.54 4.54 4.53 4.53 4.52 4.52 4.52 
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TABLE 10.—CONDITIONED HIGH PRESSURE TURBINE FAULT DATA 

 
High pressure turbine fault magnitude increment 

 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 0.0000 0.1529 0.3086 0.4710 0.6331 0.7950 0.9567 1.1051 1.2475 
T30 0.0000 –0.2848 –0.5707 –0.8647 –1.1580 –1.4506 –1.7425 –2.0344 –2.3260 
PS30 0.0000 –1.9967 –3.9847 –5.9978 –7.9796 –9.9293 –11.8485 –13.7515 –15.6317 
Wf 0.0000 0.8701 1.7561 2.6746 3.5894 4.5011 5.4097 6.3158 7.2195 
Nf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Nc 0.0000 –0.5716 –1.1466 –1.7393 –2.3236 –2.9001 –3.4694 –4.0301 –4.5836 
T48 0.0000 1.3910 2.8205 4.3213 5.8321 7.3537 8.8870 10.4370 12.0017 
P15 0.0000 0.0478 0.0962 0.1463 0.1959 0.2451 0.2939 0.3427 0.3914 
T21 0.0000 0.0112 0.0226 0.0343 0.0460 0.0575 0.0690 0.0804 0.0919 
P25 0.0000 0.2775 0.5580 0.8486 1.1363 1.4215 1.7042 1.9252 2.1177 
T50 0.0000 1.5959 3.2392 4.9659 6.7070 8.4634 10.2358 12.0309 13.8461 
P50 0.0000 –0.1560 –0.3147 –0.4835 –0.6528 –0.8230 –0.9944 –1.1724 –1.3538 
 
 
 
 
 

TABLE 11.—UNCONDITIONED (RAW) LOW PRESSURE TURBINE FAULT DATA 

 
Low pressure turbine fault magnitude increment 

 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 526.14 525.79 525.42 525.02 524.63 524.22 523.82 523.42 523.01 
T30 1229.32 1232.10 1234.90 1237.74 1240.61 1243.49 1246.40 1249.33 1252.28 
PS30 129.88 130.88 131.90 132.91 133.93 134.97 136.02 137.09 138.17 
Wf 1.30 1.31 1.32 1.33 1.34 1.36 1.37 1.38 1.39 
Nf 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 1936.21 
Nc 7920.79 7931.05 7941.47 7952.10 7962.86 7973.76 7984.80 7996.00 8007.34 
T48 1503.30 1503.98 1504.76 1505.71 1506.72 1507.81 1508.97 1510.18 1511.46 
P15 7.11 7.11 7.11 7.11 7.10 7.10 7.10 7.10 7.10 
T21 489.48 489.44 489.40 489.37 489.33 489.29 489.26 489.22 489.18 
P25 8.77 8.76 8.75 8.74 8.72 8.71 8.69 8.68 8.66 
T50 986.95 991.42 995.96 1000.65 1005.38 1010.16 1014.99 1019.87 1024.80 
P50 4.55 4.57 4.59 4.61 4.63 4.65 4.67 4.70 4.72 
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TABLE 12.—CONDITIONED LOW PRESSURE TURBINE FAULT DATA 

 

Low pressure turbine fault magnitude increment 
Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Point 8 Point 9 

