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Abstract Nomenclature

ajc aircraft

I the number of flights

) the index of the a/c on the i-th flight

7(4) the aircraft type of the a/c on the i-th flight

S the arc length coordinate of the i-th a/c

s the vector (s1,s2,...,875)

v; the minimal cruising speed of the i-th a/c

U, the maximal cruising speed of the i-th a/c

V; the actual or assigned speed of the i-th a/c
The current operational practice in scheduling air V the vector (vy,vz,...,vr) of coptrol speeds
traffic arriving at an airport is to adjust flight sched- B;C (;)(’U) fuel ]?um for an a/c of type 7(17)7 at speed v
ules by delay, i.e. a postponement of an aircraft’s Yi the. economical cruising sp eed” of a/c 4, at

. ! . which the fuel burn is minimal

arrival at a scheduled location, to manage safely the exit time for problem P1 (definition 2)
FAA-mandated separation constraints between air- 3 constant parameters in B, ;) (v;) (see (11))
craft. To meet the observed and forecast growth () the Euclidean inner product [1, section 5.2-6]
in traffic demand, however, the practice of time ad- || - || the norm [1] arising from(, )
vance (speeding up an aircraft toward a scheduled def “is defined as”
location) is envisioned for future operations as a  pi.v required min. separation for aircraft i di-
practice additional to delay. Time advance has two rectly followed by aircraft 7

E(s) excess separation (13)

potential advantages. The first is the capability to
minimize, or at least reduce, the excess separation
(the distances between pairs of aircraft immediately
in-trail) and thereby to increase the throughput of
the arriving traffic. The second is to reduce the
total traffic delay when the traffic sample is below
saturation density. A cost associated with time ad-
vance is the fuel expenditure required by an aircraft
to speed up. We present an optimal control model
of air traffic arriving in a terminal area and solve it
using the Pontryagin Maximum Principle. The ad-
missible controls allow time advance, as well as de-
lay, some of the way. The cost function reflects the
trade-off between minimizing two competing objec-
tives: excess separation (negatively correlated with
throughput) and fuel burn. A number of instances
are solved using three different methods, to demon-
strate consistency of solutions.

c relative importance coeff. of B.(;(v;) to E(s)

the optimal control problem for the Delay-

Time Advance flight phase (definition 2)

L; distance the i-th a/c is to fly from the end of
the Delay-Time Advance phase to landing

Introduction

The current operational practice in scheduling air
traffic arriving at an airport is to adjust flight sched-
ules by delay, i.e. a postponement of an aircraft’s
arrival at a scheduled location, to manage safely the
separation constraints between aircraft. This prac-
tice is most effective when the system is near satu-
ration or capacity, leaving delay as the only control
option. Emphasis is placed on delay distribution
between the Center and the TRACON (see refer-
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ence [2, section 2.2.5] and references therein). In
this practice, delay is preferred to a speed-up known
as time advance. The practice of time advance, al-
though not in use today, is envisioned for future op-
erations in light of the observed and forecast growth
in traffic demand. The ability to practice time ad-
vance can reduce overall system delay in two types
of situations: ) in the face of impending saturation,
and i) when the state of traffic alternates between
saturation and under-saturation. A cost incurred by
an aircraft exercising time advance is increased fuel
expenditure. This calls for a study of the trade-off
between time advance and fuel burn.

The focus of this paper is such a study, carried
out using optimal control theory [3], and leading to
a computationally efficient procedure for produc-
ing speed advisories. Air traffic arriving into a ter-
minal airspace, with multiple runways allowed, is
modeled using optimal control, with the state space
constructed as in [4]; the portion of this modeling
framework used in this paper is formulated in the
section A mathematical setting for optimal control
models with explicit delays).

A number of past research efforts have focused
on the trade-off between delay and fuel burn |5, 6].
An approach widely used in general Air Traffic
Management (ATM) research is to cast the prob-
lem as a mixed-integer (non)linear program [7-10].
Since the sets of flights, waypoints, meter fixes,
and route segments are finite, it is natural to think
of the operational problems intuitively as discrete.
The mixed-integer programming framework corre-
sponds directly to this intuition, hence is a conve-
nient model for capturing the problem realistically.
In the context of modeling with a view toward fu-
ture operational use, however, this framework faces
the challenges of i) a lack of qualitative insight into
the behavior of optimal solutions, and i) absence
of proofs of convergence or of bounds on the com-
putational cost, or of both.

