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Model of the Radio Frequency (RF) Excitation Response From 
Monopole and Dipole Antennas in a Large Scale Tank 

 
Jeffrey D. Wilson and Gregory A. Zimmerli  

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Summary 

Good antenna-mode coupling is needed for determining the amount of propellant in a tank through 
the method of radio frequency mass gauging (RFMG). The antenna configuration and position in a tank 
are important factors in coupling the antenna to the natural electromagnetic modes. In this study, different 
monopole and dipole antenna mounting configurations and positions were modeled and responses 
simulated in a full-scale tank model with the transient solver of CST Microwave Studio (CST Computer 
Simulation Technology of America, Inc.). The study was undertaken to qualitatively understand the effect 
of antenna design and placement within a tank on the resulting radio frequency (RF) tank spectrum. 

Introduction 

In order to determine the amount of liquid remaining in a propellant tank using the radio frequency 
mass gauge (RFMG) method, it is necessary to mount an antenna inside the tank, excite the 
electromagnetic modes, and measure the eigenmode frequencies (Ref. 1). An important aspect of this 
procedure is the design and position of the antenna inside the tank. Ideally, the antenna should be 
mounted in a position to strongly excite as many of the lower eigenmodes as possible. In this 
investigation, different monopole and dipole antenna mounting configurations and positions were 
modeled and responses simulated in a tank model using the transient solver of CST Microwave Studio 
(CST Computer Simulation Technology of America, Inc.). Three different monopole mounting 
configurations were investigated: top-mounted on the center of the tank lid, side-mounted on the side wall 
of the tank, and center-mounted on a central metal rod running from the top to the bottom of the tank. 
Dipole antenna simulations were performed in the center-mounted configuration with both parallel and 
transverse mountings of the antenna with respect to the long axis of the tank. 

Analysis 

The tank, in the shape of a cylinder with rounded edges (Fig. 1), was modeled with the transient 
solver of Microwave Studio. This solver calculates the time-varying field distribution that results 
from excitation with a Gaussian pulse at the input port. When a steady state solution is reached, the 
S-parameters defining the transmission characteristics as a function of frequency are calculated with a 
Discrete Fourier Transform (Ref. 2). 

The tank has a length L = 472.9 cm and a radius of 91.0 cm, and corresponds to actual dimension of a 
tank being used for antenna-mode coupling tests of the RFMG method. The results of those tests will be 
reported in a separate publication. The surfaces of the tank were modeled as perfect conductors. After the 
tank and antenna geometries were modeled as described below, the solver was used to compute the steady 
state response of the return loss spectrum in the frequency range 100 to 200 MHz.   
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Figure 1.—Outer view of the tank model. 

 

 
Figure 2.—Inner view of the tank model with 

off-center mounting rod. 
 
 

 
Figure 3.—Mesh at monopole antenna in center-mounted configuration. The base 

of the monopole is flush with the outer surface of the center mounting rod. 

Monopole Antenna Configurations 

For the center-mounted monopole configuration only, a perfect conducting rod of 3.8 cm diameter 
runs along the long axis of the tank (Fig. 2). Figure 3 shows the geometry of the monopole antenna for the 
center-mounted configuration with the Microwave Studio mesh with a 25 cm monopole. The position of 
the antenna is halfway down from the top of the tank. 

A close-up of the antenna excitation port is shown in Figure 4. This is designated in Microwave 
Studio as an impedance element discrete port (S-parameter type) and is used as the RF feed point source 
for the antenna. It is modeled as a perfect conducting wire inside a coaxial cavity and provides an input 
power of one watt (Ref. 2). This type of feed port is also used in the dipole antenna simulations.  
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Figure 4.—Close-up of monopole antenna excitation port. 

 
 
 

 
Figure 5.—Top-mounted monopole antenna configuration. 

 
 

In the side-mounted monopole configuration, the same 25 cm antenna design is used, with the base of 
the monopole flush with the inner surface of the side wall of the tank, and the center rod is not included in 
this tank model. Two mounting positions for the antenna were simulated, one at y = L/2, and another at 
the y = L/3 position. 

In the top-mounted configuration, the center rod is also removed from the tank model and a 25 cm 
monopole antenna is inserted through the center of the top of the tank as shown in Figure 5. A local 
coordinate system u-v-w was defined in Microwave Studio overlaying the global coordinate system x-y-z 
to position the antenna. 
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Figure 6.—Dipole antenna, transverse orientation. 