Fault 
magnitude 0.0000 0.0086 0.0175 0.0263 0.0350 0.0436 0.0525 0.0613 0.0700 

T24 0.0000 –0.1346 –0.2738 –0.4251 –0.5771 –0.7296 –0.8827 –1.0365 –1.1911 
T30 0.0000 0.3008 0.6047 0.9133 1.2240 1.5370 1.8522 2.1698 2.4897 
PS30 0.0000 1.5427 3.0987 4.6591 6.2385 7.8378 9.4569 11.0961 12.7560 
Wf 0.0000 0.8098 1.6358 2.4809 3.3414 4.2184 5.1114 6.0207 6.9469 
Nf 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Nc 0.0000 0.5183 1.0445 1.5812 2.1249 2.6752 3.2328 3.7981 4.3711 
T48 0.0000 0.0600 0.1290 0.2135 0.3035 0.4003 0.5026 0.6103 0.7235 
P15 0.0000 –0.0424 –0.0849 –0.1271 –0.1696 –0.2125 –0.2557 –0.2994 –0.3434 
T21 0.0000 –0.0099 –0.0199 –0.0298 –0.0398 –0.0498 –0.0600 –0.0702 –0.0805 
P25 0.0000 –0.2459 –0.5172 –0.8536 –1.1930 –1.5350 –1.8802 –2.2286 –2.5803 
T50 0.0000 0.6038 1.2181 1.8506 2.4895 3.1360 3.7888 4.4480 5.1137 
P50 0.0000 0.8889 1.7957 2.7166 3.6585 4.6218 5.6074 6.6160 7.6483 

 
 
 

3.5.2 Test Case Scenario Data 
Test case scenario data sets are constructed to serve as inputs to the Sensor Suite Merit Algorithm and 

the System Diagnostic Model. As such, the required size and format of the test case scenario data set is 
dependent on the design of these two elements. 

In the S4 example application, the test case data are simply copied from the mid-point fault 
magnitude case (interpolation point 5) of each fault type in the Inverse Model reference data. This was 
done to simplify presentation of the example application. The fault test case data are shown in Table 13. 
 
 
 

TABLE 13.—FAULT TEST CASES 

 
Fan HPC HPT LPT 

Fault 
magnitude 0.0350 0.0350 0.0350 0.0350 

T24 –0.1750 0.3036 0.6331 –0.5771 
T30 –0.6591 1.5949 –1.1580 1.2240 

PS30 –5.2855 –0.9887 –7.9796 6.2385 
Wf –3.4151 1.7648 3.5894 3.3414 
Nf 0.0000 0.0000 0.0000 0.0000 
Nc –1.1851 1.3171 –2.3236 2.1249 
T48 –1.0226 2.7451 5.8321 0.3035 
P15 –2.4683 0.0946 0.1959 –0.1696 
T21 –0.2759 0.0222 0.0460 –0.0398 
P25 –2.0220 0.5490 1.1363 –1.1930 
T50 –0.7629 3.1955 6.7070 2.4895 
P50 –2.3775 –0.3060 –0.6528 3.6585 
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3.6 Develop Software Modules 

The remaining step before the sensor selection process can begin is to implement the elements of S4 
as functioning software. The sophistication of the software can extend from one of high automation to one 
requiring constant user intervention and adjustment. The available computational resources, the demands 
of the sensor selection application, and the programming ability of the user dictate how complicated the 
software should be.  

While S4 is intended to be tailored for each specific application, software developed for other S4 
applications can provide a basis from which a customized framework is built. Furthermore, software from 
previous S4 implementations is normally used to begin the development of new frameworks. Appropriate 
software elements are selected and modified for incorporation into the new application. Therefore, 
standardizing software interfaces helps promote modularity and may reduce development efforts. 

For the S4 example application, MATLAB is selected as the software programming environment. 
Key reasons include ease of programming and acceptable execution speed. Additionally, MATLAB 
allows for the incorporation of compiled code through MEX-files. MEX is a shorthand word for 
“MATLAB executable.” MEX-files are library functions written in FORTRAN, C, or C++ that can be 
evoked from the MATLAB environment. Since these files are compiled and not interpreted, their use 
greatly increases the speed of execution of the MATLAB routine. They are ideal for computationally 
intensive functions that are not modified often. Another benefit of MEX-files is that they permit the 
inclusion of software packages not originally intended for MATLAB. In this way, legacy software 
packages may be integrated with MATLAB.  

MATLAB software modules utilized in the S4 example application are described in the following 
subsections. 
 

3.6.1 KnowledgeBase.m 
KnowledgeBase.m contains general information utilized by multiple software modules in the 

performance of the Iterative Down-Select Process. Examples of data it includes are Inverse Model 
reference data and fault test case data. To help promote modularity, KnowledgeBase.m does not 
include data which is only pertinent to a single software module, that data is instead located in the specific 
module that utilizes it.  