One advantage of optimal control over other ar-
eas of optimization is the availability of a general
theory, notably the Bellman Optimality Principle
and the Pontryagin Maximum Principle [3]. This
theory offers insight into the qualitative behavior of
optimal solutions, often before a solution is com-
puted, and can yield computational solution proce-
dures that come with mathematical proofs of cor-

rectness (i.e., that a computed result is in fact a
solution to the problem) and of low computational
complezity bounds (i.e., that the computation will
complete in a low-degree polynomial time) [11,12].
Such proofs are a highly desired feature for an algo-
rithm that drives an automated tool for supporting
safety-critical real-time ATM operations.

The solutions found in this paper for problem
P1 (see definition 2) make the following three main
contributions:

e a demonstration that the model is scalable;

e an efficient way (eligible for real-time use) to
compute optimal speed advisories accurately;

e insight into the relation between fuel burn,
incurred by time advance, and throughput,
characterized by excess separation in the
Delay-Time Advance phase of the flight.

Background

In general, the arrival of air traffic can be divided
into the following phases.

e Delay-Time Advance phase: All aircraft are
still able to exercise delay or time advance.

o Mized phase: At least one aircraft can no
longer exercise delay or time advance, and at
least one other aircraft still can.

e Separation Minimization phase: Aircraft can
no longer exercise delay or time advance.

The focus of this paper is on the Delay-Time Ad-
vance phase. This phase is modeled, below, as an
optimal control problem which includes a running
cost term reflecting fuel burn. Two assumptions
central to the model are as follows:

Assumption 1 In the Delay-Time Advance phase,
an optimal trajectory does not touch the boundary
of the set of conflicting states (i.e., states in which
at least one pair of aircraft violates the separation
constraint).

Assumption 2 The aircraft in question are flying
in zero-wind conditions.



One may question whether the mathematical model
developed here with the use of the simplifying As-
sumption 2 is readily generalized to include reason-
able uncertainties, such as wind. The role of As-
sumption 2 in this study is as follows. Since an
aircraft’s navigation system will generally keep the
aircraft on the prescribed path, the main effect of a
wind field is from its component tangential to the
path. The effect of uncertainties, such as wind or
error in control execution, on the model is an in-
troduction of error terms into the endpoints of the
aircraft’s speed range:

(min. speed) + (error due to uncertainty)
(the aircraft’s ground speed)

<
< (max. speed) + (error due to uncertainty)

Trajectories allowed to touch conflict boundaries
before reaching minimal separation are beyond the
scope of this paper. Optimal control models cor-
responding to the Mixed phase and the Separation
Minimization phase are given, respectively, in ap-
pendices I and II.

All the operational decisions concerning the use
of delay or time advance are made in the flight phase
corresponding to optimal control problem P1, for-
mulated below, with a weighted objective function
of the form

(coeff. of relative utility)(collective fuel burn)
+ (excess separation)

A solution to the problem with a total of I air-
craft is a time-dependent vector-valued function

v(t) = (u1(t),... v (t)) (1)

where v;(t) is the speed dictated to aircraft i at time
t.

Remark 1 Operationally, it is desirable that the
control strategy v(t) be piecewise constant: in this
case, every time interval of constancy can be re-
garded as a speed advisory, and v(t) is then a se-
quence of speed advisories for the entire set of air-
craft.

A general solution is found below as a root of an ex-
actly known polynomial. For the cost functions con-
sidered, the mathematical model indicates piecewise
constant control strategies v(¢). Two by-products

of the solution are as follows:

e a functional interdependence between the
speed advisories and the above coefficient of
relative utility, and

e a way to compute—once the solutions for other
flight phases are found-the desired change (a
delay if positive, a time advance if negative) to
the scheduled arrival time (STA); see the sec-
tion Obtaining delays and time advances from
a solution.

Solutions to a number of problem P1 instances are
presented in a later section.

