An Improved Model of Cryogenic Propellant Stratification in a Rotating, Reduced Gravity Environment

TFAWS Conference NASA Glenn Research Center 2007

Florida Institute of Technology

Department of Mechanical and Aerospace Engineering

> Justin Oliveira Daniel R. Kirk

NASA Kennedy Space Center

Expendable Launch Vehicle / Mission Analysis Branch

> Paul A. Schallhorn Jorge L. Piquero Mike Campbell Sukhdeep Chase

CONTENTS

- Project Overview
- Analytical Modeling
- Current Work
- Concluding Remarks
- Future Work

OVERVIEW: UPPER STAGE MODELING

http://www.boeing.com/defense-space/space/delta/delta4/d4h_demo/book04.html

- Stage exposed to solar heating
- Propellants (LH₂ and LOX) may thermally stratify
- Propellants may boil
- Slosh events during maneuvers
- Upper stage must re-start at conclusion of coast phase for insertion

http://www.boeing.com/defense-space/space/delta/delta4/d4h_demo/book14.html XSS-10 view of Delta II rocket: An Air Force Research Laboratory XSS-10 micro-satellite uses its onboard camera system to view the second stage of the Boeing Delta II rocket during mission operations Jan. 30. (Photo courtesy of Boeing.), http://www.globalsecurity.org/space/systems/xss.htm

OVERVIEW: WHAT CAN HAPPEN INSIDE TANKS?

- Propellant T&P must be within specified range for turbomachinery operation
 - If propellants outside specified T&P box engine may not restart
 - Orbit cannot be circularized

Engine Inlet Pressure

.pratt-whitney.com/prod_space_rl10.asp

MOTIVATION

- Rotation present during missions to evenly heat spacecraft
- Effect rotation has on propellant thermal properties unknown
- Upgrade current analytical/numerical stratification models to include rotation

MISSION PARAMETER RANGES

- Tank Dimensions:
 - Square 3 m diameter tanks
- Cryogenics: LH₂, LOX
 - T_{bulk} LH₂: 16 K, 28.8 °R, -430.9 °F
 - T_{bulk} LOX: 91 K, 163.8 °R, -295.9 °F
- Tank Pressure (All Cryogenics): 30 psi
- Initial Fill Levels: 10, 20, 30%
- Heating Conditions:
 - Constant wall temperature: $\theta = T_{wall} T_{bulk}$: $\Delta T = 0.1, 0.5, 1.0 \text{ K}$
 - Heat flux to fluid: $5-100 \text{ W/m}^2$
- Reduced Gravity Environment: $g/g_0 = 10^{-4}$, 10^{-3} , 10^{-2} , 10^{-1} , 1
- Rotation rates: $\omega = 0.1, 1, 5$ %ec
- Orbital Transfer Time (Simulation Time): 2 4 HR

MASTER MODEL: BASIC FRONT END OPTIONS

- 1. Tank geometry
 - Tank diameter, height
 - Square bottom
- 2. Boundary layer nature and heat transfer coefficient selection
 - Free convection
 - Laminar/Turbulent (w/ & w/out switching)
- 3. Wall temperature settings
 - Constant inner wall temperature
 - Constant inner wall heat flux
- 4. Rotation rate
- 5. Gravity level

GENERAL MODELING PHILOSOPHY

- Stratum growth $\Delta(t)$
 - u(y) depends on if heating is constant wall temperature or constant heat flux, q
 - u(y) depends on nature of boundary layer
 - Provides differential equation for $\Delta(t)$
- Stratum temperature, $T_s(t)$
 - Heat entering side wall into boundary layer is used to increase stratum temperature
 - Energy exchange with ullage negligible
 - T_s assumed uniform

$$\dot{m}_{bl} = 2\pi R \rho \int_{0}^{\delta} u(y) dy = \rho \pi R^{2} \frac{d\Delta}{dt}$$

 $\dot{q}2\pi RH = \rho\pi R^2 \Delta c_p \frac{dT}{dt}$

RELEVANT NON-DIMENSIONAL NUMBERS

$$Gr = \frac{g\beta\theta L^3}{v^2}$$

 $Ra = Gr \Pr$

- Grashof number, **Gr**, governs heat transfer regime for constant wall temperature
 - Ratio of buoyancy to viscous forces
 - $-\beta$, Volumetric thermal expansion coefficient
 - θ , Wall to Bulk temperature difference
- Rayleigh number, **Ra**, is product of Grashof and usual Prandtl number, **Pr**
- Prediction of boundary layer transition
 - If $\mathbf{Ra} < 10^9 \rightarrow \text{Laminar}$
 - If $\mathbf{Ra} > 10^9 \rightarrow \text{Turbulent}$

$$Gr^* = \frac{g\beta q_w L^4}{kv^2}$$

- Modified Grashoff number, Gr^* , governs heat transfer regime for uniform heat flux, q_w
- $Ra^* = Gr^* \Pr$
- Modified Rayleigh number, **Ra***, for uniform heat flux
- Others: Reynolds Number, **Re** (momentum to viscous) Weber number, **We** (inertial to capillary), Froude number, **Fr** (inertial to body), and Bond number **Bo** (body to capillary)

 Maps laminar or turbulent boundary layers possible for typical mission profiles (NIST data) 2007 TFAWS
11

WHAT IS IMPACT OF BBQ ROLL ROTATION:

Typical rotation rate, $\omega \sim 1^{\circ}/\text{sec}$

- Does 1°/sec matter?
- Not at $g/g_0=1$ but in coast phase $g/g_0\sim 10^{-4}$ \rightarrow significant dishing effect

Key Question: How does rotation impact results?

