Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

Dr. Lance Richards, Allen R. Parker, Anthony Piazza, Dr. William L. Ko, Dr. Patrick Chan, and John Bakalyar

IKHANA G

Dryden Flight Research Center, Edwards, CA

UAS Payloads Conference

San Diego, CA 11/16/2011

Fiber Optic Sensing for UAS Applications Advantages over Conventional Measurements

- Unrivaled density of sensors for spatially distributed measurements
- Measurements immune to EMI, RFI and radiation
- Lightweight sensors
 - Typical installation is 0.1 1% the weight of conventional gage installations (based on past trade studies)
 - 1000's of sensors on a single fiber (up to 80 feet per fiber)
 - No copper wires
- With uniquely developed algorithms, these sensors can determine out-of-plane displacement and load at points along the fiber $r_{e} = \frac{\Delta t^{2}}{bc} \left\{ (3e-1)r_{e} + 6 \sum_{r}^{bd} (e-r)r_{r} + r_{a} \right\}$
- Small fiber diameter
 - Approximately the diameter of a human hair
 - Unobtrusive installation
 - Fibers can be bonded externally or applied as a 'Smart Layer' top ply
- Single calibration value for an entire lot of fiber
- Wide temperature range (cryo 550F)

lootali

Fiber optic

Wires for 21 strain gage measurements

Fiber Optic Sensing for UAS Applications Anticipated Impact

- Potential to revolutionize UAV design and performance throughout the life-cycle
 - Design and development
 - Production
 - Test and Evaluation
 - In-flight operation
 - Off-nominal flight
 - End of life-cycle decisions

Fiber Optic System Operation Overview

Fiber Optic Sensing with Fiber Bragg Gratings

- Immune to electromagnetic / radio-frequency interference and radiation
- Lightweight fiber-optic sensing approach having the potential of embedment into structures
- Multiplex 100s of sensors onto one optical fiber
- Fiber gratings are written at the same wavelength
- Uses a narrowband wavelength tunable laser source to interrogate sensors
- Typically easier to install than conventional strain sensors
- In addition to measuring strain and temperature these sensors can be use to determine shape

Fiber Optic System Operation Overview

- Fourier transforms (both forward and inverse) are used to discriminate between gratings
- The Fourier transform separates the I_R waveform into sinusoids of different frequency which sum to the original waveform

	FFT	iFFT
Traditional	Time(T) > Frequency(F)	Frequency(F) > Time(T)
Optical	Wavelength(λ) > Length(L)	Length(L) > Wavelength(λ)

Fiber Optic System Operation Overview

• By bandpass filtering around a specific frequency (grating location) within the length domain and performing an iFFT, the spectrum of each grating can be independently measured and strain inferred (FM radio)

- Using a centroid function the center wavelength can be resolved
- The wavelength change is proportional to the induced strain

$$\frac{\Delta \lambda}{\lambda} = K\varepsilon$$
 K – proportionality constant (0.7-0.8)

Interrogation Process

7

Research and Technology Development Areas

Research and Technology Development Areas

-Algorithm Development

- Real-time wing shape measurement using fiber optics sensors (Ko, Richards; Patent 7,715,994)
- Real-time applied loads on complex structures using fiber optic sensors (Richards, Ko; Patent 7,520,176)
- Data processing algorithms (Parker, US Patent Pending)
- FBG System Development
- -Instrumentation
- Ground Testing / R&D
- Flight Testing

Real-time Wing Shape Measurement Motivation – Helios UAV

Helios wing dihedral on takeoff

In-flight breakup

Helios Mishap Report – Lessons Learned

- Measurement of wing dihedral in <u>real-time</u> should be accomplished with a visual display of results available to the test crew during flight
- Procedure to control wing dihedral in flight is necessary for the Helios class of vehicle

Real-time Wing Shape Measurement Theoretical Development

Deflection of a Single Fiber:

$$y_{i} = \frac{(\Delta l)_{i}^{2}}{6c_{i-1}} \left[\left(3 - \frac{c_{i}}{c_{i-1}} \right) \varepsilon_{i-1} + \varepsilon_{i} \right] + y_{i-1} + (\Delta l)_{i} \tan \theta_{i-1}$$
Typically the first station is at the root:

$$y_{0} = \tan \theta_{0} = 0$$
Slope:

$$\tan \theta_{i} = \frac{(\Delta l)_{i}}{2c_{i-1}} \left[\left(2 - \frac{c_{i}}{c_{i-1}} \right) \varepsilon_{i-1} + \varepsilon_{i} \right] + \tan \theta_{i-1}$$

