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Fiber Optic Sensing for UAS Applications
Advantages over Conventional Measurements
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n • Unrivaled density of sensors for spatially distributed measurements
• Measurements immune to EMI, RFI and radiation
• Lightweight sensors
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in – Typical installation is 0.1 - 1% the weight of conventional gage installations (based on past trade
studies)

– 1000’s of sensors on a single fiber (up to 80 feet per fiber)
– No copper wires

With i l d l d l ith th d t i t f l
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p • With uniquely developed algorithms, these sensors can determine out-of-plane
displacement and load at points along the fiber

• Small fiber diameter
– Approximately the diameter of a human hair
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– Fibers can be bonded externally or applied as a ‘Smart Layer’ top ply

• Single calibration value for an entire lot of fiber
• Wide temperature range (cryo – 550F) Fib ti
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Fiber Optic Sensing for UAS Applications
Anticipated Impact
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• Potential to revolutionize
UAV design and
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performance throughout
the life-cycle Source: COTS Journal
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Production
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Test and Evaluation

In-flight operation
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Off-nominal flight

End of life-cycle decisions
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Fiber Optic System Operation Overview
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n Fiber Optic Sensing with Fiber Bragg Gratings

• Immune to electromagnetic / radio-frequency interference and
radiation

• Lightweight fiber-optic sensing approach having the potential of Grating region
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in Lightweight fiber optic sensing approach having the potential of
embedment into structures

• Multiplex 100s of sensors onto one optical fiber
• Fiber gratings are written at the same wavelength
• Uses a narrowband wavelength tunable laser

Laser tuning
Grating region
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p • Uses a narrowband wavelength tunable laser
source to interrogate sensors

• Typically easier to install than conventional
strain sensors

• In addition to measuring strain and temperature these sensors

start stop

Tuning
direction
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can be use to determine shape
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Ri – spectrum of ith grating
n – effective index
L – path difference
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Reflector

L1

Laser light
Loss light

Reflected light

i p
k – wavenumber
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Fiber Optic System Operation Overview
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n • Fourier transforms (both forward and inverse) are used to

discriminate between gratings
• The Fourier transform separates the IR waveform into sinusoids
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of different frequency which sum to the original waveform

FFT iFFT
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Optical Wavelength( ) > Length(L) Length(L) > Wavelength( )

Spectral Mapping
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Fiber Optic System Operation Overview
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n • By bandpass filtering around a specific frequency (grating location)

within the length domain and performing an iFFT, the spectrum of each
grating can be independently measured and strain inferred (FM radio)
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• Using a centroid function the center wavelength can be resolved
• The wavelength change is proportional to the induced strain

g ( ) ( ) g ( )
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Interrogation Process
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Tunable Laser Perform FFTSignal Conditioning and A/D
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1548 to 1552nm
S/C A/D

Wavelength
Domain

Length
Domain
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Research and Technology Development Areas
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–Algorithm Development
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–FBG System Development
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– Instrumentation
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–Ground Testing / R&D

N
at

io
na

lA

–Flight Testing
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Research and Technology Development Areas
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–Algorithm Development
Real-time wing shape measurement
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using fiber optics sensors

(Ko, Richards; Patent 7,715,994)
Real-time applied loads on complex
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(Richards, Ko; Patent 7,520,176)

Data processing algorithms
(P k US P t t P di )
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– FBG System Development
I t t ti
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lA – Instrumentation
–Ground Testing / R&D
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Real-time Wing Shape Measurement
Motivation – Helios UAV
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Helios Mishap Report – Lessons Learned

Helios wing dihedral on takeoff In-flight breakup
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lA • Measurement of wing dihedral in real-time should be accomplished with a
visual display of results available to the test crew during flight

• Procedure to control wing dihedral in flight is necessary for the Helios class
of vehicle
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Real-time Wing Shape Measurement
Theoretical Development
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Real-time Wing Shape Measurement
Global Observer – Algorithm Validation Testing
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n • Strain gages
– Validate the FBGs
– Not used for shape prediction used for structural evaluation
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• Photogrammetry
– Provided validation information for wing shape prediction
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Real-time Wing Shape Measurement
Global Observer – Algorithm Validation Testing

ni
st

ra
tio

n

100% DLL

pa
ce

 A
dm

in

ze
d)

100% DLL

80% DLL

cs
 a

nd
 S

p

en
t (

no
rm

al
iz

50% DLL

1 2

3 4FWD AFT

A
er

on
au

tic

D
is

pl
ac

em
e

30% DLL

N
at

io
na

lA

0% DLL
Over the entire wing span, the predicted displacements of
fiber 3 closely match the actual for every load condition.



