Overview of the Ares I Scale Model Acoustic Test Program

Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required.

The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.

National Aeronautics and Space Administration

Doug Counter NASA MSFC ER42 Janice Houston

Jacobs ESTS Group

Overview of the Ares I Scale Acoustic Model Test Program

Noise and Physical Acoustics: Launch Vehicle Noise II Session 4pNS November 3, 2011

www.nasa.gov

Introduction: Rocket Liftoff Environments

- Ignition overpressure (IOP) is a significant transient low-frequency pressure event caused by the rapid pressure rise rate of the solid rocket motor.
- Liftoff acoustics (LOA) noise is caused by the supersonic steady jet flow interaction with surrounding atmosphere and launch complex, persisting for 0-20 seconds as the vehicle lifts off.

- Challenges for determining Ares I Rocket Liftoff Environments
 - New Solid Motor
 - Motor Sound Sources
 - New Mobile Launcher
 - Launch Pad Deflector
 Effects
 - New Tower
 - Plume Sound Reflections off of Launch Pad

Ares I at Kennedy Space Center Launch Complex

Rocket Liftoff Environments Risks and Mitigation

Vehicle Design

- LOA input for vibro-acoustics
- IOP input for loads

If responses are high...

- Mitigate at component or vehicle
- Vehicle mitigation is water sound suppression system provided by the ground system
 - Technical, cost and schedule risks for KSC Launch Complex
- Mitigation Pathfinder scale model test
 - 5% Ares I Scale Model Acoustic Test (ASMAT)

- ASMAT objectives (risks)
 - Verify predicted liftoff acoustic environments
 - Verify predicted IOP environments
- Evaluate Water Sound Suppression Systems (mitigation)
 - Below Deck: Exhaust Hole & Trench Water
 - Above Deck: Water bags & Rainbirds

ASMAT at Marshall Space Flight Center Test Stand 116

Test Matrix

	VERT1: 0 ft + No Drift + Launch Mount + Water Bags + Below Deck Water
	VERT2: 0 ft + No Drift + Launch Mount + Below Deck Water
16363	VERT3: 0 ft + No Drift + Launch Mount
	VERT4: 2.5 ft + Drift + Launch Mount + Below Deck Water
	VERT5: 5 ft + Drift + Launch Mount + Below Deck Water
Elevation	VERT6: 7.5 ft + Drift + Launch Mount + Below Deck Water
Tests	VERT7: 5 ft + Drift + Launch Mount + Below Deck Water
	VERT11: 5 ft + Drift + Below Deck Water
	VERT15: 10 ft + Drift + Below Deck Water
	VERT8: 5 ft + Drift + Launch Mount + Below Deck Water + Rainbird Water at 2 flow rate
Rainbird	VERT9: 5 ft + Drift + Launch Mount + Below Deck Water + Rainbird Water at 3.5 flow rate
Tests -	VERT10: 5 ft + Drift + Below Deck Water + Rainbird Water at 3.5 flow rate
	VERT12: 5 ft + Drift + Below Deck Water + Rainbird Water at 4.5 flow rate
	VERT16: 10 ft + Drift + Below Deck Water + Rainbird Water at 3.5 flow rate
No Drift	VERT13: 5 ft + No Drift + Below Deck Water + Rainbird Water at 3.5 flow rate
Tests	VERT14: 5 ft + No Drift + Below Deck Water
	VERT17: 5 ft + No Drift

Teaming Across NASA

Ames Research Center

Installed & calibrated SC sensors Phased Array WALLE

Marshall Space Flight Center

Managed ASMAT Fabricated Mobile Launcher & Launch Pad Trench Executed Test Data Acquisition Post data processing LOA Data Analysis IOP Data Analysis Launch Pad Materials Experiment

Langley Research Center

Designed ASMAT vehicle Designed ASMAT tower Fabricated vehicle & tower Fabricated nozzle extension

Kennedy Space Center

5% Mobile Launcher drawings Funded water bag tests Funded Ground Acoustic (GA) sensors GA Data Analysis Radiometers

Johnson Space Center

Funded Spatial Correlation (SC) SC Data Analysis

ASMAT DESIGN TEST ARTICLE CONFIGURATION

5% ASMAT Configuration

ASMAT Vehicle Model

(LM)

Mobile Launcher

Mobile Launcher (ML)

Mobile Launcher Tower

Truncated Tower for VERT1-3 0 ft and no drift Complete Tower for VERT4-17 Elevated 5 ft and drifted

ML and LM Subassemblies

View of Mobile Launcher and Launch Mount from deflector

Top of Launch Mount

Water bag

Electrical Umbilical

Vehicle Support Post

LM Splash Plate

Electrical Umbilical

ML Nozzle

Vehicle Support Post

Launch Pad Trench Model: Deflector and Trench

South Side Deflector

North Side Deflector

Water Sound Suppression Systems

Below Deck

- Launch Mount Water
- Mobile Launcher Water
- Trench Water
- Above Deck (not baselined)
 - ASMAT to determine if Above Deck Water necessary
 - Water bags
 - -Rainbirds