A mathematical setting for optimal
control models with explicit delays

The state space

Consider a collection of P paths in R?, indexed by
the set P = {1,...,P}. Path p € P is assumed to
admit a continuous and piecewise continuously dif-
ferentiable one-to-one parameterization by its arc
length s,. Thus, if 7, is the mentioned spatial pa-
rameterization of path p, then

forallpe P (2)

Zp(sp) € R3, — < s5p <0
Definition 1 The point at s, = 0 in parameteriza-
tion (2) will be called the distal point of path p.

A pair of paths can either be disjoint, or intersect
at a point (Figure 1A), or overlap (Figure 1B). The
distal points in Figure 1 are shown as black dots;
the parameters o decrease, in the direction of air-
craft motion, toward the distal point. The portions
of the paths near the crossing (overlap) play a role
in the geometry of the conflicting states, as will be
shown in Figure 2.

Suppose each aircraft in a set A= {1,2,...,1}
is assigned one of the paths in P. To specify that
a path p € P has aircraft i assigned to it, we will
write p(i) instead of p. The following definition of
a state space follows the approach first introduced
in [4]. Since the parameterization mapping ) is
one-to-one and onto, the spatial position of aircraft ¢
is completely determined by specifying its distance,
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Figure 1: Path pairs.

measured along the path, from the distal point (defi-
nition 2). Let —s; be aircraft i’s distance, measured
along the path, from the distal point. This defini-
tion implies that if aircraft ¢ is on path p(i), then
si = Sp;)- Thus, if each aircraft has already en-
tered its path, then by specifying all the s;’s (each
s; increases with time), one specifies each aircraft’s
spatial position. Accordingly, in the control model
constructed below, the vector

s = (8i)icA

is a state vector, hence is regarded as a function of
time:

s =s(t) = (si(t))ica
It follows that the state space of the problem is the
entire I-dimensional Euclidean space

S = R/

Different portions of this space will be used below
in the optimal control models that correspond to
different flight phases.

The rest of this section consists of some speci-
fications of the above machinery to the models be-
low. The distal point (definition 2) will be assumed
to be a runway. Two different paths may termi-
nate with two different runways. The following two
operational restrictions will be reflected:

1. On reaching a certain distance from the run-
way, aircraft ¢ can no longer exercise delay or

near-overlap path portions
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time advance. This distance will be denoted
L;.

2. On reaching a certain distance from the run-
way, aircraft ¢ must assume and keep the land-
ing speed. This distance will be denoted I;

These restrictions are related to the state variables
as follows: aircraft ¢ can no longer exercise delay or
time advance if s; > L;, and must move at landing
speed if s; > [;. The latter state space construct is
used below to formulate a class of optimal control
problems.

Separation constraints and landing se-
quence

Denoting the minimal separation distance for an or-
dered pair (,4") of aircraft by p; +, and letting || - ||
denote the Euclidean norm in R3, we obtain the
separation constraints

[Zp5) (8i(8)) — Zp(ary (sir ()] = piar
(3)

for all 7,i" € A and all meaningful ¢

If the paths of a pair (7,4’) of aircraft join once and
coincide henceforth, the set of states where these
two aircraft are in conflict can be approximated
from the outside by a polyhedral region, henceforth
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Figure 2: Approximate pairwise conflict zones.

called a pairwise conflicting stote zone and denoted
C;.i, whose dimensions are determined by the re-
quired minimal separation distances, and whose di-
agonal extent is commensurate with the length of
the common portion of the two paths. For example,
the polygonally approximated conflict zones corre-
sponding to the path pairs shown in Figure 1 are
shown in Figure 2. The resulting form for the
separation constraints is

s ¢ Uiirea Ci (4)
Remark 2 The separation distance required for a
pair of aircraft generally depends on their wake
classes and on the order in which the two aircraft
consecutively enter a common path. This implies
the possibility of the asymmetry p; i # piri-

Landing sequence and the minimal sepa-
ration line (MSL)

In this paper, the landing sequence is assumed pre-
determined. (While this assumption can be justi-
fied operationally today, it may lose basis in future
ATM operations and research. The computational
implications of abandoning the assumption are sum-
marized briefly in the section Discussion.) A given
landing sequence can be described as a permutation
montheset A= {1,2,..., F'} such that, at the time
when the first aircraft in the set lands and all the

others still observe separation, the state vector s
satisfies the inequalities

(5)

Thus, the permutation 7 “sorts the aircraft in the
order of reaching their distal points”, which in this
case are the runway or runways.

