A Probabilistic, Facility-Centric Approach to Lightning Strike Location

Author Name: Lisa L. Huddleston
Kennedy Space Center, Florida
William P. Roeder
$45^{\text {th }}$ Weather Squadron, Patrick Air Force Base
Francis J. Merceret
Kennedy Space Center, Florida

NASA STI Program ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing help desk and personal search support, and enabling data exchange services.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443-757-5803
- Phone the NASA STI Help Desk at 443-757-5802
- Write to:

NASA STI Help Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320

A Probabilistic, Facility-Centric Approach to Lightning Strike Location

Author Name: Lisa L. Huddleston
Kennedy Space Center, Florida
William P. Roeder
$45^{\text {th }}$ Weather Squadron, Patrick Air Force Base
Francis J. Merceret
Kennedy Space Center, Florida

[^0]
Acknowledgments

This work would not exist were it not for the generous contributions and suggestions by Dr. Ken Chan of the Aerospace Corp, who is an expert on spacecraft collision probability, on whose work the probability of lightning within a radius of interest was based. Dr. Darrin Leleux of the Johnson Space Center, Houston, TX, and Dr. Walt Gill of Sandia National Laboratory also provided helpful guidance and testing. Mr. Jeremy Hinkley and Mr. Pete Hopman of United Space Alliance, the prime contractor for Space Shuttle operations, provided very valuable efficiency modifications for the visual basic code and also integrated the probability calculations and closest ellipse point algorithm into the 45th Weather Squadron Lightning Report Spreadsheet.

The authors appreciate a helpful review of an earlier draft of this paper by Mr. John Madura of the Kennedy Space Center. This work was done under the Kennedy Space Center Employee Development Program.

Available from:
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

Table of Contents

List of Figures 2
List of Tables 3
Abstract 4
Nomenclature 5
Introduction 6
Methodology 6
Background 6
The Numerical Integration Technique (Chan, 2011) 7
Evaluation 9
Test Set 1 9
Test Set 2 10
Other Applications 15
Conclusion 15
Appendix A - Example Lightning Probability Calculation 16
Appendix B - Excel VBA Macro for $45^{\text {th }}$ Weather Squadron Lightning Spreadsheet that Calculates the Probability of any Nearby Lightning Stroke being Inside any Radius of Any Point of Interest 20
Conversions Module 20
Functions Module 21
Module 2 Code 25
Probability Module 28
Strike Class Module 31
References 39

List of Figures

Figure 1. Schematic diagram of the angles used in probability calculation for a sample lightning location error ellipse.

Figure 2. Sample of lightning strikes where the closest point on the lightning position uncertainty ellipse was within 0.45 nmi of Launch Complex 39A on 3 August 2009.
Figure 3. Google Maps visualization of the 99% confidence uncertainty ellipse for one of the closest lightning strikes to Complex 39A on 03 August 2009. 12
Figure 4. Google Maps visualization of the 99% confidence uncertainty ellipse for a lightning strike near Complex 39A on 03 August 2009. 12
Figure 5. Google Maps visualization of the 99% confidence uncertainty ellipse for nearby lightning striketo Complex 39A on 03 August 2009.13
Figure 6. Illustrates a probability of 69.1% of a lightning strike of amplitude - 43.0 kA detected by NLDN occurring 0.26 nmi from the center of Launch Complex 39A on 8/16/2009. 14
Figure 7. Illustrates a probability of 74.7% of a lightning strike of amplitude -71.4 kA detected by NLDN occurring 0.28 nautical miles from the center of Launch Complex 39A on 10/14/2009. 14
Figure 8. Illustrates a probability of 99.9996% of a lightning strike of amplitude -21.7 kA detected by CGLSS occurring 0.04 nmi from the center of Launch Complex 39B on 6/27/2009. 15

List of Tables

Table 1. Calculated probability vs. CRC Handbook probability for various inputs 10
Table 2. Input values used for scenarios shown in Figures 3 through 5 11
Table 3. Input values used for scenarios shown in Figures 6 through 8 13
Table 4. Lightning strike probability calculation process. 16

Abstract

A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.

Nomenclature

$\theta=$ angle between the collision plane coordinates and the rotated collision plane coordinates
$\rho_{\mathrm{xz}}=$ correlation coefficient of x and z
$\sigma_{K^{\prime}}=$ standard deviation of x-coordinate of the diagonalized covariance ellipse in the rotated
coordinate system
$\sigma_{H^{\prime}}=$ standard deviation of z-coordinate of the diagonalized covariance ellipse in the rotated
coordinate system
$\sigma_{x}=$ standard deviation of x
$\sigma_{z}=$ standard deviation of z
$\sigma_{x^{\prime}}=$ standard deviation of x in the rotated coordinate system
$\sigma_{z^{\prime}}=$ standard deviation of z in the rotated coordinate system
$\mu_{K} \quad=\quad$ x-coordinate of target circle in the ($\mathrm{X}^{\prime}, \mathrm{Z}^{\prime}$) coordinate system
$\mu_{H} \quad=\quad$ z-coordinate of target circle in the ($\mathrm{X}^{\prime}, \mathrm{Z}^{\prime}$) coordinate system
$A=$ collision cross-sectional area (nautical miles ${ }^{2}$, nmi^{2})
$\mathrm{d} \theta=$ the angle between two points on the target ellipse
$\mathrm{dH}=$ integration step
$\mathrm{H}=$ intermediate variable in the lightning probability algorithm
$P=$ probability
pdf $=$ probability distribution function
$r_{A}=$ radius of circle of cross-sectional area, A (nautical miles, nmi)
$\mathrm{R}=$ radius of ellipse (nmi)
R1 = distance to first point on target ellipse (nmi)
R2 $=$ distance to second point on target ellipse (nmi)
$\mathrm{x}=$ horizontal rectangular coordinate in the collision plane (nautical miles, nmi)
$\mathrm{x}^{\prime}=$ horizontal rectangular coordinate in the rotated collision plane (nmi)
$\mathrm{x}^{\prime \prime}=$ transformation variable that circularizes the x -component of the probability ellipse (nmi)
$\mathrm{x}_{\mathrm{e}}=$ nominal distance of closed approach of two colliding objects (nmi)
$\mathrm{W}=$ intermediate variable in the lightning probability algorithm
$z=$ vertical rectangular coordinate in the collision plane (nautical miles, nmi)
$z^{\prime}=$ vertical rectangular coordinate in the collision plane (nautical miles, nmi)
$z^{\prime \prime}=$ transformation variable that circularizes the z-component of the probability ellipse (nmi)

Introduction

The ability to a Introduction accurately estimate the probability that an individual nearby cloud-to-ground lightning stroke was within a specified distance of any specified spaceport processing facility at Kennedy Space Center (KSC) or Cape Canaveral Air Force Station (CCAFS) is important to processing payloads and space launch vehicles before launch. Such estimates allow engineers to decide if inspection of electronics systems aboard satellite payloads, space launch vehicles, and ground support equipment is warranted due to induced currents from that stroke. If induced current damage has occurred, inspections of the electronics are critical to identify required fixes and avoid degraded performance or failure of the satellite or space launch vehicle. However, inspections are costly both financially and in terms of delayed processing for space launch activities. As such, it is important these inspections be avoided if not needed. At KSC/CCAFS, one of the main purposes of the Four Dimensional Lightning Surveillance System (4DLSS) (Murphy, 2008, Roeder, 2010) is detection of nearby strokes and determination of their peak current to support decisions to inspect electronics (Flinn, 2010a, Flinn, 2010b, Roeder, 2005). The high frequency of lightning occurrence in East Central Florida combined with the large amount of complex sensitive electronics in satellite payloads, space launch vehicles, and associated facilities makes those decisions critically important to space launch processing. The 4DLSS provides the data for 50th percentile location error ellipses for the best location for each stroke, which is then scaled to 95th or 99th percentile ellipses depending on customer requirements. This error ellipse is necessarily centered on the best location of the lightning stroke. The 4DLSS, however, has not been able to provide the probability of the stroke being within a customer specified distance of a point of interest. This paper presents a new method to convert the 4DLSS 50th percentile location error ellipse for best location of any stroke into the probability that the stroke was within any radius of any facility at CCAFS/KSC. This technique could be adapted for use with National Lightning Detection Network (NLDN) data. This new probabilistic facilitycentric technique is a significant improvement over the stroke-centric location error ellipses the 45th Weather Squadron (45WS) has provided in the past. This technique is adapted from a method of calculating the probability of debris collision with spacecraft (Chan, 2008, Leleux, 2002, Patera, 2001).

Methodology

Background

In spacecraft collision probability and other applications, at the instant of "nominal" closest approach, the position uncertainty of the collision object relative to the asset being protected is described by a bivariate Gaussian probability density function (pdf) (Chan, 2008, Patera, 2001, Alfano, 2006, Alfano 2007), as shown in the following equation

$$
\begin{equation*}
f(x, z)=\frac{1}{2 \pi \sigma_{x} \sigma_{z} \sqrt{1-\rho_{x z}^{2}}} e^{-\left[\left(\frac{x}{\sigma_{x}}\right)^{2}-2 \rho_{x}\left(\frac{x}{\sigma_{x}}\right)\left(\frac{z}{\sigma_{z}}\right)+\left(\frac{z}{\sigma_{z}}\right)^{2}\right] / 2\left(1-\rho_{x}^{2}\right)} \tag{1}
\end{equation*}
$$

where σ_{x} and $\sigma_{\mathrm{z}}=$ the standard deviations of x and $\mathrm{z}, \rho_{\mathrm{xz}}=$ correlation coefficient of x and z, x and z are the designations for the rectangular coordinates in the collision plane.

The probability of collision (Eq. 2) is given by the two-dimensional integral, where A is the collision cross-sectional area which is a circle with radius, r_{A} (Chan, 2008).

$$
\begin{equation*}
P=\iint_{A} f(x, z) d x d z \tag{2}
\end{equation*}
$$

There is no known analytical solution to the above integral when the two standard deviations σ_{x} and σ_{z} are not equal. The solution is found by performing a numerical integration of the two dimensional Gaussian pdf (Chan, 2008, Patera, 2001, Alfano, 2006, Alfano 2007).

The geometry used for spaceflight collision probability can also be used for estimation of the probability of an individual nearby lightning stroke contacting the surface within a specified distance of a specified point of interest as shown in Fig. 1. In Fig. 1, α is the heading of the semi-major axis of the lightning location uncertainty ellipse from true north and θ is the angle between the semi-major axis of the lightning location uncertainty ellipse and line connecting the center of the lightning uncertainty ellipse and the center of the area of interest. Two methods of integrating the above probability were tested and gave identical results. The first solution method was based on an algorithm by Patera (2001) and the second solution method was based on an algorithm by Chan (2011). Chan's algorithm ran much faster and therefore was selected as the algorithm for the 45 WS lightning probability program.