Real-Time Externally-Applied Loads
Approach
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n • Bending moment calculated at each analysis station
• Cross-sectional properties calculated by applying known load
– EI/c term backed out at each evaluation station
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• With properties known, strain can be directly related to bending

moment
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Unknown moment

Known moment



Real-Time Externally-Applied Loads
Swept Plate Loads Testing
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Cross-sectional properties calculated using Uniform load calibration

U if L d C Si l P i t L d C
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Wing Shape and Externally-Applied Loads
Results
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n • Deflection calculations are accurate  (within ~5%)
– Different test articles
– Different load cases
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– Different load magnitudes

• Load results will be improved
L t th d
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p – Least-squares method
• Developing methods to further use FOSS measurements
– Angle-of-twist
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Research and Technology Development Areas
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NASA Technology FOSS Systems (4DSP)
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n • Technical Highlights

– 4DSP has licensed NASA technology to
commercially develop FOSS systems
• http://www.4dsp.com/RTS150.php
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– Single laser greatly reduces cost per sensor
– High fiber count systems

• Modular design with 8 channels per card
• Expandable
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p • Up to 32 fibers possible
• Up to sensing 80 feet per fiber

– 11” x 7” x 12”
– 100 Hz max sample rate

Li ht i ht t f ltit d f

Ground system
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tic – Lightweight system for multitude of sensors
• Approximately 25 lbs

• Cost
– 8 fiber system approx $100K

U t 16 000
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lA • Up to 16,000 sensors
– 32 fiber system approx $150K

• Up to 64,000 sensors
– System can be flight-certified (+$30K)

• Low power requirements (<10 Amps at 28 Volts DC)Low power requirements (<10 Amps at 28 Volts DC)
• Applications

– Transport Aircraft, Ships, Civil Structures
Flight system

http://www.4dsp.com/RTS150.php


Compact FOSS (cFOSS) System
In Development
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• Lightweight, ruggedized system
– Packaged within a 6” cube

• Targeted specifications:
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in – Fiber count:  8
– Max Fiber length:  80 ft
– Max # sensors/system:15,360

Max Sample rate: 100 Hz
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p – Max Sample rate: 100 Hz
– Power: 50W @ 28Vdc
– Weight: <10 lbs
– Size: 5 x 6 x 6 in ~5”
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– Vibration and Shock: NASA Curve B
– Altitude: 65kFt

• Applications:
Fi ht i ft
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lA – Fighter aircraft
– UAVs
– Launch vehicles
– Spacecraft

T t t t $50K• Target system cost: $50K
• Availability: End of 2012

8 Fiber Card



Large Scale FOSS (LsFOSS) Technology
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n • Technical Highlights

– Single laser greatly reduces cost per sensor
– High fiber count systems

• Up to 16 fibers monitored simultaneously/system

FOSS Ground System
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in • Each fiber can be up to 40ft long
• Each fiber at 40ft long can have up to 2000

measurements (total of 32,000 /system)
• Up to 8 systems can be networked together

yielding approx 1 mile of sensing distance (1/4”

cs
 a

nd
 S

p yielding approx. 1 mile of sensing distance (1/4
spacing, 256,000 measurements)

– 11” x 7” x 12”
– 100 Hz max sample rate
– Lightweight system for multitude of sensors

Data Server

FOSS 1

FOSS 2
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tic Lightweight system for multitude of sensors
• Approximately 25 lbs

• Applications:
– Transport Aircraft FOSS 4

FOSS 3

Display PC 1
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– Civil Structures
– Ground Testing
– Structures Laboratory
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Display PC 2

Display PC 3
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Research and Technology Development Areas
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–FBG System Development

cs
 a

nd
 S

p

– Instrumentation

A
er

on
au

tic

–Ground Testing / R&D

N
at

io
na

lA

–Flight Testing
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FOSS Installation Advantages and Challenges
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n Installation Advantages

• Greatly reduced installation time compared to conventional strain gages
– 2 man-days for 40’ fiber (1000 strain sensors for a continuous surface run)
– Multiple sensors installed simultaneously
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in Multiple sensors installed simultaneously
– Same surface preparation and adhesives as conventional strain gages
– Minimal time spent working on vehicle
– All connectors can be added prior to installation, away from part
– No soldering
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p No soldering
– No clamping pressure required
– Circular cross-section eliminates possibility of trapping air between sensor and part

(eliminates repeat installations)
• Can be installed with little or no impact to OML
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tic Can be installed with little or no impact to OML

Installation Challenges
• Optical fiber more fragile than strain gages
• Some measurement locations not practical
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lA due to fiber minimum bend radius
• Not practical if only interested in spot

measurements Optical Fiber



Research and Technology Development Areas
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–FBG System Development
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– Instrumentation
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–Ground R&D
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–Flight Testing
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Embedment of Fiber Optic Sensors within Composites
Biological Inspiration of FOSS

ni
st

ra
tio

n

• Four yards of nerve fibers One square-inch of human skin
Human Skin
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in • 600 pain sensors