Given a landing sequence 7, a state s with min-
imal separation between every consecutive pair of
aircraft satisfies the following, stronger, version of
the inequalities (5):

Sr) < Sp@) < --- < Sgx(D)

sw(i)+pw(i)7w(i+1) = Sn(i+1)> 1= 1, 2, . ,I—l (6)

The system (6) of (I — 1) equations in the I-
dimensional space R determines a line, called the
minimal separation line (MSL).

Control law

Ignoring inertia, the speed v; of aicraft ¢ is assumed
capable of being arbitrarily set to any value in the
operationally admissible range. This leads to the
following control law:

(7)

S=v,
where
< ’U])
The operationally admissible speed ranges will be

specified for each of the control problems formu-
lated below.

v = (vy,..



Delay-time advance phase with
fuel cost: optimal control problem
P1

Problem formulation

Operationally, flight ¢ is assigned a tentative sched-
uled time of arrival (STA), denoted ST A;, which
marks the end of the flight’s Delay-Time Advance
phase. If this assignment were never subject to
change, the appropriate condition for flight ¢ to exit
this flight phase would be

Si(STAi) = —Li

However, STAs are updated in operations, typi-
cally by requiring postponement of arrival by a time
duration called delay, necessitated when the level
of traffic demand reaches the throughput capacity
and, without rescheduling, will lead to separation
violations. Allowing not only to postpone phase
exit, but also to expedite it (i.e., allowing a time
advance), carries a potential operational gain: dur-
ing periods when traffic demand is below satura-
tion, time advance can ultimately allow aircraft to
be landed earlier than originally planned. Thus,
with a corresponding adjustment and optimization
in runway scheduling, a practice of time advance
can help increase throughput.

In the present model, delay and time advance
are represented by introducing for each aircraft ¢ a
variable §; whose value is to be determined as part
of solving the optimization problem. This results in
the more realistic condition

for flight ¢ to exit the Delay-Time Advance phase.
In this paper, sufficiently early knowledge of an
aircraft’s whereabouts (starting at a time, denoted
by t°) is assumed. This gives the following initial
condition:
s(t) =s%€ 8% % <min(STA; +4;) (8)
1
The quantities §; are unknown at the outset and can

be found, once solutions for all three flight phases
are obtained, using formula (22).

The Delay-Time Advance phase of an aircraft i’s
flight lasts until s; reaches the value —L;. Accord-
ingly, denoting by T the exit time for the problem,
the target set is defined for this problem as

} (9)

STPL — f5
For a case of 2 a/c, Figure 3 schematically shows
the state space for this problem as the quad-
rant {(s1, s2) s1 < —Ly,s9 < —Lo} shaded
gray, with an example of an initial state (8).
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Figure 3: A 2-a/c state space for P1.

The speed range for aircraft ¢ is the full cruise
speed range [v,,7;], which contains a “economical
cruising speed” v, closer to v; than to 7;, that
minimizes the instantaneous rate (11) of fuel burn.
For future reference, we write the constraints on the
speeds:

i=1,2,...,1 (10)

The running cost of for aircraft s; with s; < —L;
is the instantaneous rate of fuel burn, B, (), ex-
pressed as a known function of the aircraft’s speed
v;. Based on [13], B,(; is a convex function on
[v;,T;] with a minimum at some “economical cruis-
ing speed” v§®.

For simplicity, all v{®’s will be assumed to have
the same value, henceforth denoted 3. All theoreti-
cal results of this paper, however, easily generalize to
the case when the v{®’s are not necessarily equal.
Throughout this paper, the functional form

Bry(vi) = 1+ a(v; — §)?,

v; Sv; <1

(11)



with 8 = v{*, is used for the instantaneous rate of
fuel burn for each i, to mimic the data shown in
reference [13, figure 1]. Although symmetric about
B, the form (2) exhibits qualitative behavior that
resembles the asymmetric form in [13, figure 1] suf-
ficiently for our first-step investigation.

The total running cost is, therefore,

1

c Z BT(Z) (Ui)a

i=1

(12)

where the coefficient ¢ measures the relative utility
of minimizing fuel burn to minimizing excess sepa-
ration. The functions B.(;) are assumed quadratic
polynomials, which can be justified by interpolating
B ;) through 3 data points.