The Numerical Integration Technique (Chan, 2011)

This numerical integration technique is one in which the miss distance is given by a non-central chi distribution with unequal variances (Chan, 2011). The covariance matrix corresponding to the bivariate Gaussian pdf in Eq. 1 is (Chan, 2008):

$$
C=\left[\begin{array}{cc}
\sigma_{x}^{2} & \rho_{x z} \sigma_{x} \sigma_{z} \tag{3}\\
\rho_{x z} \sigma_{x} \sigma_{z} & \sigma_{z}^{2}
\end{array}\right]
$$

When the correlation coefficient, ρ_{xz}, is not zero, there are undesirable off-diagonal terms that overly complicate the calculation. In order to eliminate these terms, the coordinate system (x, z) is rotated to a new coordinate system (x^{\prime}, z^{\prime}) such that the major and minor axes of the ellipse associated with the covariance are aligned along the coordinate axes and the new covariance matrix is (Chan, 2008):

$$
C^{\prime}=\left[\begin{array}{cc}
\sigma_{x^{\prime}}^{2} & 0 \tag{4}\\
0 & \sigma_{z^{\prime}}^{2}
\end{array}\right]
$$

The angle, θ, between the two coordinate systems is (Chan, 2008):

$$
\begin{equation*}
\theta=\frac{1}{2} \tan ^{-1}\left[\frac{2 \rho_{x z} \sigma_{x} \sigma_{z}}{\left(\sigma_{x}^{2}-\sigma_{z}^{2}\right)}\right] \tag{5}
\end{equation*}
$$

The KSC/CCAFS 4DLSS system does not provide the covariance matrix, but instead provides the semi-major axis, semi-minor axis, and the orientation of the semi-major axis of the 50% location error ellipse relative to north. Therefore the angle, θ, in Eq. 5 is found using geometry where θ is the angle between the semi-major axis of the lightning location uncertainty ellipse and line connecting the center of the lightning uncertainty ellipse and the center of the area of interest.

In the ($\mathrm{x}^{\prime}, \mathrm{z}$ ') system, the Eq. 1 pdf becomes (Chan, 2008)

$$
\begin{equation*}
f\left(x^{\prime}, z^{\prime}\right)=\frac{1}{2 \pi \sigma_{x^{\prime}} \sigma_{z^{\prime}}} e^{-\frac{1}{2}\left[\left(\frac{x^{\prime}}{\sigma_{x^{\prime}}}\right)^{2}+\left(\frac{z^{\prime}}{\sigma_{z^{\prime}}}\right)^{2}\right]} \tag{6}
\end{equation*}
$$

and Eq. 2, the collision probability becomes (Chan, 2008)

$$
\begin{equation*}
P=\frac{1}{2 \pi \sigma_{x^{\prime}} \sigma_{z^{\prime}}} \iint_{A^{\prime}} e^{\frac{1}{2}\left[\left(\frac{x^{\prime}}{\sigma_{x^{\prime}}}\right)^{2}+\left(\frac{z^{\prime}}{\sigma_{z^{\prime}}}\right)^{2}\right]} d x^{\prime} d z^{\prime} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=A, r_{A^{\prime}}=r_{A}, x_{p}^{\prime}=x_{e} \cos \theta, z_{p}^{\prime}=x_{e} \sin \theta \tag{8}
\end{equation*}
$$

For spacecraft collision, x_{e} is the nominal distance of closest approach of the two colliding objects and ($\mathrm{x}_{\mathrm{p}}^{\prime}, \mathrm{z}_{\mathrm{p}}^{\prime}$) are the coordinates of the spacecraft relative to the debris. For lightning strike probability, x_{e} (the distance between the position of the center of the strike location ellipse and the position of the target area) is calculated using the Haversine distance formula.

The standard deviations in the new rotated coordinate system are calculated by dividing the semimajor and semi-minor axes of the 50% lightning positional confidence ellipse by the scaling constant used to scale standard error to the 50% confidence level. The scaling constant is:

$$
\begin{equation*}
k=\sqrt{-2 * \ln (1-0.50)} \tag{9}
\end{equation*}
$$

The probability is given by (Chan, 2011)

$$
\begin{equation*}
\left.P=\frac{1}{2 \sqrt{2 \pi} \sigma_{H}} \int_{0}^{\sqrt{W}}\left[e^{-\left(H-\mu_{H}\right)^{2} / 2 \sigma_{H}^{2}}+e^{-\left(H+\mu_{H}\right)^{2} / 2 \sigma_{H}^{2}}\right] \operatorname{erf}\left(Z_{1}\right)+\operatorname{erf}\left(Z_{2}\right)\right] d H \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
& Z_{1}=\left[\sqrt{\left(W-H^{2}\right)}-\mu_{K}\right] / \sqrt{2} \sigma_{K} \\
& Z_{2}=\left[\sqrt{\left(W-H^{2}\right)}+\mu_{K}\right] / \sqrt{2} \sigma_{K} \tag{11}
\end{align*}
$$

The parameters μ_{K} and μ_{H} are the coordinates of the target circle in the ($\mathrm{X}^{\prime}, \mathrm{Z}^{\prime}$) coordinate system; and σ_{K} and σ_{H} are the standard deviations of the diagonalized covariance ellipse shown in Eq. 4. The derivation of equations (10) and (11) above is shown in further detail in (Chan, 2011). A detailed example of the calculations using a real-world case is provided in Appendix-A. The Excel Visual Basic code to implement these calculations is shown in Appendix-B.

Evaluation

The probability that any lightning strike is within any radius of any point of interest would be extremely difficult to estimate intuitively. As a result, given the high impact of the decisions on space launch operations, the tool developed for this application was extensively tested. Tests were conducted and are discussed in the following sections: 1) known mathematical solutions, and 2) examination of real-world events. The new technique passed all of the tests. Tests were also conducted to assure the probabilities calculated using the algorithm of Chan (2011) matched probabilities calculated using the algorithm of Patera (2001). The probabilities calculated from the two algorithms were identical and thus are not shown here.

Test Set 1

The first set of testing compared the lightning strike probability calculated using the 45WS lightning strike spreadsheet (which uses an adaptation of the numerical integration algorithm by Chan, 2011, to the corresponding circular probability from the CRC Handbook of Tables for Probability and Statistics (Beyer, 1968). Table 1 shows the probability from the new numerical integration technique for various inputs and the corresponding correct probability from the CRC Handbook. The values matched to within a tenth of a percent. These errors in the final digit may be due to round-off error.

Table 1. Calculated probability vs. CRC Handbook probability for various inputs

Semimajor axis (nmi)	Semiminor axis (nmi)	Heading of semimajor axis from true North	Point Of Interest latitude	Point Of Interest long- itude	Strike Latitude	Strike Long- itude	Radius around Point Of Interest (nmi)	Calcu- lated prob- ability	CRC Hand- book prob- ability (Beyer, 1968)
3	3	15	28.6082	-80.6041	28.6995	-80.6041	3	0.095	0.095
3	3	15	28.6082	-80.6041	28.631	-80.6041	3	0.453	0.452
3	3	15	28.6082	-80.6041	28.608	-80.6041	3	0.500	0.499
1	1	15	28.6082	-80.6041	28.608	-80.6041	1	0.500	0.499
1	1	15	28.6082	-80.6041	28.631	-80.6041	1	0.200	0.200
1	1	15	28.6082	-80.6041	28.6995	-80.6041	1	0.000	0.000
1	1	15	28.6082	-80.6041	28.608	-80.6041	2	0.937	0.938

Test Set 2

The second type of testing analyzed six real-world lightning strikes near Space Launch Complex 39A on 3 August 2009. Figure 2 shows the spreadsheet used to generate the lightning report for those six strikes. Additional data on three of these six strikes are in Table 2. These strikes were selected because the closest point on the lightning position uncertainty ellipse was within 0.45 nautical miles of Launch Complex 39A, which is the key radius for assessing the need to inspect electronics for induced current damage to the Space Shuttle. Figures 3 through 5 are Google Maps depictions of three of these six strokes. In Figures 3-5, the black ellipse is the 99% lightning location uncertainty ellipse. The white circle is a 0.45 nmi radius around the point of interest. The probabilities for a small area around a facility, even for a nearby stroke, may appear to be surprisingly low. For example, figures 3 and 4 respectively illustrate a 53.8% and 7.7% probability that the lightning strike occurred within the area of interest while figure 5 shows that a strike just 0.65 nautical miles away had only a 1.1% probability of being within the 0.45 nautical mile radius of Launch Complex 39A. All calculated probabilities are consistent with these real-world events.

Figure 2. Sample of lightning strikes where the closest point on the lightning position uncertainty ellipse was within 0.45 nmi of Launch Complex 39A on 3 August 2009.

The KSC Electromagnetic Environmental Effects (EEE) Panel requested six more real-world lightning strikes be investigated. These were recently investigated lightning strikes near Launch Complexes 39A or 39B where there was camera verification of the location of the strike. The EEE Panel wanted to compare the results of the new facility-centric probabilistic technique to these cases where the true answers were known unambiguously. The data used for this analysis are in Table 3. Both 4DLSS and National Lightning Data Network (NLDN) cases were examined, depending upon which sensor system recorded the stroke. CGLSS strokes were obtained from 45WS 4DLSS. The NLDN usually provided flash data, so NLDN return stroke data were purchased as special StrikeNet ${ }^{1}$ reports from Vaisala Corporation. This was done to match the return strokes routinely provided by 4DLSS. Figures 6 through 8 show the probability results from these cases. In Figures 6-8, the black ellipse is the 99% lightning location uncertainty ellipse. The white circle is a 0.45 nmi radius around the point of interest. As with the previous real-world tests, all calculated probabilities were consistent with these additional real-world events.

Table 2. Input values used for scenarios shown in Figures 3 through 5.

Figure	Semimajor axis of 50% confidence ellipse (km)	Semimajor axis of 50% confidence ellipse (km)	Confidence	Heading (from true North) of semi- major axis	Point of interest latitude (${ }^{\circ} \mathrm{N}$)	Point of interest longitude (${ }^{\circ} \mathrm{W}$)	Strike latitude (${ }^{\circ} \mathrm{N}$)	Strike longitude (${ }^{\circ} \mathrm{W}$)	Radius around point of interest (nmi)
3	0.4	0.2	0.99	300.7	28.60827	-80.6041	28.6114	-80.6113	0.45
4	0.3	0.2	0.99	293	28.60827	-80.6041	28.6178	-80.6069	0.45
5	0.2	0.1	0.99	20.3	28.60827	-80.6041	28.5995	-80.6113	0.45

[^1]

Figure 3. Google Maps visualization of the 99% confidence uncertainty ellipse for one of the closest lightning strikes to Complex 39A on 03 August 2009.