- Assume liquid is in solid body rotation (transients can also be treated)
- Model extra height that liquid gains along wall as a longer interfacial heat transfer length
- Center point in radial direction of tank is taken to be point where percent of bulk remaining is referenced → worst case scenario
- Trade off between heated area and surface area to distribute warm stratum

Shape at $g/g_0=1$, $\omega \sim 850^{\circ}/\text{sec}$

ROTATION / STRATIFICATION COMBINED MODEL

ROTATIONAL CASES

Re-examine boundary layer / stratum mass balance

$$\dot{m}_{bl} = \pi R^2 \rho \left(\frac{d\Delta}{dt}\right) = S_{paraboloid} \rho \left(\frac{d\Delta}{dt}\right) = \frac{\pi R}{6h^2} \left[\left(R^2 + 4h^2\right)^{3/2} - R^3 \right] \rho \left(\frac{d\Delta}{dt}\right)$$

Turbulent

Laminar

Re-derive energy balance to take into account additional heating area

$$\dot{q} 2\pi R \left(H + \frac{h}{2} \right) = \dot{q} 2\pi R H_{\omega} = \rho \pi R^2 \Delta c_p \frac{dT}{dt}$$

COMBINED ROTATION / STRATIFICATION MODEL: LH₂ and LOX

• For q=10 W/m², L=3, R=1.5, 20% fill level, H/R=0.4 and ω =1°/sec at g/g₀=10⁻⁴:

- Rotation decreases time to stratification time by $\sim 15\%$
- Rotation increases stratification temperature by ~ 1.0 K

EFFECTS OF ROTATION AND TRADEOFFS

- Increased boundary layer running length $(H \rightarrow H_{\omega})$
 - more heated area
 - larger Grashof number
- Larger surface area at bulk-stratum interface (S \rightarrow S_{paraboloid})
 - increased mass flow rate into stratum layer
 - more area to spread mass flow

EFFECTS OF ROTATION

- Spinning always increases stratification
- Stratum temperature affected by spin rate; especially at low gravity levels
- LOX cases shown with heat flux of 5 W/m^2 after 2 hour mission

Effect of Rotation on Stratum Temperature

EFFECTS OF ROTATION

- $\omega_{critical} \rightarrow$ spin rate to minimize stratum temperature
- ω_{critical} needed for large g/g_o impractical
- ω_{critical} needed for typical mission profiles very practical ($\omega < 1.5 \text{ deg/s}$)
- LOX results discussed previously shown

SUMMARY/ CONCLUDING REMARKS

- Thermal stratification impacts T&P at conclusion of coast phase
- Rotation (creeping of fluid up side walls) has large effect for $\omega = 1^{\circ}/s$ and $g/g_0 = 10^{-4}$
 - 'Classical' literature model upgraded to include rotation effects
 - Can decrease time to stratify by 30-60 minutes during 4 hour coast
 - Larger heating area and lower liquid level above sump inlet
 - For various missions stratum temperature may increases or decrease relative to no-spin case
 - Mixed tank temperatures always larger because Δ increased with rotation
- Future work
 - Comparison with CFD studies

SELECTED REFERENCES

Literature Review References:

- 1. Eckert, E.R.G., Jackson, T.W.: Analysis of Turbulent Free-Convection Boundary Layer on a Flat Plate, Lewis Flight Propulsion Laboratory, July 12, 1950.
- 2. Bailey, T., VandeKoppel, R., Skartvedt, D., Jefferson, T., Cryogenic Propelllant Stratification Analysis and Test Data Correlation. AIAA J. Vol.1, No.7 p 1657-1659,1963.
- 3. Tellep, D.M., Harper, E.Y., Approximate Analysis of Propellant Stratification. AIAA J. Vol.1, No.8 p 1954-1956, 1963. Schwartz, S.H., Adelberg, M.: Some Thermal Aspects of a Contained Fluid in a Reduced-Gravity Environment, Lockheed Missiles & Space Company, 1965.
- 4. Reynolds, W.C., Saterlee H.M.,: Liquid Propellant Behavior at Low and Zero g. The Dynamic Behaviour of Liquids, 1965.
- 5. Ruder, M.J., Little, A.D., Stratification in a Pressurized Container with Sidewall Heating. AIAA J. Vol.2, No.1 p 135-137, 1964.
- 6. Seebold, J.G.; and Reynolds, W.C.: Shape and Stability of the Liquid-Gas Interface in a Rotating Cylindrical Tank at Low-g. Tech. Rept. LG-4, Dept. of Mech. Engineering, Stanford University, March 1965.
- 7. Birikh, R.V.: Thermo-Capillary Convection in a Horizontal Layer of Liquid. Journal of Applied Mechanics and Technical Physics. No.3, pp.69-72, 1966
- 8. Ostrach, S.; and Pradhan, A.: Surface-Tension Induced Convection at Reduced Gravity. AIAA Journal. Vol.16, No.5, May 1978.
- 9. Levich, V.G.: Physiochemical Hydrodynamics.Prentice Hall. 1962
- 10. Yih, C.S.: Fluid Motion Induced by Surface-Tension Variation. The Physics of Fluids. Vol. 11, No.3, March 1968.

Web-based References for Graphics:

- <u>http://www.skyrocket.de/space/index_frame.htm?http://www.skyrocket.de/space/doc_sdat/goes-n.htm</u>
- <u>http://www.boeing.com/defense-space/space/delta/delta4/d4h_demo/book01.html</u>
- <u>http://www.spaceflightnow.com/news/n0201/28delta4mate/delta4medium.html</u>