
2007 

An Improved Model of Cryogenic Propellant Stratification in a 
Rotating, Reduced Gravity Environment 

TFAWS Conference 
NASA Glenn Research Center 

Florida Institute of Technology	 NASA Kennedy Space Center 

Department of Mechanical and Aerospace 
Engineering

Expendable Launch Vehicle / Mission Analysis
Branch 

2007 TFAWS

Paul A. Schallhorn

Jorge L. Piquero 

Mike Campbell 

Sukhdeep Chase

Justin Oliveira 

Daniel R. Kirk

https://ntrs.nasa.gov/search.jsp?R=20120003253 2019-08-30T19:21:14+00:00Z



CONTENTS 

Project Overview 

Analytical Modeling 

Current Work 

Concluding Remarks 

Future Work

2007 TFAWS



. 
-	 I PL 

-	 LH2 

•	 Avionics 

Interstage 

Port strap-on 

LH2 tank
	 L02 tank booster 

First-stage 
RS-68 Y 

engines

OVERVIEW: UPPER STAGE MODELING 

Lockheed Martin 
Atlas V 401

t 

-	 -p'.

Boeing Delta IV Heavy 

Second-stage	 DemoSat 
Starboard strap-on	 RL1OB-2 engine	 and Nanosat-2 

booster	 payload
LO tank

Payload attach
fitting 

Core booster	 Second stage 

http://www.boeing.comIdefensespace/space/de1taJde1ta4/d4hdemo,1jooko41  
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OVERVIEW: WHAT CAN HAPPEN INSIDE TANKS? 

>
Second-stage 
ignition-2 
= 1.229,5 sec

vA.

Sec on cl-stage 
ignition-3 

= 20,233 sec 
'

SECO-3 
= 20,427.3 sec 

-	 --

SECO-2 
t 1711.6 sec 

Transfer orbit 
514hr coast

DemoSat payload separation 
= 20,977.5 sec 

Orbit = 19,622 x 19,623 nmi 
at lO-deg Inc 

Parking orbit 
7.7 mm coast

• Stage exposed to solar heating 

• Propellants (LH2 and LOX) may thermally 
strati f'y 

• Propellants may boil 

• Slosh events during maneuvers 

• Upper stage must re-start at conclusion of 
coast phase for insertion 

http://www.boeing.comIdefense-space/space/delta/delta4/d4Idernoo0 1 4.html
XSS-l() iew of Delta H rocket: An Air Force Research Laboratory XSS-10 micro-satellite uses its onboard camera system to view the second stage of the 

Hoeing Delta II rocket during mission operations Jan. 30. (Photo courtesy of Boeing.), http://www.globalsecurity.org/space/systems/xss.htm  
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OVERVIEW: WHAT CAN HAPPEN INSIDE TANKS? 

Propellant T&P must be within specified range for turbomachinery operation 

- If propellants outside specified T&P box engine may not restart 

- Orbit cannot be circularized



MOTIVATION 

• Rotation present during missions to evenly heat spacecraft 
• Effect rotation has on propellant thermal properties unknown 
• Upgrade current analytical/numerical stratification models to include rotation 

4\	 Paraboloid of revolution 
liquid flee sace,(c' 

/' 

Elliptical end-caps 

¶c) _ 
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MISSION PARAMETER RANGES 

Tank Dimensions: 
- Square 3 m diameter tanks 

• Cryogenics: LH2, LOX 

- TbUlk LH2 : 16 K, 28.8 °R, -430.9 °F 

- TbUlk LOX: 91 K, 163.8 °R, -295.9 °F 
• Tank Pressure (All Cryogenics): 30 psi 
• Initial Fill Levels: 10, 20, 30% 

Heating Conditions: 

- Constant wall temperature: 0 = Twaii - TbUlk : AT = 0.1, 0.5, 1.0 K 
- Heat flux to fluid: 5-100 W/m2 

• Reduced Gravity Environment: g/g 0 = 10, 10, 10-2 , 10 1 , 1 
Rotation rates: w = 0.1, 1, 5 °/sec 

• Orbital Transfer Time (Simulation Time): 2 —4 HR 
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MASTER MODEL: BASIC FRONT END OPTIONS 

1. Tank geometry 
- Tank diameter, height 
- Square bottom 

2. Boundary layer nature and heat transfer coefficient selection 
- Free convection 

Laminar/Turbulent (w/ & w/out switching) 

3. Wall temperature settings 
- Constant inner wall temperature 
- Constant inner wall heat flux 

4. Rotation rate 

5. Gravity level
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GENERAL MODELING PHILOSOPHY 

I	 + 
I Elliptical end-caps	 l'i aboloid of i evoltit ion 

Z	 I	 liquid trcc ..intacc 

H-	 r1

Elliptical eiicl-capi 

Paraboloid of revolution 
lionid fr	 ciirf'cii' ffr -	 -- - 

Ullage gas 

Liquid surface y 

T5 

Stratum / bulk interface 

Tb

• Stratum growth A(t) 

u(y) depends on if heating is constant wall 
temperature or constant heat flux, q 

- u(y) depends on nature of boundary layer 

- Provides differential equation for A(t) 