• 1300 nerve cells

• 9000 nerve endings
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p 9000 nerve endings

• 36 heat sensors

• 75 pressure sensors
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• 100 sweat glands

• 3 million cells

3 d f bl d l
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lA • 3 yards of blood vessels
Source: Biswas, Aman. Explore the Human Body.
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Embedment of Fiber Optic Sensors within Composites
The Multidisciplinary Challenge
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n • Fiber Optic Sensors embedded within Composite
Overwrapped Pressure Vessels
• Goal is to understand embedded FBG sensor response
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in Goal is to understand embedded FBG sensor response
– Requires comprehensive, multi-disciplinary approach
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Courtesy: M Emmons, GP Carman, UCLA



Embedment of Fiber Optic Sensors within
Composite Overwrapped Pressure Vessels (COPVs)
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n The Goal:  Characterize measurement response
of fiber Bragg sensors embedded in COPVs

• Determine overall sensor accuracy as a function of its
orientation relative to the layered materials in the structure

Theoretical
de elopment
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in orientation relative to the layered materials in the structure
• Use finite element techniques to understand the

thermal/mechanical loads present in the fiber optic, lenticular
resin rich region, and the adjacent composite material as well
as issues related to ingress/egress.

Coupon testingdevelopment
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p g g
• Experimentally evaluate the accuracy and long term durability

of the embedded sensor / host material system when subjected
to quasi-static thermal mechanical loading

The Approach: Evaluate accuracy

Analysis and Modeling
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tic The Approach: Evaluate accuracy
and long term durability of a
fiber optic sensors embedded
within COPVs Sensor Installation
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lA • Analytical modeling of the fiber optic sensor
• Epoxy composite fabrication
• Quasi-static testing of coupons
• Long term fatigue testing

Sensor Installation

g g g
• Testing of representative aerospace
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AeroVironment’s Global Observer
Wing Loads Tests at NASA Dryden
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n • Validate strain predictions along the wingspan

• Measured strain distribution along the centerline top and
bottom as well as along the trailing edge top and bottom.
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• FO Strain distribution measurements are being used to
interpret shape using Dryden’s single fiber shape algorithm

A 24 fib t d i d f hi h 18 fib 40ft
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p • A 24-fiber system was designed of which 18 fiber 40ft
(~17,200 gratings) fibers were used to instrument this wing
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–Flight Testing
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Flight Test Results
Predator-B
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n • Flight validation testing
– 18 flights tests conducted; 36 flight-hours logged
– Conducted first flight validation testing April 28, 2008
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– Believed to be the first flight validation test of FBG strain and wing shape sensing
– Multiple flight maneuvers performed
– Two fiber configurations

Fib ti d ti l t i h ll t t
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p – Fiber optic and conventional strain gages show excellent agreement
– FBG system performed well throughout entire flight – no issues
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Ikhana in Flight

Video clip of flight data superimposed on Ikhana photographVideo clip of flight data superimposed on Ikhana photograph



AeroVironment’s Global Observer
Flight Testing
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n • Validate strain predictions along the left wing using 8, 40ft fibers

• An aft fuselage surface fiber was installed to monitor fuselage and tail
movement
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• Strain distribution were measured along the left wing centerline top and
bottom as well as along the trailing edge top and bottom.
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• 8 of the 9 total fibers are attached to the system at any give time
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Concluding Remarks
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n Fiber Optic Wing Shape Sensing toward UAS applications involves five major areas

• Algorithm development
– Real-time wing shape and applied loads algorithms using fiber optics sensors were in good agreement

with conventional measurements
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• FBG system development
– Current Flight Systems in Operation: 4 and 8 Fiber Systems

• Flown on Ikhana and Global Observer, resp.

– Future Systems underdevelopment:
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 S

p Future Systems underdevelopment:
• 64 Fiber ‘Large-Vehicle’ System
• 4 Fiber ‘Compact’ System

• Instrumentation
– Installation Advantages
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g
• Greatly reduced installation time compared to conventional strain gages

– Installation Challenges
• Optical fiber more fragile than strain gages

• Ground Testing / R&D
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lA – A 24-fiber system was used on Global Observer; 18 fiber 40ft (~17,200 gratings) fibers were to measure
strain and wing shape in real-time

• Flight Testing
– Predator-B; Ikhana
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• Real time fiber Bragg strain measurements successfully acquired and validated in flight (4/28/2008)
• Real-time fiber optic wing shape sensing successfully demonstrated in flight

– Global Observer