 

 
Figure 7.—Dipole antenna, parallel orientation. 

Dipole Antenna Configurations 

The response from a dipole antenna was simulated using the same tank and rod, but with the rod 
displaced 11.4 cm in the negative z-direction from the center axis. Two antenna orientations were 
simulated: Figure 6 shows the transverse orientation and Figure 7 shows the parallel orientation of the 
dipole antenna. The dipole length is 40.6 cm and it is positioned 15.2 cm in the positive z-direction from 
the rod. 

Results 

 Top-Mounted Monopole Antenna Configuration 

The simulated return loss from the top-mounted configuration is shown in Figure 8. (The responses 
are plotted from 100 to 200 MHz to match the region of experimental interest.) Only the TM modes are 
excited in this frequency range as can be seen by the corresponding electric field and magnetic field mode 
amplitudes in Appendix A.  

Side-Mounted Monopole Antenna Configurations 

The simulated return loss for the two side-mounted monopole antenna configurations are shown 
in Figure 9 (antenna at y = L/3) and Figure 10 (antenna at y = L/2). The model predicts fewer mode 
excitations and a weaker amplitude in the return-loss spectrum than in the top-mounted case. 
Experimentally, we observe a much better return-loss spectrum than that predicted by the side-mounted 
model. The source of the discrepancy is not clear, but indicates that the antenna-tank coupling model can 
only be used to make qualitative predictions. 
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Figure 8.—Return loss with top-mounted monopole 

antenna configuration. 
 
 
 

 
Figure 9.—Return loss with side-mounted monopole 

antenna configuration mounted one third from the 
top (y = L/3). 

 

 
Figure 10.—Return loss with side-mounted monopole 

antenna configuration mounted one half from the top 
(y = L/2). 

 

Center-Mounted Monopole Antenna Configurations 

The center-mounted configuration was further investigated by varying the length of the monopole 
from 5 to 25 cm. It was found that return loss peaks at the same frequencies for each monopole length, but 
the strength of the response generally increases as the monopole length increases. The position of the 
25 cm monopole antenna within the tank was also investigated. The results for y = L/16 to L/2 are shown 
in Figures 11 to 18.  

From Figures 11 to 18, the model predicts the strongest responses to occur at eigenfrequencies of 
126.4, 156.1, 160.3, and 187.2 MHz. As expected, it is seen that the center-mounted configuration has 
different eigenfrequencies than the top- and side-mounted configurations, due to the introduction of the 
center bar into the tank. There is also a wide variation in response strength depending on antenna position, 
with the 7/16 position being the only one to have a predicted return loss of at least –5 dB for each of these 
eigenfrequencies. The electric and magnetic field amplitudes of the corresponding eigenmodes for the 
7/16 case are shown at a cross section of the tank in Appendix B.  
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Figure 11.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = L/16. 

 
 

 
Figure 13.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = 3L/16. 

 
 

 
Figure 15.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = 5L/16. 

 
Figure 12.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = L/8. 

 
 

 
Figure 14.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = L/4. 

 
 

 
Figure 16.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = 3L/8. 
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Figure 17.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = 7L/16. 

 
 

 
Figure 19.—Return loss with parallel (blue) and 

transverse (red) dipole antenna orientations. 

 
Figure 18.—Return loss with center-mounted 

configuration, monopole height = 25 cm, 
mounted at y = L/2. 

 
 

 
Figure 20.—Return loss for parallel dipole antenna 

with no baffles (blue) and three baffles (green). 
 
 

Center-Mounted Dipole Antenna Configurations 

The return losses for the transverse and parallel dipole configurations are compared in Figure 19. In 
general, there are significantly stronger responses predicted for the parallel orientation compared to the 
transverse orientation in this frequency range. The electric and magnetic fields for the eigenmodes excited 
by the parallel dipole antenna corresponding to frequencies 132.4, 136.1, 150.9, 157.7, 167.9, and 
186.4 MHz are shown in Appendix C. 