Real-time Wing Shape Measurement Global Observer – Algorithm Validation Testing

- Strain gages
 - Validate the FBGs
 - Not used for shape prediction, used for structural evaluation
- Photogrammetry
 - Provided validation information for wing shape prediction
 - Measures actual displacement vectors at target points
 - 10 photogrammetry images taken per load condition

Real-time Wing Shape Measurement Global Observer – Algorithm Validation Testing

Space Administration National Aeronautics and

Real-Time Externally-Applied Loads Approach

- Bending moment calculated at each analysis station
- Cross-sectional properties calculated by applying known load
 - El/c term backed out at each evaluation station
- With properties known, strain can be directly related to bending moment

Known moment

Real-Time Externally-Applied Loads Swept Plate Loads Testing

Cross-sectional properties calculated using Uniform load calibration

National Aeronautics and Space Administration

Wing Shape and Externally-Applied Loads Results

- Deflection calculations are accurate (within ~5%)
 - Different test articles
 - Different load cases
 - Different load magnitudes

Load results will be improved

- Least-squares method
- Developing methods to further use FOSS measurements
 - Angle-of-twist
 - Improved deflection and load
 - Torque

Research and Technology Development Areas

NASA Technology FOSS Systems (4DSP)

Technical Highlights

- 4DSP has licensed NASA technology to commercially develop FOSS systems
 - http://www.4dsp.com/RTS150.php
- Single laser greatly reduces cost per sensor
- High fiber count systems
 - Modular design with 8 channels per card
 - Expandable
 - Up to 32 fibers possible
 - Up to sensing 80 feet per fiber
- 11" x 7" x 12"
- 100 Hz max sample rate
- Lightweight system for multitude of sensors
 - Approximately 25 lbs
- Cost
 - 8 fiber system approx \$100K
 - Up to 16,000 sensors
 - 32 fiber system approx \$150K
 - Up to 64,000 sensors
 - System can be flight-certified (+\$30K)
 - Low power requirements (<10 Amps at 28 Volts DC)
- Applications
 - Transport Aircraft, Ships, Civil Structures

Ground system

Flight system

Compact FOSS (cFOSS) System In Development

- Lightweight, ruggedized system
 - Packaged within a 6" cube
- Targeted specifications:
 - Fiber count: 8
 - Max Fiber length: 80 ft
 - Max # sensors/system:15,360
 - Max Sample rate: 100 Hz
 - Power: 50W @ 28Vdc
 - Weight: <10 lbs
 - Size: 5 x 6 x 6 in
 - Vibration and Shock: NASA Curve B
 - Altitude: 65kFt
- Applications:
 - Fighter aircraft
 - UAVs
 - Launch vehicles
 - Spacecraft
- Target system cost: \$50K
- Availability: End of 2012

Large Scale FOSS (LsFOSS) Technology

FOSS Ground System Technical Highlights Single laser greatly reduces cost per sensor High fiber count systems • Up to 16 fibers monitored simultaneously/system Each fiber can be up to 40ft long Each fiber at 40ft long can have up to 2000 measurements (total of 32,000 /system) Up to 8 systems can be networked together yielding approx. 1 mile of sensing distance (1/4" spacing, 256,000 measurements) FOSS 1 11" x 7" x 12" 100 Hz max sample rate Data Server FOSS 2 Lightweight system for multitude of sensors Approximately 25 lbs FOSS 3 Data display network **Applications:** FOSS network Display PC 1 FOSS 4 Transport Aircraft Ships Display PC 2 FOSS 5 **Civil Structures** Ground Testing Display PC 3 FOSS 6 Structures Laboratory FOSS 7 Display PC N FOSS 8

Research and Technology Development Areas

21

FOSS Installation Advantages and Challenges

Installation Advantages

- Greatly reduced installation time compared to conventional strain gages
 - 2 man-days for 40' fiber (1000 strain sensors for a continuous surface run)
 - Multiple sensors installed simultaneously
 - Same surface preparation and adhesives as conventional strain gages
 - Minimal time spent working on vehicle
 - All connectors can be added prior to installation, away from part
 - No soldering
 - No clamping pressure required
 - Circular cross-section eliminates possibility of trapping air between sensor and part (eliminates repeat installations)
- Can be installed with little or no impact to OML