3.6.2 MeritAlgorithm.m 
The Sensor Suite Merit Algorithm described in Section 3.2 is implemented in 

MeritAlgorithm.m. In the file, there is an initialization section, a merit algorithm section, and a 
parameter clean-up or termination section. The initialization section will set the penalty term parameter 
values and allocate memory for vectors used by the merit algorithm. In the merit algorithm section, the 
evaluation procedure is performed for each candidate sensor suite. In the examination, the diagnostic term 
is first reset to zero and the System Diagnostic Model is called for each fault test case. The returned value 
of the diagnostic performance of the candidate sensor suite for the fault is multiplied by the fault 
criticality and is added to the diagnostic term. After the diagnostic term is computed, the penalty term and 
utility measure are calculated. The product of these three parameters forms the merit value of the 
candidate sensor suite. When the processing is complete, memory is freed in the parameter clean-up 
section. Because of the association with the System Diagnostic Model, the Sensor Suite Merit Algorithm 
file will also perform variable clean-up on the diagnostic parameters. The process flow is depicted in 
Figure 8. 

3.6.3 SystemDiagnostic.m 
The System Diagnostic Model described in Section 3.3 is implemented in SystemDiagnostic.m. 

The file has an initialization section and two diagnostic sections. Because the variables are still being used 
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at process termination, the variable clean-up processing occurs within MeritAlgorithm.m. In the 
initialization section, the threshold limits are set and memory is allocated for the measurement residuals 
vector. The first diagnostic section performs fault detection. If the fault is detected, fault isolation is 
performed in the second diagnostic section. If the fault is not detected, the diagnostic performance value 
is set to zero and the diagnostic process ends for that fault. The diagnostic process flow is shown in 
Figure 9. 
 

 
Figure 8.—Process Flow of Sensor Suite Merit Algorithm File 

 

 
Figure 9.—Process Flow of System Diagnostic Model File 
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3.6.4 GeneticAlgorithm.m 
The Genetic Algorithm described in Section 3.4 is implemented in GeneticAlgorithm.m and 

mexGA.mexw32. Most of the functionality of the Genetic Algorithm is contained within 
mexGA.mexw32. The GeneticAlgorithm.m file has an initialization section, an execution section, 
and a clean-up section. The initialization section sets the values of the Genetic Algorithm parameters. On 
the first call, only the initialization section is executed because the Iterative Down-Select Process is still 
initializing and merit values have not been assigned to the sensor suites. On subsequent calls, the 
execution section is entered and the Genetic Algorithm MEX-File is evoked. Parameter clean-up is 
performed during the last iteration of the process. 

3.7 Create and Conduct the Sensor Selection Process 

Here, the Iterative Down-Selection Process is created and executed. In the S4 example application, a 
higher-level Matlab script, or m-file, is developed that implements the Iterative Down-Select Process 
using the m-files and MEX-files developed in Section 3.6.  

3.7.1 Create IterativeDownSelect.m 
The subroutine that begins the sensor selection process is IterativeDownSelect.m. The first 

action of this file is to load Knowledge Base information. Next, an iterative loop is entered where the 
subroutines MeritAlgorithm and GeneticAlgorithm are called a prescribed number of times. 
Merit calculations are done within MeritAlgorithm which calls SystemDiagnostic for the 
diagnostic performance analysis. The subroutine SystemDiagnostic subsequently calls the MEX-
File mexInverseModel.mexw32 to execute the Inverse Model. For GeneticAlgorithm, the 
MEX-File mexGA.mexw32 performs the intensive Genetic Algorithm computing. When the iterations 
are complete, the subroutine PostAnalysis is evoked to do post analysis and any function termination 
processing. The calling structure is shown in Figure 10. 
 

 
Figure 10.—Process Flow of Iterative 

Down-Select Process Files 
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3.7.2 Execute IterativeDownSelect.m 
In the S4 example application, the procedure is executed by typing “IterativeDownSelect” in 

the MATLAB Command Window. As the procedure executes, the status is displayed on the screen as 
shown in Figure 11. 

In this evaluation, the best sensor suite was found to include the control sensor suite plus T50 and P50 
with a merit value of 26.211393. Although not shown in Figure 11, the two next best sensor suites were 
found to include the set of control sensors augmented by P25 and P50, and the set of control sensors with 
P25 and T50. Both of these suites had the same merit value of 24.279624. 