Figure 4. Google Maps visualization of the 99% confidence uncertainty ellipse for a lightning strike near Complex 39A on 03 August 2009.

Figure 5. Google Maps visualization of the 99% confidence uncertainty ellipse for nearby lightning strike to Complex 39A on 03 August 2009.

Table 3. Input values used for scenarios shown in Figures 6 through 8.

Figure	Semi- major axis of 50% confidence ellipse (km)	Semi- major axis of 50% confidence ellipse (km)	Confidence	Heading (from true North) of semimajor axis	Point of interest latitude $\left({ }^{\circ} \mathrm{N}\right)$	Point of interest longitude (${ }^{\circ} \mathrm{W}$)	Strike latitude $\left({ }^{\circ} \mathrm{N}\right)$	Strike longitude (${ }^{W} \mathrm{~W}$)	Radius around point of interest (nmi)
6	0.6	0.4	0.99	82	28.60827	-80.6041	28.6069	-80.6087	0.45
7	0.4	0.4	0.99	95	28.60827	-80.6041	28.6057	-80.6085	0.45
8	0.2	0.1	0.99	72	28.62716	-80.6275	28.6275	-80.6202	0.45

Figure 6. Illustrates a probability of 69.1% of a lightning strike of amplitude -43.0 kA detected by NLDN occurring 0.26 nmi from the center of Launch Complex 39A on 8/16/2009.

Figure 7. Illustrates a probability of 74.7% of a lightning strike of amplitude -71.4 kA detected by NLDN occurring 0.28 nautical miles from the center of Launch Complex 39A on 10/14/2009.

Figure 8. Illustrates a probability of 99.9996% of a lightning strike of amplitude -21.7 kA detected by CGLSS occurring 0.04 nmi from the center of Launch Complex 39B on 6/27/2009.

Other Applications

The techniques and methods described in this paper clearly have application reaching far beyond the space program uses for which they were designed. The list of potential applications is many and varied and would be of interest to anyone seeking information pertaining to probability of lightning strike locations, such as the power industry, aviation, or any industry sensitive to electrical overloads. This methodology is also applicable to forensic meteorology [13], where the question of whether lightning struck at or near a particular location is an issue in litigation. This technique could be applied to NLDN or any other cloud-to-ground lightning detection system that provides location error ellipses.

Conclusion

A probabilistic facility-centric approach to lightning location has been developed to calculate the probability that any nearby cloud-to-ground lightning stroke occurred within any radius of any point of interest. In practice, this provides the probability that a nearby lightning stroke was within a key distance of a facility, rather than within the error ellipses centered on the stroke. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius. This new facility-centric technique was tested extensively and is much more useful to the space launch customers.

Appendix A - Example Lightning Probability Calculation

This appendix is an example of calculating the probability of any lightning stroke with a known error ellipse being within a circle of any radius around any point. It is provided to clarify the calculation process. An example calculation is shown in Table 4.

This example is a real-world event from a lightning strike near the Space Shuttle launch pad 39A at 02:35 GMT on 16 August 2009 (ref. Figure 6). Although the lightning data usually are from the cloud-to-ground component of the Four Dimensional Lightning Surveillance System (CG-4DLSS) (Murphy et al 2008, Roeder 2010) in this example a lightning stroke from the NLDN is used. We sometimes use StrikeNet reports that provide stroke data from the NLDN to double check the CG-4DLSS report. The lightning stroke input values are shown in row 1 of Table 3.

The following assumptions are applicable to the example calculation in Table 4. The location of Launch Pad 39A is 28.60827486 north latitude (or 0.499309 radians) and 80.60411653 west longitude (or -1.406807 radians). This is also the center of the circle in which the lightning probability will be calculated. The desired radius for probability of lightning around Launch Pad 39A is 0.45 nautical miles (nmi). This lightning stroke occurred on 16 August 2009 at 0235 GMT.

Table 4. Lightning strike probability calculation process.

Step	Action	Equation and other information	Calculation and Result
1	Convert semimajor and semi-minor axes from km to nmi	$1 \mathrm{nmi}=1.852 \mathrm{~km}$	$0.6 \mathrm{~km}=0.324 \mathrm{nmi}$ semimajor axis $0.4 \mathrm{~km}=0.216 \mathrm{nmi}$ semiminor axis
2	Calculate distance from lightning stroke to center of circle	Haversine Distance Formula: Distance $=$ Earth Radius * C - Earth Radius $=3443.920086 \mathrm{nmi}$ - $C=2 * \operatorname{Atn} 2[\sqrt{1-A}, \sqrt{A})$ Atn2 is a two parameter arc tangent function which returns values in all four quadrants. - $\mathrm{A}=\sin ($ dlat $/ 2) * \sin ($ dlat $/ 2)+\cos ($ (target lat))* $\cos (($ stroke lat)) *sin(dlon/2)*sin(dlon/2) - dlat = latitude difference from target to stroke $=$ $28.60827^{\circ}-28.6069^{\circ}=$ 2.39959×10^{-5} (radians) - dlon $=$ longitude difference from circle to stroke $=-80.60411^{\circ}$ $80.6085^{\circ}=7.99967 \times 10^{-5}$ (radians)	$\begin{aligned} & \text { Distance }=3443.920086^{*} \\ & 7.4217 \times 10^{-5} \\ & =0.2556 \mathrm{nmi} \\ & \\ & \mathrm{C}=2 * \mathrm{Atn2}\{\mathrm{sqr}(1- \\ & \left.1.377 \times 10^{-9}\right), \\ & \left.\mathrm{sqr}\left(1.377 \times 10^{-9}\right)\right\} \\ & =7.4217 \times 10^{-5} \\ & \\ & \mathrm{~A}=\sin \left(1.200 \times 10^{-5} / 2\right)^{*} \\ & \sin \left(1.200 \times 10^{-5} / 2\right)^{*} \\ & \quad+ \\ & \cos (0.4993)^{*} \cos (0.4993)^{*} \\ & \sin \left(4.000 \times 10^{-5} / 2\right) \\ & * \sin \left(4.000 \times 10^{-5} / 2\right) \\ & =1.3770 \times 10^{-9} \end{aligned}$
3	Perform coordinate system rotation	- $\mathrm{X}=$ (Longitude of Target - Longitude of Stroke) * Cos (Latitude of Strike)	$\begin{aligned} & X=(-1.4068-(-1.4069) * \\ & \operatorname{Cos}(0.4993) \end{aligned}$

to eliminate the off-diagonal term in the covariance matrix.

- $Z=$ Latitude of Target - Latitude of Stroke
- $\theta=\alpha-((\pi / 2)-\operatorname{Atn} 2(\mathrm{X}, \mathrm{Z})$
- α is the orientation angle of the 50% lightning positional confidence ellipse
- $\mathrm{X}^{\prime}=$ miss distance ${ }^{*} \operatorname{Cos}(\theta$ (coordinate system rotation angle))
- $Z^{\prime}=$ miss distance ${ }^{*} \operatorname{Sin}(\theta)$
- $\sigma_{X^{\prime}}=$ Semi-major axis of the 50% lightning positional confidence ellipse /elliptical scaling constant used to scale standard error to the 50% confidence level
- $\sigma_{\mathrm{Z}}=$ Semi-minor axis of the 50%
lightning positional confidence ellipse /elliptical scaling constant used to scale standard error to the 50% confidence level
- Elliptical scaling constant, k , is:
$\sqrt{-2^{*} \ln (1-\text { probability })}$

Calculate the probability that lightning stroke was within the target area of interest by performing a numerical integration using Simpson's rule of the lightning uncertainty ellipse over the area of the circle around the target of interest.

$$
\begin{aligned}
& \hline=7.0231 \times 10^{-5} \\
& \mathrm{Z}=0.49931-0.49929 \\
& =2.400 \times 10^{-5} \\
& \theta=1.431-1.571- \\
& \mathrm{Atn} 2\left(7.023 \times 10^{-5}, 2.400\right. \\
& \left.\mathrm{X} 10^{-5}\right)=0.1896 \\
& \mathrm{X}^{\prime}=0.2556 * \operatorname{Cos}(0.1896) \\
& =0.2510 \\
& Z^{\prime}=0.2556^{*} \operatorname{Sin}(0.1896) \\
& =0.0482
\end{aligned}
$$

$k=\sqrt{ }-2 * \ln (1-0.50)=$ 1.1774
$\sigma_{\mathrm{X}},=0.3240 / 1.1774=$ 0.2752
$\sigma_{z^{\prime}}=0.2160 / 1.1774=$
0.1834
$P=\frac{1}{2 \sqrt{2 \pi} \sigma_{H}} \int_{0}^{\sqrt{W}}\left[\begin{array}{l}\left.e^{-\left(H-\mu_{H}\right)^{2} / 2 \sigma_{H}^{2}}+e^{-\left(H+\mu_{H}\right)^{2} / 2 \sigma_{H}^{2}}\right] \\ {\left[\operatorname{erf}\left(Z_{1}\right)+\operatorname{erf}\left(Z_{2}\right)\right) d d H}\end{array}\right.$

$$
Z_{1}=\left[\sqrt{\left(W-H^{2}\right)}-\mu_{K}\right] / \sqrt{2} \sigma_{K}
$$

$$
Z_{2}=\left[\sqrt{\left(W-H^{2}\right)}+\mu_{K}\right] / \sqrt{2} \sigma_{K}
$$