Below Deck: LM Water

Below Deck: ML Water

Below Deck Water: Trench/Deflector Water

North Side Deflector

Above Deck Water: Water Bags and Rainbirds

Water bags

Rainbirds

ASMAT GROUND SUPPORT EQUIPMENT

ASMAT Ground Support Equipment

Ground Support Equipment Continued

Looking Southeast

Water Supply System

Foam

 Open-cell Soundfoam ML HY -Hydrophobic Melamine Foam was installed for its sound absorption and water resistant properties

Looking Down

Different photography needs

- Record of the hotfire
- Useful in case of failure
- Aid in CFD modeling
- Hotfire timing
 - All cameras had at least 1 strobe in field of view

Cameras at Overhead Level

ASMAT INSTRUMENTATION

There were four primary instrumentation suites

- LOA: 32 B&K 4944-B microphones on the vehicle , diaphragm flush mounted to vehicle surface
- **IOP**: ~78+ Kulite XTL-123B-190-30SG & -65SG pressure transducers on the vehicle, tower, mobile launcher
- **Ground Acoustics**: ~34+ B&K 4944-B microphones and PCB 112A22 pressure transducers on the tower, mobile launcher
- **Spatial Correlation**: 46 Kulite XCEL-12-100-2D pressure transducers on the vehicle

There were health/monitoring sensors:

- Accelerometers
- Strain Gages
- Thermocouples
- Flow Meters
- Chamber Pressure

There were special add-ons:

- Phased Array with stand-alone data acquisition system
- Radiometers
- Launch Pad materials experiment

200+ sensors per ASMAT firing

Each ASMAT firing had a specific instrumentation configuration

LOA & GA microphone

IOP pressure transducer

SC pressure transducer

ASMAT Vehicle Instrumentation

Example: Vehicle Instrumentation

Retracting LOA Mount

3 Types of IOP Vehicle Mounts

Vehicle Instrumentation for 0 degree side

Spatial

Sensors

Example: Aft Skirt Instrumentation

Microphone installed in Booster Deceleration Motor **IOP Kulite installed at Nozzle Extension exit plane**

Example: Tower Instrumentation

MSID	Sensor Location	MSID	Sensor Location	MSID	Sensor Location	MSID	Sensor Location
G01_T1	S Tow er Level 30	G10_T2	S Tower Level 100	G19_T4	S Tow er Level 260 Same height as Zone 8-3 sensors	IOP_T05	S Tower Level 60 Pointed S Capture hole overpressure
G02_T1	S Tow er Level 30	G11_T3	S Tow er Level 180 Same height as Frustum sensors	G24_T1	N Tow er Level 30	IOP_T06	S Tow er Level 60 Pointed dow n Capture hole overpressure
G03_T1	S Tow er Level 30	G12_T3	S Tow er Level 180 Same height as Frustum sensors	G25_T2	N Tow er Level 100	IOP_T07	N Tow er Level 100 Pointed N Capture duct overpressure
G04_T1	S Tow er Level 30	G13_T3	S Tower Level 180 Same height as Frustum sensors	G26_T3	N Tow er Level 180 Same height as Frustum sensors	IOP_T08	S Tow er Level 100 Pointed S Capture duct overpressure
G05_T1	S Tow er Level 30	G14_T3	S Tower Level 180 Same height as Frustum sensors	G27_T4	N Tow er Level 260 Same height as Zone 8-3 sensors	IOP_T09	S Tow er Level 100 Pointed dow n Capture duct overpressure
G06_T2	S Tow er Level 100	G15_T4	S Tow er Level 260 Same height as Zone 8-3 sensors	IOP_T01	N Tow er Level 30 Pointed N Capture duct overpressure	IOP_T10	N Tow er Level 200 Pointed N Capture duct overpressure
G07_T2	S Tow er Level 100	G16_T4	S Tower Level 260 Same height as Zone 8-3 sensors	IOP_T02	S Tow er Level 30 Pointed S Capture hole overpressure	IOP_T11	S Tow er Level 200 Pointed S Capture duct overpressure
G08 T2	S Tow er Level 100	G17 T4	S Tower Level 260 Same height as Zone 8-3 sensors	IOP T03	S Tow er Level 30 Pointed dow n Capture hole overpressure	IOP T12	S Tow er Level 200 Pointed dow n Capture duct overpressure
			S Tower Level 260		N Tow er Level 60 Pointed N		S Tow er Level 285 Same height as Zone 11 sensors Pointed S
G09_T2	S Tow er Level 100	G18_T4	Same height as Zone 8-3 sensors	IOP_T04	Capture duct ovepressure	IOP_T13	Capture duct overpressure S Tow er Level 285
							Same height as Zone 11 sensors Pointed Dow n
						IOP_T14	Capture duct overpressure