The S4 example application can be modified to exercise the process. While the default settings of the 
parameters are sufficient, adjustments can be made to explore through experimentation. Interesting results 
can be obtained by changing the desired number of sensors. By default, this number of sensors is set to 9. 
This translates to two candidate sensors being selected to augment the 7 control sensors. For practical 
purposes, this number can vary from 8 (for 1 additional sensor) to 11 (for all sensors except one). Another 
area of experimentation is the number of generations. Because the number of possible sensor suite 
combinations with 5 candidate sensors is limited, the number of generations is set to five. Larger pools of 
candidate sensors require a greater number of iterations. With the setup described in this guide, it has 
been observed that there is never a benefit in more than 20 generations regardless of the number of 
additional candidate sensors. After 20 generations, the collection of candidate sensor suites has 
insufficient diversity to generate unique sensor suites. In effect, the process converges to an optimum. 
Better results are obtained by restarting the process with an initial set of sensor suites that includes a few 
of the better performing sensor suites. 

 
 

 
 

>> IterativeDownSelect 
 
Beginning Iterative Down-Select... 
Generation 1 
Generation 2 
Generation 3 
Generation 4 
Generation 5 
Iterative Down-Select Completed. 
 
The Best Sensor Suite: 
 T24  
 T30  
 PS30 
 Wf   
 Nf   
 Nc   
 T48  
 T50  
 P50  
 
Number of sensors in the best suite is 9. (9 was desired) 
The merit value was 26.211393 
 
>> 

Figure 11.—Example of Iterative Down-Select Process Software Executing 
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When non-deterministic Down-Select Algorithms like Genetic Algorithms are employed, multiple 
runs of the Iterative Down-Selection Process are usually necessary. The randomness of the Down-Select 
Algorithm can produce different results each time the process is executed. This is especially true with 
larger sensor selection problems. When this occurs, the analysis should be repeated with the best results 
being recorded and compared. By repeating the study and examining the consistency of the results, 
confidence that the better performing sensor suites are being found is gained. (Please note that the S4 
example application software has been configured to be repeatable in order to produce results that 
correspond to this guide by resetting the random number generators during application initialization.) 
After a set of well-performing sensor suites have been identified, the Final Selection Process is performed 
to select the final sensor suite. 

3.8 Create and Perform Final Selection Process 

Once a set of sensor suites have been identified from the Iterative Down-Select Process, the Statistical 
Evaluation Algorithm within the Final Selection Process (Figure 12) can begin. As the main element of 
the Final Selection Process, the Statistical Evaluation Algorithm, analyzes these sensor suites with a 
rigorous evaluation. Factors that are otherwise too computationally expensive or simply too complex to 
include in the Iterate Down-Select Process may now be incorporated. As with other components of S4, 
the user has the flexibility to incorporate capabilities tailored to their specific application  

The implementation of the Statistical Evaluation Algorithm in the S4 example application is 
described in the following subsections. The modules developed in Section 3.6 are used as the primary 
building blocks with slight modifications as noted to facilitate the Final Selection Process. 
 
 

 
Figure 12.—Process Flow of Final 

Selection Process 
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Figure 13.—Adding Random Noise to Sensor Measurement Values 

 

3.8.1 Knowledge Base 
The Performance Related Information and System Simulation contained in the Knowledge Base are 

used to institute a sensor suite evaluation environment that is as authentic in all regards as possible. 
During operation the target system can experience various sources of measurement uncertainty. For 
example, sensor data are subject to signal noise, calibration and measurement resolution issues, and 
potential limits in the range of operation among others factors. Target system performance characteristics 
are influenced by factors such as hardware build discrepancies, modes of operation and variations in 
environmental conditions. This information may be used to produce new data sets. 

In the S4 example application, the fault data are the same as that used in the Iterative Down-Select 
Process, but a larger sample set is generated with random noise superimposed on each measurement. To 
accomplish this, a noise array sized for a sequence of 100 time intervals for each sensor measurement is 
created. A random number generator with a normal distribution is employed to populate the noise array. 
The vector of sensor measurements for the fault test case is added to each row of the noise array to create 
the augmented sensor measurement array. Figure 13 illustrates the process with 3 sensor measurements 
and random noise for 10 time samples. 