- μ_{K} and μ_{H} are the coordinates of the target circle in the ($\mathrm{X}^{\prime}, Z^{\prime}$) coordinate system
- σ_{K} and σ_{H} are equal to σ_{X}, and σ_{Z}, which are the standard deviations of the diagonalized covariance matrix.
- $\mathrm{W}=$ Radius around target 2
- $\mathrm{N}=$ the number of iterations to perform in the integration (for this example, N is set to 200).
- $\mathrm{DH}=\sqrt{W} / \mathrm{N}=$ integration step $\mathrm{H}=$ iteration no. * DH
- B, C, and D are intermediate variables in
$\mathrm{W}=$ Radius around target ${ }^{2}$
$\mathrm{W}=0.45^{2}=0.2025$
$\mathrm{DH}=\sqrt{W} / \mathrm{N}$
$\mathrm{DH}=\sqrt{0.2025} / 200=$
0.00225
$\mathrm{B}=\sqrt{2} * \sigma_{\mathrm{X}}$,
$\mathrm{B}=\sqrt{2} * 0.2752=0.3891$
$\mathrm{C}=\mathrm{X}^{\prime} / \mathrm{B}$
$\mathrm{C}=0.2510 / 0.3891=$ 0.6451
$\mathrm{D}=1 /\left(2 * \sqrt{2 \pi} * \sigma_{Z^{\prime}}\right)$
$\mathrm{D}=1 /(2 * \sqrt{2 \pi} * 0.1834)=$ 1.0874
$\mathrm{H}=199 * 0.00225$
$\mathrm{H}=0.4478$
the algorithm corresponding to various parts of the probability equation shown above
- $\mathrm{B}=\sqrt{2} * \sigma_{\mathrm{X}}$
- $\mathrm{C}=\mathrm{X}^{\prime} / \mathrm{B}$
- $\mathrm{D}=1 /\left(2 * \sqrt{2 \pi} * \sigma_{\mathrm{Z}}\right)$
- A, H, z1, z2, E, F, Erf(z1), Erf(z2), Q and sum are intermediate variables in the algorithm corresponding to various parts of the probability equation shown above
- A loop is performed for $\mathrm{j}=1$ to 199 . This example is shown for $\mathrm{j}=199$.
- Sum $=0$
- Begin Loop here: $\mathrm{H}=\mathrm{j}^{*} \mathrm{DH}$
- $\mathrm{A}=\sqrt{W-H^{2}}$
- $\mathrm{zl}=\mathrm{A} / \mathrm{B}-\mathrm{C}$
- $\mathrm{z} 2=\mathrm{A} / \mathrm{B}+\mathrm{C}$
- $\operatorname{Erf}(\mathrm{x})=$ error function $=$

$$
\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

- $\mathrm{E}=\left(\mathrm{H}-\mathrm{Z}^{\prime}\right)^{2} /\left(2^{*} \sigma_{\mathrm{Z}}{ }^{2}\right)$
- $\mathrm{F}=\left(\mathrm{H}+\mathrm{Z}^{\prime}\right)^{2} /\left(2^{*} \sigma_{\mathrm{Z}}{ }^{2}\right)$
- $\mathrm{Q}(\mathrm{j})=\left(\mathrm{e}^{-\mathrm{E}}+\mathrm{e}^{-\mathrm{F}}\right)^{*}(\operatorname{Erf}(\mathrm{Z} 1)+$ $\operatorname{Erf}(\mathrm{Z} 2))$
- $\operatorname{sum}=\operatorname{sum}+\left(3-(-1)^{j}\right) * Q(j)$
- $\operatorname{sum}=\operatorname{sum}+Q(0)+Q(N)$
- Probability $=\mathrm{D}^{*}$ sum* $\mathrm{DH} / 3$

$$
\begin{aligned}
& \mathrm{A}=\sqrt{W-H^{2}} \\
& \mathrm{~A}=\sqrt{0.2025-0.44775^{2}} \\
& \mathrm{~A}=4.494 \times 10^{-2} \\
& \mathrm{z} 1=\mathrm{A} / \mathrm{B}-\mathrm{C} \\
& \mathrm{z} 1=4.494 \times 10^{-2} / 0.3891 \\
& -0.6451 \\
& \mathrm{z} 1=-0.5296 \\
& \mathrm{z} 2=\mathrm{A} / \mathrm{B}+\mathrm{C} \\
& \mathrm{z} 2=4.494 \times 10^{-2} / 0.3891 \\
& +0.6451 \\
& \mathrm{z} 2=0.7606
\end{aligned}
$$

$\operatorname{Erf}(Z 1)=$
ErrorFunction(z1)
$\operatorname{Erf}(-0.5296)=-0.5461$
$\operatorname{Erf}(\mathrm{Z} 2)=$
ErrorFunction(z2)
$\operatorname{Erf}(0.7606)=0.7179$
$\mathrm{E}=\left(\mathrm{H}-\mathrm{Z}^{\prime}\right)^{2} /\left(2^{*} \sigma_{\mathrm{Z}}{ }^{2}\right)$
$\mathrm{E}=(0.4478-$
$0.0482)^{2} /\left(2^{*} 0.1834^{2}\right)$
$\mathrm{E}=2.372$
$\mathrm{F}=\left(\mathrm{H}+\mathrm{Z}^{\prime}\right)^{2} /\left(2 * \sigma_{\mathrm{Z}}{ }^{\prime 2}\right)$
$\mathrm{F}=(0.4478+$ $0.0482)^{2} /\left(2 * 0.1834^{2}\right)$
$\mathrm{F}=3.654$
$Q(j)=\left(e^{-E}+e^{-F}\right) *$
$(\operatorname{Erf}(\mathrm{Z} 1)+\operatorname{Erf}(\mathrm{Z} 2))$
$\mathrm{Q}(199)=\left(\mathrm{e}^{-2.372}+\mathrm{e}^{-3.654}\right)^{*}$
$(-0.5461+0.7179)=$
2.0467×10^{-2}
$\operatorname{sum}=\operatorname{sum}+\left(3-(-1)^{j}\right)^{*}$
Q(j)
sum $=$ sum $+\left(3-(-1)^{199}\right)$

* 2.047×10^{-2}
sum $=844.8952$
End Loop
sum $=$ sum $+Q(0)+Q(N)$
sum $=844.8952+2.9361$
$+0=847.8317$
Probability $=\mathrm{D}^{*}$ sum *
DH / 3
Probability $=1.0874$ *
$847.8317 * 0.00225 / 3=$

$$
\begin{aligned}
& \mathrm{E}=\left(\mathrm{H}-\mathrm{Z}^{\prime}\right)^{2} /\left(2 * \sigma_{\mathrm{Z}}^{\prime 2}\right) \\
& \mathrm{E}=(0.4478- \\
& 0.0482)^{2} /\left(2^{*} 0.1834^{2}\right) \\
& \mathrm{E}=2.372 \\
& \mathrm{~F}=\left(\mathrm{H}+\mathrm{Z}^{\prime}\right)^{2} /\left(2 * \sigma_{\mathrm{Z}}^{\prime 2}\right) \\
& \mathrm{F}=(0.4478+ \\
& 0.0482)^{2} /\left(2^{*} 0.1834^{2}\right) \\
& \mathrm{F}=3.654
\end{aligned}
$$

$$
\mathrm{Q}(\mathrm{j})=\left(\mathrm{e}^{-\mathrm{E}}+\mathrm{e}^{-\mathrm{F}}\right)^{*}
$$

$$
(\operatorname{Erf}(\mathrm{Z} 1)+\operatorname{Erf}(Z 2))
$$

$$
\mathrm{Q}(199)=\left(\mathrm{e}^{-2.372}+\mathrm{e}^{-3.654}\right)^{*}
$$

$$
(-0.5461+0.7179)=
$$

$$
2.0467 \times 10^{-2}
$$

$$
\operatorname{sum}=\operatorname{sum}+\left(3-(-1)^{j}\right)^{*}
$$

$$
Q(\mathrm{j})
$$

$$
\text { sum }=\operatorname{sum}+\left(3-(-1)^{199}\right)
$$

$$
* 2.047 \times 10^{-2}
$$

sum $=844.8952$
End Loop
sum $=\operatorname{sum}+\mathrm{Q}(0)+\mathrm{Q}(\mathrm{N})$
sum $=844.8952+2.9361$ $+0=847.8317$

Probability = D * sum * DH / 3
Probability $=1.0874$ * $847.8317 * 0.00225 / 3=$ 0.6914

Appendix B - Excel VBA Macro for $\mathbf{4 5}^{\text {th }}$ Weather Squadron Lightning Spreadsheet that Calculates the Probability of any Nearby Lightning Stroke being Inside any Radius of Any Point of Interest

Conversions Module

Const pie As Double $=3.14159265358979$
Const ecc As Double $=0.081819190842622$ 'eccentricity $\left(e^{\wedge}\right)$
Const kmPerMile As Double $=1.852$

```
Function toRad(Degrees As Double) As Double
    'Converts degrees to radians
    toRad = Degrees * pie / }18
End Function
Function toDeg(Radians As Double) As Double
    'Converts radians to degrees
    toDeg = Radians * 180 / pie
End Function
```

Function applyConfidence(length As Double, newSigma As Double, currentSigma As Double) As Double
'convert length based on confidence interval
applyConfidence $=$ length $*$ newSigma $/$ currentSigma
End Function
Function revertConfidence(length As Double, newSigma As Double, currentSigma As Double) As
Double
'convert length based on confidence interval
revertConfidence $=$ length $*$ currentSigma $/$ newSigma
End Function

Function kmToNmi(kilometers As Double) As Double
'Converts kilometers to nautical miles
$\mathrm{kmToNmi}=$ kilometers $/ \mathrm{kmPerMile}$
End Function

Function geodToECEF(Lat As Double, Lon As Double) As Variant
'convert lat-lon to EFG
Dim ret(2) As Double
$\operatorname{ret}(0)=\operatorname{getE}($ Lat, Lon $)$
$\operatorname{ret}(1)=\operatorname{getF}($ Lat, Lon $)$
$\operatorname{ret}(2)=\operatorname{getG}(\mathrm{Lat})$
geodToECEF = ret
End Function
$\operatorname{ret}(1)=\operatorname{Atn2}(\mathrm{E}, \mathrm{F}) * 180 /$ pie
EcefToGeod $=$ ret
End Function

Functions Module

Const pie As Double $=3.14159265358979$
Const eRad As Double $=3443.920086$ 'radius of earth in nautical miles Const ecc As Double $=0.081819190842622$ 'eccentricity $\left(e^{\wedge}\right)$

Public Function Atn2(ByVal X As Double, ByVal Y As Double) As Double Dim at As Double

If $\mathrm{X}=0$ Then
If $\mathrm{Y}<0$ Then
$\operatorname{Atn} 2=-$ pie $/ 2$
Elself Y>0 Then
$\operatorname{Atn} 2=\mathrm{pie} / 2$
Else
$\operatorname{Atn} 2=0$
End If
Elself $\mathrm{Y}=0$ Then
If $\mathrm{X}>0$ Then

$$
\operatorname{Atn} 2=0
$$

ElseIf X < 0 Then $\operatorname{Atn} 2=$ pie
End If
Else
at $=\operatorname{Atn}(\mathrm{Y} / \mathrm{X})$
If $\mathrm{X}<0$ And $\mathrm{Y}<0$ Then
$\operatorname{Atn} 2=$ at - pie
Elself $\mathrm{X}<0$ And $\mathrm{Y}>0$ Then $\operatorname{Atn} 2=$ at + pie
Else

$$
\operatorname{Atn} 2=\mathrm{at}
$$

End If
End If
End Function

Function $\operatorname{arcCos}(\mathrm{X}$ As Double)
$\operatorname{arcCos}=\operatorname{Atn}\left(\left(1-X^{\wedge} 2\right)^{\wedge} 0.5 / X\right)$
End Function