Let s™5F be the intersection between the MSL
(6) and the target set ST’ defined in (9). To incor-
porate the goal of minimizing separation, the exit
cost for problem P1 is defined as

E(S) — SMSL||2’

1
s (13)
where || - || is the norm (reference [1, section 5.2-
5]) arising from the inner product (reference [1,
section 5.2-6]), denoted here by (-,-). Note that
s%}g)L = —Ly (1), and the rest of the sMSL'g can be
directly calculated from (6).

Definition 2 The optimal control problem given by
(7), (8), (9), (10), (12), (13) will henceforth be
called problem P1.

Solutions for problem P1 obtained using
the Pontryagin Maximum Principle

Denote the costate variable corresponding to s; by
o; and write ¢ = (071, ...,07). The Pontryagin func-
tion (also known as the variational Hamiltonian) for
the problem is then

H= Y Bylw)+(v.a)  (14)

The adjoint state [3] equations

0
—-——H=0
Os
imply that & is constant. From the constancy of o,

we conclude that there exists a maximizing control

o=

strategy, v, which is constant. (The sample nu-
merical solutions obtained using the Dynamic Sys-
tem Optimization Algorithm (OCP) software [14]
are consistent with the latter conclusions.)

Remark 3 The qualitative insight gained from the
above application of the Pontryagin Maximum Prin-
ciple is that problem P1 has an optimal control strat-
eqy v* which is constant. This insight not only
shows that v* satisfies the operalional preference ex-
pressed in remark 1, but also reduces a problem in
optimal control to one in static optimization,

Such a constant control strategy can be found by a
direct polynomial-time computation as follows.

The total cost of a trajectory s(t) corresponding
to a control strategy

v(t) = v = const. (15)

is
t=T

@:

1
- CZBT(,»)(W) dt + 3 ||s1 — SMSL||2
= i

Recalling that

S

l_SMSL||2:< s

1 _gMSL o1 _ SMSL>

IE ,

and that, in light of (15), the final state s! is given
by
T
vdt =s" + Tv,
t=0

sl — 01

we obtain

O = TY; Brgy(vi) + 5][8° — M2

+ %T2||v||2 +T(s® — SMSL,V)

Omission of constant terms from the latter expres-
sion leaves the solutions of the minimization prob-
lem (min — &) unchanged, and therefore the
optimal control problem can be stated as

mingr — & L Y, By (vi)

+ %T2||v||2 + T(s0 — SMSL,V>,
(16)
subject to the constraint

def ()

g=s1+Tvi—(=L1) =0



The function ®, defined in (16), can be written

& =T [as(T)||VI[* + (a',v) + ao|
where
1
ax(T) = ac + §T,
al =s? —sM50 _92a8c1, 1=(1,...,1) e R/,
and

ag = cF(1+ af?).

For each fixed value of T', the latter expression in []’s
is a quadratic form [1] in v, whose principal axes [1]
we now exhibit by several changes of variables, thus
simplifying minimization. First, on defining

u \Jay(T)v,

we obtain

aﬂTmWP+%fﬂ0=<mu%+<

Next, on defining

€ 1 €
YOS T v

we obtain

az(T)||vI[* + (a', v)

+(b(T),u)

= (u+bl(T)w)

= <ua u>

= (w+bY(T),w — 1bL(T))

3l (D)%,

which leads to the problem

= [[wl]* -

mm%@MTW|
w,T

)

L IB P a7

subject to the constraint

dCf 0+T(

w1 — %b% (T)

) >+L1:0 (18)

Using a Lagrange multiplier [1] A, we arrive at the
problem of minimizing the Lagrangian

AL D - )y

by solving the algebraic system

0 = ZA  i=1...,F
0 = 2A (19)
0 =g
for w, T, \.
For i =2,...,F, one obtains
0= 0 A:2Tw,,
Wi

whence w; = 0.
Thus, regardless of the dimension I, the above
minimization problem reduces to the static 2-
dimensional minimization problem
2
I

min — T wl——||b1( )
w1, T

+ agpl| , (20)
subject to the constraint (18). This reduction gives
the exact coefficients of the following polynomial in
the variable z = \/ao(T):

—dacly — daces (1))
238022 Ly + 8a2c?s) — 12alac?)
2(8(11 3 3)

160222212 + 83312

+ o+ + 4+

The latter polynomial, obtained using the software
[15], is readily seen to have degree 8 independently
of I. One of the roots of the polynomial corresponds
to the solution of (20), (18). This gives a computa-
tional solution procedure that has the desired fea-
tures discussed in the latter portion of the section
Introduction. This knowledge enables a calculation
of the solution with arbitrary accuracy for the gen-
eral [-aircraft problem P1 in time O([) if the in-
tended exit sequence for P1 is pre-determined, and
in time O(I?) otherwise.