Special care should be exercised when using noisy data. To insure that consistent evaluations are 
made from the data, the noise values superimposed on the fault test case data should be the same for each 
sensor for each fault test case. In other words, every sensor should have the same sequence of noise added 
to it in every evaluation. Otherwise, the results could be skewed by the differing noise values. 

3.8.1 Merit Algorithm 
Typically, the Sensor Suite Merit Algorithm is the same as the one employed in the Iterative Down-

Select Process though it may be modified to account for changes in the evaluation setting. The penalty 
term may be removed if undesired characteristics have been filtered from the subset of well performing 
sensor suites. Conversely, the penalty term may be reconstructed to penalize for other features relevant to 
the statistical nature of the Final Selection Process. In a similar manner, the utility measure can be 
expanded to incorporate detailed performance specifications of each particular sensor type. 

T24 T30 PS30
-0.20 -0.75 -6.00
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Measurements

-0.47 -1.47 2.42
-0.12 0.19 0.96
1.48 -0.82 -0.32
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-0.23 -0.29 0.94
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-0.28 -1.84 -0.88
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… … …
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-0.29 0.29 -5.68
… … …
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In the S4 example application, the penalty term and the utility measure were removed to simplify the 
process presentation. Hence, the merit value for each sensor suite is equivalent to the summation of the 
diagnostic terms for each fault test case from the System Diagnostic Model, see Eq. (11). 

3.8.2 System Diagnostic Model 
The enhanced data employed in the Statistical Evaluation Algorithm usually require the System 

Diagnostic Model to be improved. A preprocessor may be inserted to adjust the data to be in a form that is 
compatible with the System Diagnostic Model. This may include utilizing a data smoothing technique for 
noisy data, combining redundant sensor measurements or correcting bias effects in the data. Additional 
modifications may be necessary to tune the diagnostic algorithm for features present within the data sets.  

In the S4 example application, data smoothing is used to reduce the effect of noise in the fault test 
case data so that the same fault detection and isolation algorithms as described in Section 3.3 may be 
employed. The data are smoothed by averaging over a three sample window. The same fault detection 
thresholds are used with 3.0 for the single measurement value checks and 0.5 for the sensor suite root-
mean-square check. When a fault is detected, the smoothed averaged data is used by the Inverse Model 
(see Section 3.3.2) for fault isolation. The diagnostic score is calculated as before (see Section 3.3.3). 

3.8.3 Down-Select Algorithm 
The Down-Select Algorithm is not present because the Statistical Evaluation Algorithm is not 

iterative. Each candidate sensor suite is evaluated once and results are given. 

3.8.4 Software Application 
The Final Selection Process software was developed in MATLAB. The files and directory structure 

used in the S4 example application are given in Section 4.0. 

3.8.5 Execute Process 
The Final Selection Process is executed by typing “FinalSelection” at the MATLAB command 

line prompt. The output should resemble Figure 14. In this setup, three of the better performing sensor 
suites from the Iterative-Down Select Process are examined. Once the process is evoked, no other user 
input is necessary. 

In the output, the results of the Iterative Down-Select Process are confirmed. The performances of the 
sensor suites are consistent. The first sensor suite remains the best with a merit value of 20.415497. The 
remaining two sensor suites have identical merit values of 19.962710. 

 

>> FinalSelection 
 
Beginning Final Selection… 
Final Selection Completed. 
 
Sensor suite 1 has a merit value of 20.415497. 
Sensor suite 2 has a merit value of 19.962710. 
Sensor suite 3 has a merit value of 19.962710. 
 