• Stratum temperature, T(t) 

- Heat entering side wall into boundary layer 
is used to increase stratum temperature 

- Energy exchange with ullage negligible 

T assumed uniform

8 dA 
1bl = 2rRpf u(y)dy = picR2

dt 0 

2RH = pR2Ac 
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RELEVANT NON-DIMENSIONAL NUMBERS 
Grashof number, Gr, governs heat transfer regime for 

3	 constant wall temperature 

	

G - ________	 - Ratio of buoyancy to viscous forces 
r -
	 2	 - J3, Volumetric thermal expansion coefficient 

V	
- 0, Wall to Bulk temperature difference 

Ra = Gr Pr	 • Rayleigh number, Ra, is product of Grashof and usual 
Prandtl number, Pr 

Prediction of boundary layer transition 

- If Ra < 1 O -* Laminar 

- If Ra> 1 O -* Turbulent 

Gr* = gflqL4	 • Modified Grashoff number, Gr*, governs heat transfer 

	

k v2	 regime for uniform heat flux, q 

Ra * = Gr* Pr	 Modified Rayleigh number, Ra*, for uniform heat flux 

• Others: Reynolds Number, Re (momentum to viscous) Weber number, We (inertial to 
capillary), Froude number, Fr (inertial to body), and Bond number Bo (body to capillary) 
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Maps laminar or turbulent boundary layers possible for typical mission profiles (NIST data) 
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Does 1°/sec matter? S 

• Not at g/g0= 1 but in coast phase g/g0 1 O 

significant dishing effect 

Key Question: How does rotation impact results?

-

4lNP1 

WHAT IS IMPACT OF BBQ ROLL ROTATION: 

Typical rotation rate, m-1°/sec
	 Shape at g/g0=1, w-85O°/sec 

• Assume liquid is in solid body rotation (transients can also be treated) 

• Model extra height that liquid gains along wall as a longer interfacial heat transfer length 

• Center point in radial direction of tank is taken to be point where percent of bulk remaining 
is referenced -* worst case scenario 

• Trade off between heated area and surface area to distribute warm stratum 
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ROTATION / STRATIFICATION COMBINED MODEL 

Spin Rate, w= 1°/sec 
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ROTATIONAL CASES 

Re-examine boundary layer / stratum mass balance 

__	 dA\ __	 __ 
mbl =R PL dtJ	 parabo/oidPdJ 6h2 [(R

2 +4h 2 )3/2 _R3(d 
Ldt) 

Turbulent
	

Laminar
5 

____	 ______	 _____	 A(t)	 H7rR (Gr0 
)1/5	
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A(t)'[182HrR	
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(r0, 
Pr 21 	 Hcv	
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Pr315 
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	 - gflq (H )4	 = 

r -
	 kv2	 - kv 2 	 H 

Re-derive energy balance to take into account additional heating area 

	

h	 dT	 : •	 i-
I22R [\H+_J = iJ22rRHw =picR 2 Ac	 - 

	

2	 dt	 0:1 
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COMBINED ROTATION / STRATIFICATION MODEL: LH 2 and LOX 
Fraction Remaining vs. Time (LH2, g/g 0 = 1O) Fraction Remaining vs. Time (LOX, g/g 0 = 1O) 

T	 vs. Time (LH2, g/g 0 = 1O) strat T	 vs. Time (LOX, g/g 0 = 1O) 
strat 

S For q=10 W/m2, L=3, R=1.5, 20% fill level, H/R=O.4 and o=l°/sec at g/g0=104: 
- Rotation decreases time to stratification time by 15% 

- Rotation increases stratification temperature by 1.0 K 
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'Teuti'a1 level 
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H

EFFECTS OF ROTATION AND TRADEOFFS 
Increased boundary layer running length (H —* H) 
- more heated area 

larger Grashof number 
• Larger surface area at bulk-stratum interface (S —* Sparaboloid) 

- increased mass flow rate into stratum layer 
- more area to spread mass flow

_'j'j/ 1FPtYV)
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EFFECTS OF ROTATION 
. Spinning always increases stratification 

Stratum temperature affected by spin rate; especially at low gravity levels 
. LOX cases shown with heat flux of 5 W/m2 after 2 hour mission 

Effect of Rotation on Stratum Temperature 
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EFFECTS OF ROTATION 

•	 0critica1 -) spin rate to minimize stratum temperature 

•	 0critica1 needed for large g/g0 impractical 

•	 0critica1 needed for typical mission profiles very practical (w < 1.5 deg/s) 
• LOX results discussed previously shown 
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SUMMARY! CONCLUDING REMARKS 

Thermal stratification impacts T&P at conclusion of coast phase 

Rotation (creeping of fluid up side walls) has large effect for w= 1°/s and g/g0 1 O 

- 'Classical' literature model upgraded to include rotation effects 
- Can decrease time to stratify by 30-60 minutes during 4 hour coast 
- Larger heating area and lower liquid level above sump inlet 
- For various missions stratum temperature may increases or decrease relative to no-spin 

case 
- Mixed tank temperatures always larger because A increased with rotation 

Future work 
Comparison with CFD studies
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