The effect of conducting baffle rings (slosh baffle plates) in the tank was also simulated. The baffles 
extended from an inner radius of 70.6 cm to the outer tank wall at a radius of 91.0 cm. The thickness in 
the y-direction is 0.3 cm. The top, center, and bottom locations are at 443.2, 236.5, and 29.8 cm from the 
bottom, respectively. The return loss is shown in Figure 20 for the parallel dipole configuration with and 
without baffles. Perhaps not surprisingly, the model predicts that the baffles change the amplitude of the 
response and also cause small shifts in frequency. 
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Conclusions 

In this investigation, different monopole and dipole antenna mounting configurations and positions 
were modeled and responses simulated in a tank model with the transient solver of CST Microwave 
Studio over the frequency range 100 to 200 MHz. Three different mounting configurations were 
investigated for monopole antennas: top-mounted through the center of the tank lid, side-mounted on the 
side of the tank, and center-mounted on a central metal rod running from the top to the bottom of the tank. 
The simulations predict that mounting the antenna at the tank lid (top-mounted) will excite the transverse 
magnetic modes with moderate strength. Antennas mounted on the side of the tank are not predicted to 
strongly excite any modes in this frequency range, but this is contradictory to measurements which show 
a very good response. The center-mounted configuration in which the antenna was mounted on a central 
rod is predicted to be effective in exciting the lower frequency modes. Positioning the antenna at different 
locations along the central rod had a significant effect on the strength of excitation of the individual 
modes. A mounting height of 7/16 from the top was predicted to be especially effective. The responses of 
dipole antennas were modeled with both parallel and transverse mountings relative to a bar running along, 
but offset from, the long axis of the tank. The simulation results predict that a parallel mounting of the 
dipole is generally more effective at exciting the low frequency modes. The effects of baffles in the tank 
were also simulated. This had the effect of changing the amplitude of mode responses and slightly 
shifting the frequencies for several modes. Work is currently underway to experimentally test several of 
the configurations simulated here, and will be reported in a future publication. 
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Appendix A.—Sample Eigenmodes Excited by Top-Mounted Configuration 

The electric field and magnetic field amplitudes of several eigenmodes for the top-mounted monopole 
antenna case are shown at a cross section of the tank:  
 

 
Figure A1.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 132.6 MHz for top-mounted monopole antenna. 
 

 
Figure A2.—Magnitude of (left) electric field and (right) magnetic field at cross section 

of the tank for eigenmode at 144.6 MHz for top-mounted monopole antenna.  
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Figure A3.—Magnitude of (left) electric field and (right) magnetic field at cross section 

of the tank for eigenmode at 162.3 MHz for top-mounted monopole antenna. 
 
 
 

  
Figure A4.—Magnitude of (left) electric field and (right) magnetic field at cross section of 

the tank for eigenmode at 184.0 MHz for top-mounted monopole antenna. 
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Appendix B.—Sample Eigenmodes Excited by Center-Mounted Configuration 

The electric field and magnetic field amplitudes of representative eigenmodes for the center-mounted 
antenna positioned 7/16 from the top are shown at a cross section of the tank. (The red arrow labeled “1” 
in each figure represents the antenna excitation port.)  

 

  
Figure B1.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 126.4 MHz for center mounted monopole mounted 7/16 
from the top. 

 
 

  
 

Figure B2.—Magnitude of electric field (left) and magnetic field (right) at cross section of the 
tank for eigenmode at 156.1 MHz for center mounted monopole mounted 7/16 from the top. 



NASA/TM—2012-217267 12 

  
Figure B3.—Magnitude of electric field (left) and magnetic field (right) at cross section of the 

tank for eigenmode at 160.3 MHz for center mounted monopole mounted 7/16 from the top. 

 
 
 

  
Figure B4.—Magnitude of electric field (left) and magnetic field (right) at cross section of the 

tank for eigenmode at 187.2 MHz for center mounted monopole mounted 7/16 from the top. 
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Appendix C.—Eigenmodes Excited by Parallel Dipole Orientation 

The electric field and magnetic field amplitudes of several eigenmodes for the parallel dipole 
orientation are shown at a cross section of the tank:  

 
 

 
Figure C1.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 132.4 MHz for parallel dipole antenna orientation. 
 
 
 

  
Figure C2.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 136.1 MHz for parallel dipole antenna orientation. 
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Figure C3.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 150.9 MHz for parallel dipole antenna orientation. 
 
 
 

  
Figure C4.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 157.7 MHz for parallel dipole antenna orientation. 
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Figure C5.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 167.9 MHz for parallel dipole antenna orientation. 

 
 
 

 
Figure C6.—Magnitude of electric field (left) and magnetic field (right) at cross section 

of the tank for eigenmode at 186.4 MHz for parallel dipole antenna orientation. 
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