>> 

Figure 14.—Example of Final Selection Process Software Executing 
 
 
 

In many applications, it is beneficial to repeat the Final Selection analysis with different formulations 
of the Sensor Suite Merit Algorithm while keeping the set of sensor suites under evaluation the same. 
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Typically, the setup of the Sensor Suite Merit Algorithm is subjective with the merit factors and 
weighting terms established using user estimates. Modifying the Sensor Suite Merit Algorithm assists the 
user in assessing the sensitivity of the sensor suites to evolving or conflicting requirements. With the 
variations in the figures of merit, results are compared to illustrate how the sensor suites perform when 
importance is shifted. This helps to reveal how robust the sensor suites may be to conflicting 
requirements. After all of the results are analyzed, the final decision is made by the user for the best 
sensor suite for the specific application. It is not unusual for several sensor suites to be considered as a 
viable solution. 

4.0 Overview of S4 Software Package 
The S4 software package is classified as Class E software under NASA Procedural Requirement 

7150.2A. In its current form, the S4 software package and example problem are designed to “perform 
minor desktop analysis of science or experimental data.” They are not intended for use in operational 
flight or ground systems, or for use in supporting technical decisions relevant to those systems. However, 
the application of the S4 technology to a specific flight or ground system could result in application 
software that is appropriate for use in flight or ground systems. 

The S4 example application software was constructed using MATLAB version R2010a running under 
the Windows XP Professional (32-bit) operating system. The software was designed with a separate 
module for each S4 component to make the software arrangement easier to understand and to present to 
the user. In this manner, each element of the Iterative Down-Select Process and Final Selection Process is 
contained within a single source code file, with files organized to follow the general flow of the S4 
process as described in Sections 2.0 and 3.0 of this guide. For portability and for compatibility with the 
LCC compiler (provided with MATLAB), MEX-files included with the S4 software package were written 
in C. All files required to execute and verify results for the S4 example application are bundled in the S4 
software package. 

The S4 example application is available to non-NASA parties via the NASA Glenn Research Center 
online software catalog (Ref. 3). The software is packaged in a compressed file called 
S4_Example.zip. The file can be placed in any folder or directory on the user’s computer as there are 
no location dependencies. Files should be extracted to the user’s computer from the zip-file using the 
directory structure embedded in the zip-file. Once the file is uncompressed (e.g., “unzipped”), the file 
structure shown in Figure 15 will exist with four top-level directories. Additionally at the top-level, the 
file README_S4_Example.pdf contains detailed instructions for installing and executing the S4 
example application software. 

A Knowledge Base containing all of the data required to run the S4 example application is provided 
in the form of a Matlab m-file, KnowledgeBase.m. Separate versions of the Knowledge Base are 
provided for the Iterative Down-Select Process and the Final Selection Process. These m-files are located 
in the IterativeDownSelect and FinalSelection directories, respectively.  

The IterativeDownSelect directory contains all of the Iterative Down-Select Process files. 
Likewise, all of the Final Selection Process files are located in the FinalSelection directory. Source 
code for MATLAB MEX-files used by the Iterative Down-Select Process and the Final Selection Process 
is located in the MEX-Files subdirectory with lower-level subdirectories containing the Genetic 
Algorithm and Inverse Model functions.  

The software has been configured with default settings. To insure proper installation, the user should 
follow the steps outlined in README_S4_Example.pdf. This includes running the Matlab script 
CompareResults.m in the ResultsVerification directory. This Matlab script runs the Iterative 
Down-Select Process and the Final Selection Process. It then compares the results with baseline data 
provided in the S4 example application software. The user should also note that, prior to verifying the 
installation, it may be necessary to re-compile the MEX-files included in the S4 example application 
software. This is likely to be the case if the user is not running the software on a 32-bit Windows 
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operating system. The README_S4_Example.pdf file contains instructions for compiling the MEX-
files. After the software installation has been verified, the seed to the random number generator should be 
modified as described in the README_S4_Example.pdf file. 

With the software properly installed, the S4 m-files can be executed to explore the S4 example 
problem. To execute the Iterative Down-Select Process, the user should navigate to the 
IterativeDownSelect directory in MATLAB and run the Matlab script 
IterativeDownSelect.m. In a similar fashion, executing the Final Selection Process requires that 
the user navigate to directory FinalSelection, and run the Matlab script FinalSelection.m.  