Obtaining delays and time advances from
a solution

Once a solution v(t) covering all three flight phases
is found, the quantities ¢; appearing in (8) are found
as follows. For aircraft i, let T}! be the earliest time
when

s; = —Lj,

take

8 =T} — STA; (22)

Numerical experiments for prob-
lem P1

The correctness of the results obtained in the previ-
ous section was tested by solving several instances
of problem P1 using the following three methods.

1. Solving problem (20), (18) by finding numer-
ically a suitable root of (21) and, from it, the
corresponding speed advisory v*, using the
wrMazima software [15].

2. Solving problem (20), (18) numerically using
the the fminsearch function in the MATLAB
software [16].

3. Solving the original, I-dimensional, optimal
control problem P1, given by (7), (8), (9),
(10), (12), (13), using the OCP software [14]
and without assuming the constancy of opti-
mal control strategies asserted in Remark 3.

The obtained values from all three approaches
are shown in Tables 1 and 2. For each value of I
(number of aircraft), the value of the coefficient ¢
(see (12)) was varied over the values

c=10", n=-2,-18,-16,...,6
Plots of dependence of the solution and excess sep-
aration on the value of ¢ are shown for 2 and 3
aircraft in Figures 4 and 5, respectively. Figure 6
shows MATLAB solution plots for a case of 30 air-
craft.

The fuel burn curve

Throughout this section, the functional form (11) of
instantaneous fuel burn will be used with parameter
values

a=5x10"", [ =45 x 10,
chosen to mimic the data shown in reference [13, fig-
ure 1.

A case of 2 aircraft

The numerical results in Table 1 were obtained as-
suming that ¢ = 1 exits the delay-time advance
phase before the other flight does, and assuming
the following parameter values:

L1 = 20.0 nmi, Ly = 30.0 nmi

p=>5nmi = min. separation required
for ¢ = 2 trailing i = 1

sMSL = (—Ly, =Ly — p)
s’ =(—Li — 3,—Ly — B)

for all ¢

v; = 250 kts, v; = 550 kts

Solution values are shown in Table 1; solution plots,
in Figure 4.

A case of 3 aircraft

The numerical results in Table 2 were obtained as-
suming that ¢ = 1 exits the delay-time advance
phase before the other flights do, and assuming the
following parameter values:

L1 = 20.0 nmi, Ly = 30.0 nmi,
L3 = 25.0 nmi

p=>5nmi = min. separation required
for all aircraft pairs

(24)
sMSL = (—Ly,—Ly — p,—L3 — 2p)

s =(—Ly—f3,—Ly— 3,—L3 — )

v, = 250 kts, 7; = 550 kts  for all ¢



Table 1: Solutions for instances (23) of P1.

c Method * (kts) T (hr)
l.e-2 | w(xMaxima) | (4.77e+02, 4.71e4+02) | 9.44e-01
M(ATLAB) | (4.74e4+02, 4.69e+02 ) | 9.49¢-01
O(CP) (4.74e+02, 4.69¢+02) | 9.49¢-01
lel | w (4.74e402, 4.69e+02) | 9.49¢-01
M (4.74e402, 4.69e+02) | 9.49¢-01
0 (4.74e+02, 4.69e+02) | 9.49e-01
Let0 | w (4740102, 4.60e+02) | 9.49¢-01
M (4.74e402, 4.69e+02) | 9.49¢-01
0 (4.74e+02, 4.69e+02) | 9.49e-01
Tetl |w (4.740+02, 4.69¢+02) | 9.49¢01
M (4.74e402, 4.69e+02) | 9.49¢-01
0 (4.74e+02, 4.69e+02) | 9.49e-01
Tet2 | w (4.740+02, 4.69¢+02) | 9.49¢01
M (4.74e402, 4.69e+02) | 9.49¢-01
0 (4.74e+02, 4.69e+02) | 9.49¢-01
le+3 | w (4.75e402, 4.68e+02) | 9.47e-01
M (4.75e402, 4.68e+02) | 9.47e-01
O (4.75e402, 4.68e+02) | 9.47e-01
letd | w (4.81e4+02, 4.62e+02) | 9.36e-01
M (4810402, 4.62e+02) | 9.36¢-01
0 (4810402, 4.62e+02) | 9.36¢-01
le+d | w (4.90e402, 4.53e+02) | 9.19e-01
M (4.90e402, 4.53e+02) | 9.19e-01
O (4.90e402, 4.53e+02) | 9.19e-01