Instrumentation for North and South Tower

GA and IOP sensors installed on Tower Level 1

Exploded view of GA sensor tower mount

Example: Mobile Launcher Instrumentation

Installed IOP sensors on ML underside

G36_F1	ML Underside S Trench Facing Down	IOP_D01	ML Underside N Trench Near Deflector Facing Down	IOP_D05	ML Underside S Trench Facing Down	IOP_E13	W Exhaust Duct Facing Down
G37_F2	ML Underside N Trench Near Deflector Facing Down	IOP_D02	ML Underside N Trench Center Facing Down	IOP_E10	N Exhaust Duct Facing South	IOP_E14	S Exhaust Duct Facing North
G38_F3	ML Underside N Trench Center Facing Down	IOP_D03	ML Underside N Trench Near Exit Facing Down	IOP_E11	N Exhaust Duct Facing Down	IOP_M08	S Side ML Facing South
G39_F4	ML Underside N Trench Near Exit Facing Down	IOP_D04	ML Underside N Trench Center Facing South	IOP_E12	W Exhaust Duct Facing East	IOP_M09	N Side ML Facing North

Instrumentation for ML underside

ML IOP sensor L-bracket

MSID	Sensor Location	MSID	Sensor Location	MSID	Sensor Location
G29_M1	SW ML Corner Facing UP	G33_M5	E Side ML Facing Up	IOP_M03	N ML Top Deck Facing Up
G30_M2	W Side ML Facing Up	G34_M6	SE ML Corner Facing Up	IOP_M04	NE ML Top Deck Facing Up
G31_M3	NW ML Corner Facing Up	IOP_M01	SW ML Top Deck Facing Up	IOP_M05	SE ML Top Deck Facing Up
G32_M4	NE ML Corner Facing Up	IOP_M02	NW ML Top Deck Facing Up	IOP_M10	N Side Top ML Facing Up

Instrumentation for ML topside

ſ

Example: Launch Mount Instrumentation

Installed IOP Sensor on LM Dec

MSID	Sensor Location	MSID	Sensor Location	MSID	Sensor Location
	W Side Top LM Facing		N Side Top LM Facing	IOP_E07	S Side Bottom LM
IOP_EOI	East		South		Facing North
IOP_E02	W Side Top LM Facing		E Side Bottom LM	IOP_E08	S Side Bottom LM
	Down	IOP_E05	Facing West		Facing Down
IOP_E03	N Side Top LM Facing		E Side Bottom LM	IOP_E09	S Side Top LM facing
	Down	IOP_E06	Facing East		North

Instrumentation for LM (Deck and Duct)

Example: Launch Pad Trench Instrumentation

MSID	Sensor Location	MSID	Sensor Location
IOP_D06	N Trench Wall Top		N Trench Wall Bottom
	Near Deflector	10P_009	Near Deflector
IOP_D07	N Trench Wall Bottom		LPT West Side Facing
	Near Exit		Up
	N Trench Wall Top		LPT East Side Facing
10P_008	Near Exit		Up

IOP Trench Sensor Mount

Instrumentation for LPT

Data Acquisition

2 Data Acquisition Systems (DAQ)

- DSPCon Piranhas III / High Speed
 - Precision Filters, Inc 28000
 Signal Conditioning
 - -160 Channels
 - Primary instrumentation suites
 - •256,000 and/or 4000 samples per second
- Neff 620 Data Systems Unit
 - -50 Channels
 - Health/monitoring sensors sample rates:
 - •100 samples per second

DSPCon Piranha III

ASMAT HOTFIRES

Test Day Operations

Prior to Firing Day

- Performed in-situ calibrations
 - Pistonphone Checks for Microphones
 - Pressure Druck checks for limited number of pressure transducer

Firing Day

- Ensure all systems are "go"
- Post test article inspection
 - Identified necessary repairs
- Post test in-situ calibrations
 - Identified necessary sensor replacements
- Channel by channel inspection of the data
- Post test data processing
- Release of data to analysts
- Release of instrumentation plan and test article configuration for next firing

1-2 Days Post-Fire

- Debrief held via telecon with analysts and debrief package (200+ pages) released
- Each analyst presented preliminary results for all instrumentation suites

Show movies

ASMAT CONCLUSION

Conclusions

Successful Program

- On average, test turnover was 1.5 weeks
 - -1st Vertical Firing
 - •November 5, 2010
 - -17th and last Vertical Firing
 - •July 12, 2011

Satisfied ASMAT Program Objectives

- Verified LOA environments
- Verified IOP environments
- Determined noise reduction due to rainbirds