Dim ret(2) As Double
$\operatorname{ret}(0)=\mathrm{p}(0)+\mathrm{p} 2(0)$
$\operatorname{ret}(1)=\mathrm{p} 1(1)+\mathrm{p} 2(1)$
$\operatorname{ret}(2)=\mathrm{pl}(2)+\mathrm{p} 2(2)$
addPoints $=$ ret
End Function

Function getEPointDiffs(eLat As Double, eLon As Double, A As Double, B As Double, phi As Double, t As Double) As Variant
'get EFG differentials for a point on ellipse at t radians
Dim ret(2) As Double
Dim x1 As Double, yl As Double
$\mathrm{x} 1=\operatorname{get} X(\mathrm{~A}, \mathrm{~B}, 0,90-\mathrm{phi}, \mathrm{t})$
$\mathrm{y} 1=\operatorname{get} Y(\mathrm{~A}, \mathrm{~B}, 0,90-\mathrm{phi}, \mathrm{t})$
$\operatorname{ret}(0)=-x 1^{*} \operatorname{Sin}\left(\right.$ eLon $*$ pie / 180) $-\mathrm{yl}{ }^{*} \operatorname{Sin}(e L a t *$ pie / 180) $* \operatorname{Cos}($ eLon * pie / 180)
$\operatorname{ret}(1)=\mathrm{x} 1$ * $\operatorname{Cos}(\mathrm{eLon} *$ pie $/ 180)-\mathrm{y}{ }^{*} \operatorname{Sin}(\mathrm{eLon} *$ pie $/ 180) * \operatorname{Sin}(\mathrm{eLat} *$ pie / 180)
$\operatorname{ret}(2)=\mathrm{yl}$ * $\operatorname{Cos}(\mathrm{eLat} *$ pie / 180)
getEPointDiffs = ret

```
End Function
```

Function getFocalPointDiffs(eLat As Double, eLon As Double, A As Double, B As Double, phi As Double) As Variant
'get EFG differentials for focal point of ellipse
Dim ret(2) As Double
Dim fociDist As Double, x1 As Double, y1 As Double
fociDist $=\operatorname{Sqr}\left(\mathrm{A}^{\wedge} 2-\mathrm{B}^{\wedge} 2\right)$
$\mathrm{x} 1=$ fociDist $* \operatorname{Cos}(\operatorname{toRad}(90-\mathrm{phi}))$
yl $=$ fociDist $* \operatorname{Sin}(\operatorname{toRad}(90-\mathrm{phi}))$
$\operatorname{ret}(0)=-\mathrm{x} 1 * \operatorname{Sin}(\mathrm{eLon} *$ pie / 180) $-\mathrm{y} 1 * \operatorname{Sin}(\mathrm{eLat} *$ pie / 180) $* \operatorname{Cos}(\mathrm{eLon} *$ pie / 180)
$\operatorname{ret}(1)=\mathrm{xl}{ }^{*} \operatorname{Cos}(\mathrm{eLon} *$ pie / 180) $-\mathrm{y} 1 * \operatorname{Sin}(\mathrm{eLon} *$ pie / 180) $* \operatorname{Sin}(\mathrm{eLat} *$ pie / 180)
$\operatorname{ret}(2)=\mathrm{yl}{ }^{*} \operatorname{Cos}(\mathrm{eLat} *$ pie / 180)
getFocalPointDiffs $=$ ret
End Function
Function getDistGeod(lat1 As Double, lon1 As Double, lat2 As Double, lon2 As Double) As Double 'spherical
Dim rLat1 As Double, rLat2 As Double, rLon1 As Double, rLon2 As Double

```
rLat1 = toRad(lat1)
rLat2 = toRad(lat2)
rLon1 = toRad(lon1)
rLon2 = toRad(lon2)
```

$\operatorname{get} \operatorname{DistGeod}=\operatorname{getN}((\operatorname{lat} 1+\operatorname{lat} 2) / 2) * \operatorname{arcCos}(\operatorname{Cos}(\mathrm{rLat} 1) * \operatorname{Cos}(\mathrm{rLon} 1) * \operatorname{Cos}(\mathrm{rLat} 2) * \operatorname{Cos}(\mathrm{rLon} 2)+$ $\operatorname{Cos}(\mathrm{rLat} 1) * \operatorname{Sin}(\mathrm{rLon} 1) * \operatorname{Cos}(\mathrm{rLat} 2) * \operatorname{Sin}(\mathrm{rLon} 2)+\operatorname{Sin}(\mathrm{rLat} 1) * \operatorname{Sin}(\mathrm{rLat} 2)) / 180 *$ pie

End Function

Function greatCircle(lat1 As Double, lon1 As Double, lat2 As Double, lon2 As Double) As Double 'great circle distance in NM
Dim rLat1 As Double, rLat2 As Double, rLon1 As Double, rLon2 As Double
rLat $1=$ toRad(lat 1$)$
rLat2 $=$ toRad(lat2)
rLon1 $=$ toRad(lon1)
rLon2 $=$ toRad(lon2)
greatCircle $=(\mathrm{eRad}) * \operatorname{arcCos}(\operatorname{Cos}(\mathrm{rLat} 1) * \operatorname{Cos}(\mathrm{rLat} 2) * \operatorname{Cos}(\mathrm{rLon} 2-r L o n 1)+\operatorname{Sin}(\mathrm{rLat} 1) *$
Sin(rLat2))
End Function

Function Haversine(lat1 As Double, lon1 As Double, lat2 As Double, lon2 As Double) As Double 'Calculates distance between two latitude and longitude points by the haversine formula in NM Dim dlat As Double, dlon As Double, C As Double, A As Double

$$
\text { dlat }=\text { toRad(lat1) }- \text { toRad(lat2) }
$$

dlon $=$ toRad(lon1) - toRad(lon2)
$\mathrm{A}=\operatorname{Sin}(\mathrm{dlat} / 2) * \operatorname{Sin}(\mathrm{dlat} / 2)+\operatorname{Cos}(\operatorname{toRad}(\operatorname{lat} 1)) * \operatorname{Cos}(\operatorname{toRad}(\operatorname{lat} 2)) * \operatorname{Sin}(\mathrm{dlon} / 2) * \operatorname{Sin}(\mathrm{dlon} / 2)$
$\mathrm{C}=2$ * $\operatorname{Atn2(Sqr}(1-A), \operatorname{Sqr}(\mathrm{A}))$
Haversine $=\operatorname{eRad}^{*} \mathrm{C}$
End Function
Function getX(A As Double, B As Double, H As Double, phi As Double, t As Double) As Double 'get the X cartesian coordinate of a point on the ellipse at t radians $\operatorname{get} \mathrm{X}=\mathrm{H}+\mathrm{A} * \operatorname{Cos}(\mathrm{t}) * \operatorname{Cos}(\mathrm{phi} * \operatorname{pie} / 180)-\mathrm{B} * \operatorname{Sin}(\mathrm{t}) * \operatorname{Sin}(\mathrm{phi} * \operatorname{pie} / 180)$

End Function

```
Function getY(A As Double, B As Double, k As Double, phi As Double, t As Double) As Double
    'get the Y cartesian coordinate of a point on the ellipse at t radians
    getY = k + B * Sin(t) * Cos(phi * pie / 180) + A * Cos(t) * Sin(phi * pie / 180)
End Function
```


Function getN(Lat As Double) As Double

'get radius of the earth as a given latitude, adjusted for eccentricity
$\operatorname{getN}=\operatorname{eRad} /\left(1-\left(\left(\operatorname{ecc}{ }^{\wedge} 2\right){ }^{*} \operatorname{Sin}(\text { Lat } * \operatorname{pie} / 180)^{\wedge} 2\right)\right)^{\wedge} 0.5$
End Function

Function getE(Lat As Double, Lon As Double) As Double
'get E coordinate from lat-lon
getE $=\operatorname{getN}($ Lat $) * \operatorname{Cos}($ Lat $*$ pie $/ 180) * \operatorname{Cos}(\operatorname{Lon} *$ pie / 180)
End Function

Function getF(Lat As Double, Lon As Double) As Double
'get F coordinate from lat-lon
getF $=\operatorname{getN}($ Lat $) * \operatorname{Cos}($ Lat * pie $/ 180) * \operatorname{Sin}($ Lon $*$ pie / 180)
End Function

Function getG(Lat As Double) As Double
'get G coordinate from lat
$\operatorname{getG}=\operatorname{getN}($ Lat $) *(1-\operatorname{ecc} \wedge 2) * \operatorname{Sin}($ Lat * pie / 180)
End Function
Function getEPoint(ecLat As Double, ecLon As Double, A As Double, B As Double, phi As Double, t As Double) As Variant
'get lat-lon of a point on ellipse at t radians
Dim ret(1) As Double
Dim eC() As Double
Dim point() As Double
Dim diffs() As Double
$\mathrm{eC}=\operatorname{geodToECEF}(\mathrm{ecLat}, \mathrm{ecLon})$
diffs = getEPointDiffs(ecLat, ecLon, A, B, phi, t)
point $=$ addPoints(eC, diffs)
getEPoint = EcefToGeod(point(0), point(1), point(2))

End Function

Function ePointLat(ecLat As Double, ecLon As Double, A As Double, B As Double, phi As Double, t As Double) As Double
'get lat of a point on ellipse at t radians
Dim geod() As Double
geod $=$ getEPoint(ecLat, ecLon, $\mathrm{A}, \mathrm{B}, \mathrm{phi}, \mathrm{t}$)
ePointLat $=\operatorname{geod}(0)$
End Function
Function ePointLon(ecLat As Double, ecLon As Double, A As Double, B As Double, phi As Double, t
As Double) As Double
'get lon of a point on ellipse at t radians
Dim geod() As Double
geod $=$ getEPoint(ecLat, ecLon, $\mathrm{A}, \mathrm{B}, \mathrm{phi}, \mathrm{t})$
ePointLon $=\operatorname{geod}(1)$
End Function

Function getAzimuth(lat1 As Double, lon1 As Double, lat2 As Double, lon2 As Double) As Double 'get azimuth between two points
Dim angle As Double

```
    angle =(Atn2(\operatorname{Cos}(toRad(lat1))}*\operatorname{Sin}(toRad(lat2)) - Sin(toRad(lat1)) * Cos(toRad(lat2)) **
Cos(toRad(lon2) - toRad(lon1)), Sin(toRad(lon2) - toRad(lon1)) * Cos(toRad(lat2))) * 180 / pie)
    If (angle = 0) Then
    getAzimuth = 360
    Else
        getAzimuth = (angle + 360) Mod 360
    End If
End Function
```