Solution values are shown in Table 2; solution plots,
in Figure 5.

A case of 30 aircraft

The timeframe in which the 2- and 3-aircraft in-
stances of P1 were solved, above, is on the order
of 1 hour. Within this timeframe, saturation rates
of air traffic arriving in a terminal can well exceed
60 aircraft per hour, while minimal rates are typ-
ically far in excess of 3 aircraft. Thus, a case of
30 aircraft corresponds to a rate of arrivals which
is, on the one hand, below saturation and, on the
other hand, more realistic than 3 aircraft. It is at
this rate that the advantages of time advance are
expected to be most manifest.

The numerical results for this case were obtained
assuming that ¢ = 1 exits the delay-time advance
phase before the other flights do, and assuming the

following parameter values:

L; =20.0(1 + &;) nmi, where &; is
a random variable [1] distributed
uniformly [1] in [—0.3,0.3]

p=>5nmi = min. separation required
for all aircraft pairs

gMSL _ ( MSL)Z’ SZMS =L, — (Z _ 1)p
= (—L; — p); for all i
v, = 250 kts, T; = 570 kts  for all ¢

The speed advisories were computed using
MATLAB [16] without imposing the speed range
constraints. For values of ¢ above 10%, the com-
puted speed advisory u} for aircraft i = 1 exceeded
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Figure 4: Solutions for the 2 a/c case of P1.

the value 7, = 570 kts. This behavior may be an
indication that the functional form B ;) (u;) of fuel
burn used above does not include the highly nonlin-
ear effects arising as a subsonic aircraft approaches
the speed of sound, and also that ascribing exces-
sively large priority c¢ to fuel savings can yield op-
erationally infeasible results. This issue will be ad-
dressed as the model and algorithm are further de-
veloped to accommodate a higher level of opera-
tional realism. For ¢ < 10%, the computed speed
advisories do meet the speed range constraints, the
values of E(s) are below 5 nmi, and fuel burn ex-
hibits a negative correlation with excess separation
(see Figure 6). Consequently, fuel savings are neg-
atively correlated with throughput, as expected.

Discussion

Summary: the results and their opera-
tizonal tmplications

The optimal control formulated above (problem P1)
describes aircraft traffic in its Delay - Time Advance
phase of traffic arrival. The cost functional includes
two terms, collective for the entire traffic: fuel burn
(12) and excess separation (13). These two terms
are in competition for priority; e.g., in order to re-
duce excess separation (thereby increasing through-
put), some aircraft must speed up, incurring higher
fuel burn. The cost functional thus represents the
tradeoff between the pursuits of minimizing the two
costs. The relative weight ascribed to fuel burn over
excess separation is represented by the coefficient ¢
appearing in (12).

Similar optimal control models are formulated



Table 2: Solutions for instances (24) of P1.