 
 

 
Figure 15.—Directory and File Structure of Software Release Package 

 

5.0 Concluding Remarks 
The Systematic Sensor Selection Strategy is a procedure that selects a set of sensors to support an 

objective such as improved health assessment. The methodology is flexible and is meant to be tailored to 

S4_Example - Directory containing all of the source code for the S4 example application
• README_S4_Example.pdf - A document that describes how to install and execute the S4 example application
• FinalSelection - Directory containing source code for the Final Selection Process

• FinalSelection.m - MATLAB script that executes the Final Selection Process
• KnowledgeBase.m - MATLAB script that contains the Knowledge Base
• MeritAlgorithm.m - MATLAB script that executes the Sensor Suite Merit Algorithm
• mexInverseModel.mexw32 - MEX-File that implements the Inverse Model for the System Diagnostic Model
• PostAnalysis.m - MATLAB script that performs post-analysis actions
• SystemDiagnostic.m - MATLAB script that executes the System Diagnostic Model

• IterativeDownSelect - Directory containing the Iterative Down Select Process files
• GeneticAlgorithm.m - MATLAB script with the interface to the Genetic Algorithm
• IterativeDownSelect.m - MATLAB script that executes the overall Iterative Down Select Process
• KnowledgeBase.m - MATLAB script with the interface to the Genetic Algorithm
• MeritAlgorithm.m - MATLAB script with the Sensor Suite Merit Algorithm
• mexGA.mexw32 - MATLAB MEX-file with the implementation of the Genetic Algorithm
• mexInverseModel.mexw32 - MATLAB MEX-file with the implementation of the Inverse Model for fault 

isolation
• PostAnalysis.m - MATLAB script that performs a post-analysis on the S4 results
• SystemDiagnostic.m - MATLAB script with the System Diagnostic Model

• MEX-Files - Directory containing the source code for the MEX-Files
• mexGA - Directory containing the source code for the Genetic Algorithm MEX-File

• genetic.c - File with source code for the Genetic Algorithm
• make_ga.m - MATLAB script that compiles the source code into the Genetic Algorithm MEX-File
• mexGA.c - File with source code that interfaces the Genetic Algorithm to the  MATLAB MEX-File structure
• mexGA.mexw32 - MATLAB MEX-file with the implementation of the Genetic Algorithm

• mexInverseModel - Directory containing the source code for the Inverse Model MEX-File 
• make_inverse.m - MATLAB script that compiles the source code into the MEX-File
• mexInverseModel.c - File with source code that interfaces the Inverse Model to the MATLAB MEX-File 

structure
• mexInverseModel.mexw32 - MATLAB MEX-file with the implementation of the Inverse Model for fault 

isolation
• Axb.c, Axb_core.c, lm.c, lm.h, lm_core.c, lmbc.c, lmbc_core.c, lmlec.c, lmlec_core.c, misc.c, misc.h

misc_core.c - Files from the software package that implements the Levenberg-Marquardt algorithm written by 
Manolis Lourakis

• ResultsVerification – Directory containing files to compare and verify user results
• CompareResults.m – MATLAB script that compares user results to the approved set of results to verify installation
• FinalSelectionResults.mat – Data file with verified results for the Final Selection Process with the default settings
• InterativeDownSelectResults.mat – Data file with verified results for the Iterative Down-Select Process with the 

default settings
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specific application needs which traditionally have been focused on health diagnostics. The procedure 
utilizes an optimization algorithm to select a set of sensors based on the system fault diagnostic approach 
while taking conflicting objectives such as cost, weight, and reliability into consideration. With the 
opposing constraints, several satisfactory sensor suite solutions are often the outcome. Experimentation is 
often necessary to explore the solution trade space to determine a final sensor suite solution. 

This guide has been provided to assist in formulating a meaningful sensor selection framework. A 
simple S4 example application using the Commercial Modular Aeropropulsion Simulation System is 
described and provides a foundation from which more complex procedures can be developed. 
Corresponding software is provided that allows a user to exercise the procedure and to modify it for their 
needs. 
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components and requirements. It performs combinational optimization with a user defined merit or cost function to identify optimum or 
near-optimum sensor suite solutions. The S4 User Guide describes the sensor selection procedure and presents an example problem using an 
open source turbofan engine simulation to demonstrate its application. 
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