Installation Challenges

- Optical fiber more fragile than strain gages
- Some measurement locations not practical due to fiber minimum bend radius
- Not practical if only interested in spot measurements
 Optical

Research and Technology Development Areas

Embedment of Fiber Optic Sensors within Composites Biological Inspiration of FOSS

Human Skin

- Four yards of nerve fibers
- 600 pain sensors
- 1300 nerve cells
- 9000 nerve endings
- 36 heat sensors
- 75 pressure sensors
- 100 sweat glands
- 3 million cells
- 3 yards of blood vessels

One square-inch of human skin

Source: Biswas, Aman. Explore the Human Body.

Embedment of Fiber Optic Sensors within Composites The Multidisciplinary Challenge

- Fiber Optic Sensors embedded within Composite
 Overwrapped Pressure Vessels
- Goal is to understand embedded FBG sensor response
 - Requires comprehensive, multi-disciplinary approach

Embedment of Fiber Optic Sensors within Composite Overwrapped Pressure Vessels (COPVs)

The Goal: Characterize measurement response of fiber Bragg sensors embedded in COPVs

- Determine overall sensor accuracy as a function of its orientation relative to the layered materials in the structure
- Use finite element techniques to understand the thermal/mechanical loads present in the fiber optic, lenticular resin rich region, and the adjacent composite material as well as issues related to ingress/egress.
- Experimentally evaluate the accuracy and long term durability of the embedded sensor / host material system when subjected to guasi-static thermal mechanical loading

The Approach: Evaluate accuracy and long term durability of a fiber optic sensors embedded within COPVs

- Analytical modeling of the fiber optic sensor
- Epoxy composite fabrication
- Quasi-static testing of coupons
- Long term fatigue testing
- Testing of representative aerospace

Sensor Installation

Embedding / Fabrication

Coupon testing

Theoretical

development

Analysis and Modeling

Failure Testing

AeroVironment's Global Observer Wing Loads Tests at NASA Dryden

- Validate strain predictions along the wingspan
- Measured strain distribution along the centerline top and bottom as well as along the trailing edge top and bottom.
- FO Strain distribution measurements are being used to interpret shape using Dryden's single fiber shape algorithm
- A 24-fiber system was designed of which 18 fiber 40ft (~17,200 gratings) fibers were used to instrument this wing

Research and Technology Development Areas

Flight Test Results Predator-B

Flight validation testing

- 18 flights tests conducted; 36 flight-hours logged
- Conducted first flight validation testing April 28, 2008
- Believed to be the first flight validation test of FBG strain and wing shape sensing
- Multiple flight maneuvers performed
- Two fiber configurations
- Fiber optic and conventional strain gages show excellent agreement
- FBG system performed well throughout entire flight no issues

Video clip of flight data superimposed on Ikhana photograph

AeroVironment's Global Observer Flight Testing

- Validate strain predictions along the left wing using 8, 40ft fibers
- An aft fuselage surface fiber was installed to monitor fuselage and tail movement
- Strain distribution were measured along the left wing centerline top and bottom as well as along the trailing edge top and bottom.
- 8 of the 9 total fibers are attached to the system at any give time

Concluding Remarks

Fiber Optic Wing Shape Sensing toward UAS applications involves five major areas

Algorithm development

 Real-time wing shape and applied loads algorithms using fiber optics sensors were in good agreement with conventional measurements

FBG system development

- Current Flight Systems in Operation: 4 and 8 Fiber Systems
 - Flown on Ikhana and Global Observer, resp.
- Future Systems underdevelopment:
 - 64 Fiber 'Large-Vehicle' System
 - 4 Fiber 'Compact' System

Instrumentation

- Installation Advantages
 - Greatly reduced installation time compared to conventional strain gages
- Installation Challenges
 - Optical fiber more fragile than strain gages
- Ground Testing / R&D
 - A 24-fiber system was used on Global Observer; 18 fiber 40ft (~17,200 gratings) fibers were to measure strain and wing shape in real-time

• Flight Testing

- Predator-B; Ikhana
 - Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008)
 - · Real-time fiber optic wing shape sensing successfully demonstrated in flight
- Global Observer