c Method v* (kts) T (hr)
l.e-2 | w(xMaxima) | (4.77e+02, 4.72e4+02, 4.66e+02) | 9.43e-01
M(ATLAB) | (4.77e+02, 4.72e+02, 4.66e+02) | 9.43e-01
0(CP) (4770402, 4.720402, 4.66e-+02) | 9.43¢-01
lel | w (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
M (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
O (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
let0 | w (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
M (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
O (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
le+l | w (4.77e402, 4.72e+02, 4.66e+02, | 9.43e-01
M (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
O (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
le+2 | w (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
M (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
O (4.77e402, 4.72e+02, 4.66e+02) | 9.43e-01
le+3 | w (4.78e+02, 4.71e4+02, 4.66e+02) | 9.41e-01
M (4.78e402, 4.71e+02, 4.66e+02) | 9.41e-01
O (4.78e+02, 4.71e4+02, 4.66e+02) | 9.41e-01
le+d | w (4.87e402, 4.65e+02, 4.63e+02) | 9.24e-01
M (4.87e402, 4.65e+02, 4.63e+02) | 9.24e-01
O (4.87e402, 4.65e+02, 4.63e+02) | 9.24e-01
le+d | w (5.06e+02, 4.54e4+02, 4.54e+02) | 8.90e-01
M (5.06e+02, 4.54e4+02, 4.54e+02) | 8.90e-01
O (5.06e+02, 4.54e4+02, 4.54e+02) | 8.90e-01

(see appendices I and II) to describe the two sub-
sequent phases of each arrival flight. The solution
in each model is a collective speed v(t), which is
generally a time-dependent vector whose i-th com-
ponent is the speed advised for flight ¢ along its
intended path. (As is shown above, v(¢) turns out
constant for the first, Delay - Time Advance, phase
of arrival.) Once the solutions v(t) for all three
flight phases are found, they completely determine
the optimal (in the sense of the cost functionals)
amount of delay or time advance for each aircraft.
This determination is given by formula (22).

The solutions obtained for the Delay - Time Ad-
vance phase (problem P1) and verified using three
independent computational methods (tables 1 and
2) are a step toward automation of scheduling that
takes account of fuel burn and its interplay with
excess separation. The latter quantity, in turn, af-

fects airport efficiency. The plots shown in Figures
4 and 5 indicate that, i)as expected, with the higher
“relative importance” (value of ¢) ascribed to fuel
burn, excess separation increases toward, and levels
out at, a maximal value, and ii) the speed advised
for the lead aircraft increases. The plot in Figure
6 confirms the intuitive expectation that increasing
the priority of fuel savings results in higher excess
separation, hence in lower throughput.

Another potential benefit of such quickly and
accurately computable solutions is that, with
equipage to communicate the parameters «, 3, L;, s°
to the crew of each flight ¢ and to carry out simple
calculations, each flight crew is in a position to de-
termine its optimal speed advisory that meets the
separation constraints between this flight and all
the others. The contributions of this paper, conse-
quently, are a step toward self-separation [12].
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Figure 5: Solutions for the 3 a/c case of P1.

Dsirections for future research

The following research directions seem sensible for
next steps toward operational realism and develop-
ment of automation tools fit for use in the field.
Introducing uncertainty terms into the control laws
describing the traffic can help capture the behavior
of traffic in the presence of wind and human fac-
tors in control execution. A solution the 3-phase
control problem with P1, P2, and P3 as phases
would enable formula (22) to be used for calculat-
ing the resulting delays and time advances. Inclu-
sion of inertia in the control model can indicate how
the cost function may need to be modified in order
to capture the resources of importance (e.g., fuel)
and to yield speed advisories that, like the ones
found above, are piecewise constant (Remark 1).
Testing the computational procedures using high-
fidelity ATM operations and live traffic.
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Appendix I: The optimal control
problem for the Mixed Phase

This problem, denoted P2, arises once the system
reaches a state s! in the target set (9) of problem
P1. Given the state s', which will serve as the ini-
tial state for problem P2, let the set A; consist of
those indices 7 in A for which the aircraft still has
the option of exercising delay or time advance, i.e.

SZ1 < —L;

Problem P2, while governed by the same control
law as P1, allows aircraft i a narrower speed range

[v;, Vi

The target set for P2 is the set of all states s for
which

s; = —L; for at least one index 7 in A4

The running cost includes a term reflecting fuel
burn only for those aircraft in A4, but the exit cost
is the same as in P1. The resulting Pontryagin func-
tion is

H=—c Y B.w)+(v,0)
feAr

Appendix II: The optimal control
problem for the Separation Mini-
mization Phase

Once each s; exceeds —L;, none of the aircraft pur-
sues the objective of minimizing fuel burn and is
concerned solely with minimizing separation. The
control, the speed ranges, and the exit cost are as
in P2. The running cost is now zero. The target set
is a state s in which

—L; <s; < —=l;
The Pontryagin function is
H=(v,o)
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