Module 2 Code

Dim point As New Strike
Const passWord As String = "PAEc0d3m0nk3y\$"

Sub POI_Change()

Calculate
End Sub

Sub calculateRow()
Application.EnableCancelKey $=x$ lDisabled
Worksheets("Results").protect Contents:=False, passWord:=passWord
Dim ecef() As Double
Dim interestPoint(1) As Double ' (lat,lon)
Dim rowNumber_data As Double
Dim rowNumber_result As Double
Dim rowData As Variant
Dim AOI(3) As Double
Dim lastRow As Double
If Worksheets("Results").FilterMode = True Then
Worksheets("Results").ShowAllData
End If
lastRow = Worksheets("Results").Cells(Rows.Count, "A").End(xlUp).row
If (lastRow > 6) Then
Worksheets("Results").Range("A7:R" \& lastRow).Select
Selection.Delete
End If
AOI(0) = Range("latLower")
AOI(1) = Range("latUpper")
AOI(2) = Range("lonLower")
AOI(3) = Range("lonUpper")
interestPoint(0) = Range("poiLat")
interestPoint(1) = Range("poiLon")
ecef $=\operatorname{geodToECEF}($ interestPoint (0), interestPoint(1))

Call point.setStatics(interestPoint, ecef, Range("newSigma"), Range("currentSigma"), Range("radius"))

Dim xlCalc As XlCalculation
xlCalc $=$ Application.Calculation
Application.Calculation $=x l$ CalculationManual
' On Error GoTo CalcBack
lastRow = Worksheets("Data").Cells(Rows.Count, "A").End(xlUp).row
rowNumber_result $=7$
For rowNumber_data $=2$ To lastRow
rowData $=$ Worksheets("Data").Range("A" \& rowNumber_data \& ":I" \& rowNumber_data)
If (rowData(1, 3) $>\operatorname{AOI}(0)$ And rowData(1, 3) $<\operatorname{AOI}(1)$ And rowData(1, 4) $>\operatorname{AOI}(2)$ And
rowData(1, 4) < AOI(3)) Then
Call point.init(rowData(1, 3), rowData(1, 4), rowData(1, 6), rowData(1, 7), rowData(1, 8), True)
Worksheets("Results").Cells(rowNumber_result, 1) = rowData(1, 1)
Worksheets("Results").Cells(rowNumber_result, 2) = rowData(1, 2)
Worksheets("Results").Cells(rowNumber_result, 3) = point.centerAzimuth
Worksheets("Results").Cells(rowNumber_result, 4) = point.centerRange
Worksheets("Results").Cells(rowNumber_result, 5) = point.criticalAzimuth
Worksheets("Results").Cells(rowNumber_result, 6) = point.criticalRange
Worksheets("Results").Cells(rowNumber_result, 7) = rowData(1, 5)
Worksheets("Results").Cells(rowNumber_result, 8) = point.isInside
Worksheets("Results").Cells(rowNumber_result, 9) = rowData(1, 9)
Worksheets("Results").Cells(rowNumber_result, 10) = point.Prob_simpson
Worksheets("Results").Cells(rowNumber_result, 11) = point.rangeDifference
Worksheets("Results").Cells(rowNumber_result, 12) = point.Lat
Worksheets("Results").Cells(rowNumber_result, 13) = point.Lon
Worksheets("Results").Cells(rowNumber_result, 14) = point.A
Worksheets("Results").Cells(rowNumber_result, 15) = point.B
Worksheets("Results").Cells(rowNumber_result, 16) = point.phi
Worksheets("Results").Cells(rowNumber_result, 17) = point.criticalLat
Worksheets("Results").Cells(rowNumber_result, 18) = point.criticalLon
'Worksheets("Results").Cells(rowNumber_result, 19) = point.Prob_rician
'Worksheets("Results").Cells(rowNumber_result, 20) = point.Prob_simpson
rowNumber_result = rowNumber_result +1
End If
Next rowNumber_data
lastRow = Worksheets("Results").Cells(Rows.Count, "A").End(xlUp).row
Worksheets("Results").Range("A7:A" \& lastRow).NumberFormat = "MM/DD/YYYY"
Worksheets("Results").Range("B7:B" \& lastRow).NumberFormat = "HH:mm:ss.000"
Worksheets("Results").Range("C7:C" \& lastRow).NumberFormat = "000"
Worksheets("Results").Range("D7:D" \& lastRow).NumberFormat = "0.00"
Worksheets("Results").Range("E7:E" \& lastRow).NumberFormat = "000"
Worksheets("Results").Range("F7:F" \& lastRow).NumberFormat = "0.00"
Worksheets("Results").Range("J7:J" \& lastRow).NumberFormat = "0.000000\%"
Worksheets("Results").Range("K7:K" \& lastRow).NumberFormat = "0.00"
Worksheets("Results").Range("L7:M" \& lastRow).NumberFormat = "0.0000"
Worksheets("Results").Range("N7:P" \& lastRow).NumberFormat = "0.00"
Worksheets("Results").Range("Q7:R" \& lastRow).NumberFormat = "0.0000"
'Worksheets("Results").Range("S7:T" \& lastRow).NumberFormat = "0.000000\%"
If (lastRow > 6) Then
With Worksheets("Results").Range("H7:H" \& lastRow).Select
Selection.FormatConditions.Add Type:=xlTextString, String:="Yes",TextOperator:=xlContains
Selection.FormatConditions(Selection.FormatConditions.Count).SetFirstPriority
With Selection.FormatConditions(1).Font
.Color $=-16777024$
.TintAndShade $=0$
End With
With Selection.FormatConditions(1).Interior
PatternColorIndex $=$ xlAutomatic
. Color $=5263615$
.TintAndShade $=0$
End With
End With
End If
Application.Calculation $=x l C a l c$
Worksheets("Results").EnableAutoFilter = True
Worksheets("Results").protect Contents:=True, passWord:=passWord, AllowFiltering:=True,
AllowSorting:=True, userInterfaceOnly:=True
MsgBox ("Data Calculation Complete")
Exit Sub
CalcBack:
Worksheets("Results").protect Contents:=True, passWord:=passWord, AllowFiltering:=True, AllowSorting:=True, userInterfaceOnly:=True

 Application.Calculation \(=x l C a l c\)
 End Sub
Sub openBrowser()
Dim rowNumber As Double,
Dim N As Integer
Dim ecef() As Double
Dim interestPoint(1) As Double ' (lat,lon)
Dim showPath As Boolean
showPath $=$ ActiveSheet.showPath.value
interestPoint(0) = Range("poiLat")
interestPoint(1) = Range("poiLon")
ecef $=$ geodToECEF(interestPoint(0), interestPoint(1))

```
    Call point.setStatics(interestPoint, ecef, Range("newSigma"), Range("currentSigma"),
Range("radius"))
    rowNumber = Range("nRow")
    N = Range("nPoints")
    Call point.init(Cells(rowNumber, 12), Cells(rowNumber, 13), Cells(rowNumber, 14),
Cells(rowNumber, 15), Cells(rowNumber, 16), False)
```

 Call point.setURL(N, showPath)
 'Range("urlString") = point.URL
 Set browser = CreateObject("InternetExplorer.Application")
 If (Len(point.URL) > 1950) Then
 MsgBox ("Your request contains too many characters. Please select a smaller number of perimeter
 points or turn on off the path attribute.")
Else
browser.Navigate (point.URL)
browser. Visible = True
End If
End Sub

Probability Module

```
Const pie As Double = 3.14159265358979
```

Function RicianIntegral(U As Double, V As Double, m As Integer)
This subroutine computes the Rician Integral Pm when u , v and m are given.
'It is preferred because both the exponentials are outside the summation loops.
'This formulation gives essentially the same numerical value as the other one.
Dim tm As Double, rm As Double, sm As Double, sumTm As Double, sumTmSm As Double
On Error GoTo overflow
$\mathrm{tm}=1$
$\mathrm{rm}=1$
$\mathrm{sm}=1$
sumTm = 1
sumTmSm $=1$
For $\mathrm{i}=1$ To m
$\mathrm{tm}=\mathrm{tm} * V /(2 * \mathrm{i})$
$\mathrm{rm}=\mathrm{rm} * \mathrm{U} /(2 * \mathrm{i})$
$\mathrm{sm}=\mathrm{sm}+\mathrm{rm}$
$\operatorname{sumTm}=\operatorname{sumTm}+\mathrm{tm}$
sumTmSm $=$ sumTmSm $+t m$ * sm
Next i
RicianIntegral $=\operatorname{Exp}(-\mathrm{V} / 2) *$ sumTm $-\operatorname{Exp}(-(\mathrm{U}+\mathrm{V}) / 2) *$ sumTmSm
Exit Function
overflow:

```
    RicianIntegral = 0
End Function
```

Function numericIntegral(Xprime As Double, Zprime As Double, SigmaXp As Double, SigmaZp As Double, Xe As Double, Ra As Double, N As Integer)

Dim x1 As Double, z1 As Double, r1 As Double, x2 As Double, z2 As Double, r2 As Double Dim R As Double, sum As Double, dTheta As Double, thisPhi As Double, Q As Double

```
DPhi \(=2\) * pie \(/ \mathrm{N}\)
sum \(=0\)
thisPhi \(=0\)
x1 \(=(\text { Xprime }+ \text { Ra) })^{*}\) SigmaZp \(/\) SigmaXp
z1 = Zprime
For \(\mathrm{i}=1 \mathrm{To} \mathrm{N}\)
    thisPhi \(=\) thisPhi + DPhi
    \(\mathrm{x} 2=(\) Xprime \(+\mathrm{Ra} * \operatorname{Cos}(\) thisPhi \()) * \operatorname{SigmaZp} / \operatorname{SigmaXp}\)
    \(\mathrm{z} 2=\) Zprime \(+\mathrm{Ra} *\) Sin(thisPhi)
    \(\mathrm{rl}=\operatorname{Sqr}\left(\mathrm{xl}{ }^{*} \mathrm{xl}+\mathrm{zl}{ }^{*} \mathrm{z} 1\right)\)
    \(\mathrm{r} 2=\operatorname{Sqr}(\mathrm{x} 2 * \mathrm{x} 2+\mathrm{z} 2 * \mathrm{z} 2)\)
    \(\mathrm{dTheta}=\) Application.WorksheetFunction.Asin((x1*z2-x2*z1)/(r1*r2))
    \(\mathrm{R}=(\mathrm{r} 1+\mathrm{r} 2) / 2\)
    sum \(=\operatorname{sum}+\operatorname{Exp}\left(-(\mathrm{R} / \operatorname{SigmaZp})^{\wedge} 2 / 2\right)^{*}\) dTheta
    \(\mathrm{x} 1=\mathrm{x} 2\)
    \(z 1=z 2\)
Next i
\(\mathrm{Q}=-\) sum \(/(2 *\) pie \()\)
If \(\mathrm{Xe}<\mathrm{Ra}\) Then
        numericIntegral \(=1+\mathrm{Q}\)
Elself \(\mathrm{Xe}=\mathrm{Ra}\) Then
    numericIntegral \(=1 / 2+Q\)
Else
    numericIntegral \(=\mathrm{Q}\)
End If
```

End Function

Function simpsonIntegral(Xprime As Double, Zprime As Double, SigmaXprime As Double, SigmaZprime As Double, Ra As Double, N As Integer)
'This program computes the collision probability between two objects.
'The integration is performed using Simpson's Rule.
Dim Q(1000) As Double, P As Double
Dim A As Double, B As Double, C As Double, D As Double, E As Double, F As Double, W As Double

Dim H As Double, DH As Double

```
pi = 3.14159265358979
B = Sqr(2)* SigmaXprime
C = Xprime / B
D = 1/(2 * Sqr(2 * pi) * SigmaZprime)
W}=\textrm{Ra}^
DH=Sqr(W)/N
'Compute Q(I) array from 0 to (N-1)
For j = 0 To (N-1)
    H=j*DH
    A=Sqr(W-H ^ 2)
    z1 = A/B - C
    z2 = A/B +C
    ErfZ1 = ErrorFunction(z1)
    ErfZ2 = ErrorFunction(z2)
    E=(H-Zprime) ^ 2 / (2 * SigmaZprime ^ 2)
    F = (H + Zprime ) ^ 2 / (2 * SigmaZprime ^ 2)
    Q(j) = (Exp(-E) + Exp(-F))* (ErfZ1 + ErfZ2)
```

Next ${ }^{j}$
$\mathrm{Q}(\mathrm{N})=0$
'Compute the integral by Simpson's Rule
sum $=0$
For $\mathrm{j}=1 \mathrm{To}(\mathrm{N}-1)$
sum $=\operatorname{sum}+\left(3-(-1)^{\wedge}\right)^{*} Q(j)$
Next j
$\operatorname{sum}=\operatorname{sum}+Q(0)+Q(N)$
$\mathrm{P}=\mathrm{D} *$ sum * $\mathrm{DH} / 3$
simpsonIntegral $=\mathrm{P}$

End Function

Function ErrorFunction(X)

'This subroutine computes the Error Function when X is given.
Dim Z, SqrtPi, tm, sum, Max, m, ErfX, ErfcX
$\mathrm{SqrtPi}=1.77245385090552$

```
\(\mathrm{Z}=\mathrm{Abs}(\mathrm{X})\)
If \(Z<=4\) Then
    \(\mathrm{tm}=\mathrm{Z}\)
    sum \(=\mathrm{tm}\)
    \(\operatorname{Max}=\operatorname{Int}(20 * Z)+1\)
    For \(m=1\) To Max
        \(\mathrm{tm}=-\mathrm{tm} * \mathrm{Z} * \mathrm{Z} *(2 * \mathrm{~m}-1) /(\mathrm{m} *(2 * \mathrm{~m}+1))\)
        sum \(=\operatorname{sum}+t m\)
    Next m
    ErfX = sum * \(2 / \mathrm{SqrPi}\)
ElseIf \(\mathrm{Z}<=5.736\) Then
    tm =1
    sum \(=1\)
    For \(\mathrm{m}=1\) To 1
        \(\mathrm{tm}=-\mathrm{tm} *(2 * \mathrm{~m}-1) /\left(2 * \mathrm{Z}^{\wedge} 2\right)\)
        sum \(=\operatorname{sum}+\) tm
    Next m
    ErfcX \(=\operatorname{sum} * \operatorname{Exp}\left(-Z^{\wedge} 2\right) /(S q r t P i * Z)\)
    ErfX \(=1-\operatorname{ErfcX}\)
Else
    ErfX \(=1\)
End If
ErrorFunction \(=\operatorname{Sgn}(\mathrm{X}) *\) ErfX
End Function
```


Strike Class Module

Const pie As Double $=3.14159265358979$
Const eRad As Double $=3443.920086$ 'radius of earth in nautical miles
Const ecc As Double $=0.081819190842622$ 'eccentricity $\left(e^{\wedge}\right)$

Private p_poi_geo() As Double Private p_poi_ecef() As Double Private p_newSigma As Double Private p_currentSigma As Double

Private p_strike_geo(1) As Double 'lat lon of strike [lat,lon]
Private p_major As Double
Private p_minor As Double
Private p_phi As Double
'lat lon point of interest [lat,lon]
'EFG point of interest [E,F,G] ' 'user defined confidence level '50\% confidence
Private p_a As Double 'scaled major axis in NM

Private p_b As Double 'scaled minor axis in NM
Private p_strike_ecef() As Double 'EFG strike [E,F,G]
Private p_criticalT As Double 'angle of closest point in radians
Private p_critical_geo() As Double 'lat lon of closest point [lat,lon]
Private p_critical_ecef(2) As Double 'EFG of closest point [E,F,G]
Private p_aziCenter As Double 'azimuth to strike center
Private p_rangeCenter As Double 'distance to strike center

Private p_aziCritical As Double 'azimuth to closest point
Private p_rangeCritical As Double 'distance to closest point
Private p_rangeDifference As Double
Private p_isInside As String
Private p_URL As String
Private p_focil() As Double
Private p_foci2() As Double
Private p_prob_rician As Double
Private p_prob_numeric As Double
Private p_prob_simpson As Double
Private p_radius As Double 'radius around point of interest

Public Sub setStatics(poi_geo As Variant, poi_ecef As Variant, newSigma As Double, currentSigma As Double, radius As Double)
p_poi_geo $=$ poi_geo
p_poi_ecef = poi_ecef
p_newSigma $=\operatorname{Sqr}(-2 * \log (1-$ newSigma $/ 100))$
p_currentSigma $=\operatorname{Sqr}(-2 * \log (1-$ currentSigma / 100) $)$
p_radius $=$ radius
End Sub

Public Sub init(Lat, Lon, major, minor, phi, adjustAxis As Boolean)
On Error GoTo initErr
p_strike_geo(0) = Lat
p_strike_geo(1) = Lon
p_phi = phi
If (adjustAxis) Then
'input major and minor are in KM , and unscaled
p_major $=\mathrm{kmToNmi}(\mathrm{CDbl}($ major $))$
p_minor $=\mathrm{kmToNmi}(\mathrm{CDbl}($ minor $))$

If p_major $=0$ Then
p_major $=0.05$
End If
If p_minor $=0$ Then
p_minor $=0.05$
End If
p_a $=$ applyConfidence(p_major, p_newSigma, p_currentSigma)
p_b = applyConfidence(p_minor, p_newSigma, p_currentSigma)

Else
'input major and minor are in NM and scaled
p_a $=$ CDbl(major)

```
    p_b=CDbl(minor)
    If p_a = 0 Then
        p_a = 0.1
    End If
    If p_b = 0 Then
        p_b = 0.1
    End If
    p_major = revertConfidence(p_a, p_newSigma, p_currentSigma)
    p_minor = revertConfidence(p_b, p_newSigma, p_currentSigma)
End If
    p_strike_ecef = geodToECEF(p_strike_geo(0), p_strike_geo(1))
    Call setT
    p_critical_geo = getEPoint(p_criticalT)
    p_aziCenter = getAzimuth(p_poi_geo(0), p_poi_geo(1), p_strike_geo(0), p_strike_geo(1))
    p_aziCritical = getAzimuth(p_poi_geo(0), p_poi_geo(1), p_critical_geo(0), p_critical_geo(1))
    p_rangeCenter = Haversine(p_poi_geo(0), p_poi_geo(1), p_strike_geo(0), p_strike_geo(1))
    p_rangeCritical = Haversine(p_poi_geo(0), p_poi_geo(1), p_critical_geo(0), p_critical_geo(1))
    p_rangeDifference = p_rangeCenter - p_rangeCritical
    Dim diffs() As Double
    Dim point() As Double
    diffs = getFocalPointDiffs(p_strike_geo(0), p_strike_geo(1), p_a, p_b, p_phi)
    point = addPoints(p_strike_ecef, diffs)
    p_focil = EcefToGeod(point(0), point(1), point(2))
    diffs(0) = -diffs(0)
    diffs(1)= -diffs(1)
    diffs(2) = -diffs(2)
    point = addPoints(p_strike_ecef, diffs)
    p_foci2 = EcefToGeod(point(0), point(1), point(2))
    Call setProbability
    Exit Sub
initErr:
    asd=0
End Sub
```

Public Property Get A()
$A=p _a$
End Property

Public Property Get B()

$$
\mathrm{B}=\mathrm{p} _\mathrm{b}
$$

End Property

[^2]```
Public Property Get criticalLat()
 criticalLat = p_critical _geo(0)
End Property
```

Public Property Get criticalLon()
criticalLon = p_critical_geo(1)
End Property
-
Public Property Get criticalAzimuth()
criticalAzimuth $=$ p_aziCritical
End Property
Public Property Get centerAzimuth()
centerAzimuth = p_aziCenter
End Property
Public Property Get criticalRange()
criticalRange $=$ p_rangeCritical
End Property
Public Property Get centerRange()
centerRange = p_rangeCenter
End Property
Public Property Get rangeDifference()
rangeDifference $=p \_$rangeDifference
End Property

## Public Property Get URL()

URL = p_URL
End Property

Public Property Get Lat()
Lat = p_strike_geo(0)
End Property

```
Public Property Get Lon()
 Lon = p_strike_geo(1)
End Property
```

```
Public Property Get phi()
 phi = p_phi
End Property
Public Property Get Prob_rician()
 Prob_rician = p_prob_rician
End Property
Public Property Get Prob_numeric()
 Prob_numeric = p_prob_numeric
End Property
Public Property Get Prob_simpson()
 Prob_simpson = p_prob_simpson
End Property
Public Property Get isInside()
 Dim d1 As Double, d2 As Double, t0() As Double, d3 As Double, t1() As Double
 dl = Haversine(p_foci1(0), p_focil(1), p_poi _geo(0), p_poi_geo(1))
 d2 = Haversine(p_foci2(0), p_foci2(1), p_poi_geo(0), p_poi_geo(1))
 t0 = getEPoint(0)
 t1 = getEPoint(pie)
 da = Haversine(t1(0), t1(1), t0(0), t0(1))
 If ((d1 + d2) < (da)) Then
 isInside = "Yes"
 Else
 isInside = "No"
 End If
End Property
```


## Private Sub setT()

```
Dim thisT As Double, minDist As Double, thisDist As Double, negDist As Double, posDist As
Double, returnT As Double, step As Double
Dim pointLat As Double, pointLon As Double
Dim point() As Double
returnT \(=\)-pie
point \(=\) getEPoint(returnT)
minDist \(=\) Haversine(p_poi_geo(0), p_poi_geo(1), point(0), point(1))
For thisT = -pie To pie Step pie / 4
point \(=\) getEPoint(thisT)
thisDist = Haversine(p_poi_geo(0), p_poi_geo(1), point(0), point(1))
If (thisDist < minDist) Then
minDist \(=\) thisDist
```

```
 returnT = thisT
 End If
 Next thisT
 step = pie / 4
 While step > pie / (2 ^ 16)
 point = getEPoint(returnT - step)
 negDist = Haversine(p_poi_geo(0), p_poi_geo(1), point(0), point(1))
 point = getEPoint(returnT + step)
 posDist = Haversine(p_poi_geo(0), p_poi_geo(1), point(0), point(1))
 If (negDist < minDist) Then
 returnT = returnT - step
 minDist = negDist
 ElseIf posDist < minDist Then
 returnT = returnT + step
 minDist = posDist
 End If
 step = step / 2
 Wend
 p_criticalT = returnT
End Sub
Private Function getEPoint(t As Double) As Variant
 Dim ret(1) As Double
 Dim point() As Double
 Dim diffs() As Double
 diffs = getEPointDiffs(p_strike_geo(0), p_strike_geo(1), p_a, p_b, p_phi, t)
 point = addPoints(p_strike_ecef, diffs)
 getEPoint = EcefToGeod(point(0), point(1), point(2))
```


## End Function

## Private Function getCPoint(t As Double) As Variant

Dim ret(1) As Double
Dim point() As Double
Dim diffs() As Double
diffs = getEPointDiffs(p_strike_geo(0), p_strike_geo(1), p_radius, p_radius, p_phi, t)
point $=$ addPoints(p_poi_ecef, diffs)
getCPoint $=$ EcefToGeod(point(0), point(1), point(2))

## End Function

Public Sub setURL(nPoints As Integer, showPath As Boolean)
Dim thisT As Double, tStep As Double
Dim point() As Double
p_URL = "http://maps.google.com/staticmap?size=640x640\&maptype=satellite\&markers="
tStep $=2$ * pie / nPoints
For $\mathrm{i}=1$ To nPoints
thisT $=-$ pie $+i *$ tStep
point $=$ getEPoint(thisT)

```
 p_URL = p_URL & Round(point(0), 5) & "," & Round(point(1), 5) & "," & "tinyyellow|"
 'p_URL = p_URL & point(0) & "," & point(1) & "," & "tinyyellow|"
 Next i
 tStep =2* pie / 10
 For i=1 To 10
 thisT = -pie + i * tStep
 point = getCPoint(thisT)
 p_URL = p_URL & Round(point(0), 5) & "," & Round(point(1), 5) & "," & "tinywhite|"
 'p_URL = p_URL & point(0) & "," & point(1) & "," & "tinywhite|"
 Next i
 p_URL = p_URL & p_critical_geo(0) & "," & p_critical_geo(1) & "," & "smallpurple|"
 'p_URL = p_URL & p_focil(0) & "," & p_focil(1) & "," & "smallblue|"
 'p_URL = p_URL & p_foci2(0) & "," & p_foci2(1) & "," & "smallblue|"
 p__URL = p_URL & p_poi_geo(0) & "," & p_poi_geo(1) & "," & "smallgreen|"
 p_URL = p_URL & p_strike_geo(0) & "," & p_strike_geo(1) & "," & "smallred"
 If (showPath) Then
 p_URL = p_URL & "&path="
 tStep = 2 * pie / nPoints
 For i = 1 To nPoints +1
 thisT = -pie + i * tStep
 point = getEPoint(thisT)
 p_URL = p_URL & Round(point(0), 5) & "," & Round(point(1), 5) & "|"
 Nexti
 End If
 p_URL = p_URL &
"&sensor=false&key=ABQIAAAAdwjRqRR8FuOdpA0oimTJCBSOxDKO5lwx0GB6dfDkgLOxwdqZC
hSForDLWhvadXUn6EEI6WZWYt853w"
End Sub
```

Public Sub setProbability()
On Error GoTo probErr
'This program computes the probability of of a lightning strike occurring within a 'specified distance of an asset of interest.
'The cross-section is a circle.
Dim alpha As Double, LonP As Double, LatP As Double, LonS As Double, LatS As Double
Dim Xprime As Double, Zprime As Double, SigmaXp As Double, SigmaZp As Double, sigma As
Double
Dim X As Double, Z As Double, theta As Double
Dim U As Double, V As Double
Dim m As Integer, AspectRatio As Double
p_prob_rician $=0$.
p_prob_numeric $=0$
If (p_major $=0$ Or p_minor $=0$ ) Then Exit Sub
End If
LatP $=$ toRad(p_poi_geo(0)) $\quad$ 'Latitude of POI (radians)

```
LonP = toRad(p_poi _geo(1)). 'Longitude of POI (radians)
LatS = toRad(p_strike_geo(0)) 'Latitude of Strike Spot (radians)
LonS = toRad(p_strike_geo(1)) 'Longitude of Strike Spot (radians)
alpha = toRad(p_phi) 'Heading of Semi-Major Axis of 50% Confidence Ellipse (radians)
```

```
AspectRatio = p_major / p_minor
X = (LonP - LonS) * Cos(LatS)
Z = LatP - LatS
theta = alpha - ((pie / 2) - Atn2(X, Z))
Xprime = p_rangeCenter * Cos(theta)
Zprime = p_rangeCenter * Sin(theta)
SigmaXp = p_major / 1.177410023
SigmaZp = p_minor / 1.177410023
sigma = Sqr(SigmaXp * SigmaZp)
'Compute Rician Integral
'U = (p_radius / sigma)^ }
'V = Xprime ^ 2 / SigmaXp ^ 2 + Zprime ^ 2 / SigmaZp ^ 2
'm= Int(Sqr(U * V)) + 1
'p_prob_rician = RicianIntegral(U, V, m)
'skip numeric method if aspect ratio is low
'If (m<25 And AspectRatio < 10) Then
 'Exit Sub
'End If
'Use numerical method for computing lightning strike probability:
'p_prob_numeric = numericIntegral(Xprime, Zprime, SigmaXp, SigmaZp, p_rangeCenter, p_radius,
1000)
```

    p_prob_simpson \(=\) simpsonIntegral(Xprime, Zprime, SigmaXp, SigmaZp, p_radius, 200)
    Exit Sub
    probErr:

End Sub

## References

Alfano, S., "Satellite Collision Probability Enhancements," J. Guidance, Control, and Dynamics, Vol. 29, No. 3, May-June 2006, pp. 588-592.

Alfano, S., "Review of Conjunction Probability Methods for Short-Term Encounters," AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 07-148, Sedona, AZ, 2007, 44 pp.

Austin, E., "Forensic Meteorology and Climatology: A Rapidly Emerging Niche," Third Annual CCM Forum, $90^{\text {th }}$ Annual American Meteorological Society Meeting, Paper 1.2, Atlanta, GA, 2010.
Beyer, W. H. (ed.), CRC Handbook of Tables for Probability and Statistics, The Chemical Rubber Co., Cleveland, OH, 1968, pp. 151-157.
Chan, F. Kenneth, Spacecraft Collision Probability, The Aerospace Press, El Segundo, CA, 2008, Chaps. 3, 4, 5, 6

Chan, F. Kenneth, "Miss Distance - Generalized Variance Non-Central Chi Distribution," AAS/AIAA Space Flight Mechanics Meeting, Paper AAS 11-175, New Orleans, LA, 2011, 12 pp.
Flinn, F. C., Roeder, W. P., Buchanan, M.D., and McNamara, T. M., "Lightning Reporting at $45^{\text {th }}$ Weather Squadron: Recent Improvements," $21^{\text {st }}$ International Lightning Detection Conference, Orlando, FL, 2010a, 18 pp.
Flinn, F. C., Roeder, W. P., Pinter, D. F., Holmquist, S. M., Buchanan, M. D., McNamara, T. M., McAleenan, M., Winters, K.A., Gemmer, P. S., Fitzpatrick, M. E., and Gonzalez, R. D., "Recent Improvements in Lightning Reporting at $45^{\text {th }}$ Weather Squadron," $14^{\text {th }}$ Conference on Aviation, Range, and Aerospace Meteorology, Paper 7.3, Atlanta, GA, 2010b, 14 pp.
Leleux, D., Spencer, R., Zimmerman, P., Propst, C., Heilman, W., Frisbee, J., and Wortham, M., "Probability-Based Space Shuttle Collision Avoidance," Space Ops 2002 Conference, Houston, TX, 2002, 20 pp.
Murphy, M. J., Cummins, K.L., Demetriades; N. W. S., and Roeder, W. P., "Performance of the New Four-Dimensional Lightning Surveillance System (4DLSS) at the Kennedy Space Center/Cape Canaveral Air Force Station Complex," $13^{\text {th }}$ Conference on Aviation, Range, and Aerospace Meteorology, Paper 7.6, New Orleans, LA, 2008, 18 pp.
c Patera, Russell, P., "General Method for Calculating Satellite Collision Probability," J. Guidance, Control, and Dynamics, Vol. 24, No. 4, Jul.-Aug. 2001, pp. 716-722.

Roeder, W. P., Weems, J. W., and Wahner, P. B., "Applications of the Cloud-to-Ground Lightning Surveillance System Database," ${ }^{\text {st }}$ Conference on the Meteorological Applications of Lightning Data, San Diego, CA, 2005, 5 pp.

Roeder, W.P., "The Four Dimensional Lightning Surveillance System," $21^{\text {st }}$ International Lightning Detection Conference, Orlando, FL, 2010, 15 pp.


[^0]:    National Aeronautics and
    Space Administration
    Kennedy Space Center
    Kennedy Space Center, FL 32899-0001

[^1]:    ${ }^{1}$ Vaisala, Inc., 2006, "Vaisala StrikeNet Information," URL: http://www.vaisala.com/files/StrikeNet-Brochure.pdf

[^2]:    End Property

