Summary of the NASA Science Instrument, Observatory and Sensor System (SIOSS) Technology Assessment

H. Philip Stahl, NASA Marshall Space Flight Center Rich Barney, NASA Goddard Space Flight Center Jill Bauman, NASA Ames Research Center
Lee Feinberg, NASA Goddard Space Flight Center Dan Mccleese, Jet Propulsion Laboratory
Upendra Singh, NASA Langley Research Center

AGENDA

Office of Chief Technologist (OCT) Technology Area Roadmap

Science Instrument, Observatory and Sensor Systems TA

Needs Assessment

Technology Area Breakdown Structure (TABS)

Technology Development Roadmaps

Top Challenges

Interdependencies with other TAs and Government Agencies

Budget Recommendations

Conclusions

NASA Office of Chief Technologist

Aero-Space Technology Area Roadmap (A-STAR)

Aero-Space Technology Area Roadmap (A-STAR)

- July 2010, NASA Office of Chief Technologist (OCT) initiated an activity to create and maintain a NASA integrated roadmap for 15 key technology areas which recommend an overall technology investment strategy and prioritize NASA's technology programs to meet NASA's strategic goals.
- Initial reports were presented to the National Research Council who are currently collecting public input and preparing reviews of each Roadmap.
- Roadmaps will be updated annually and externally reviewed every 4 years consistent with the Agency's Strategic Plans.

A-STAR Process

Technology Assessment Areas

- TA1: Launch Propulsion Systems
- TA2: In-Space Propulsion Systems
- TA3: Space Power and Energy Storage Systems
- TA4: Robotics, Tele-robotics, and Autonomous Systems
- TA5: Communication and Navigation Systems
- TA6: Human Health, Life Support and Habitation Systems
- TA7: Human Exploration Destination Systems
- TA8: Scientific Instruments, Observatories, and Sensor Systems
- TA9: Entry, Descent, and Landing Systems
- TA10: Nanotechnology
- TA11: Modeling, Simulation, Information Technology, and Processing
- TA12: Materials, Structural & Mechanical Systems, and Manufacturing
- TA13: Ground and Launch Systems Processing
- TA14: Thermal Management Systems
- TA15: Aeronautics

Goals and Benefits

Develop clear NASA technology portfolio recommendations Prioritize current needs Define development plans Identify alternative paths Reveal interrelationships of between various technologies

Transparency in government technology investments Ensure needs of all NASA Mission Directorates are included

Credibility for planned NASA technology programs Coordinate with other Government agencies Broad-based input from non-government parties

Charge to TA Teams

Review, document, and organize the existing roadmaps and technology portfolios.

Collect input from key Center subject matter experts, program offices and Mission Directorates.

Take into account:

US aeronautics and space policy;

NASA Mission Directorate strategic goals and plans;

Existing Design Reference Missions, architectures and timelines; and

Past NASA technology and capability roadmaps.

Recommend 10-yr Budget to Mature Technology to TRL6

Technology Assessment Content

Define a breakdown structure that organizes and identifies the TA Identify and organize all systems/technologies involved in the TA using a 20-year horizon

Describe the state-of-the-art (SOA) for each system

Identify the various paths to achieve performance goals

Identify NASA planned level of investment

Assess gaps and overlaps across planned activities

Identify alternate technology pathways

Identify key challenges required to achieve goals

Technology Assessment #8:

Science Instruments, Observatories and Sensor Systems (SIOSS)

TA8 Roadmap Team

Rich Barney (GSFC), Division Chief, Instrument Systems and Technology Division. Co-chaired 2005 NASA Science Instruments and Sensors Capability Roadmap.

Phil Stahl (MSFC), Senior Optical Physicists

Optical Components Technical Lead for James Webb Space Telescope;

Mirror Technology Days in the Government;

Advanced Optical Systems SBIR Subtopic Manager;

2005 Advanced Observatories and Telescopes Capability Roadmap.

Upendra Singh (LaRC), Chief Technologist, Engineering Directorate.

Principal Investigator for NASA Laser Risk Reduction Program (2002-2010)

Dan Mccleese (JPL), Chief Scientist

Principal Investigator of Mars Climate Sounder instrument on Mars Reconnaissance Orbiter.

Jill Bauman (ARC), Associate Director of Science for Mission Concepts.

Lee Feinberg (GSFC), Chief Large Optics System Engineer

JWST OTE Manager.

Co-chaired 2005Advanced Telescopes and Observatories Capability Roadmap.

SIOSS

SIOSS roadmap addresses technology needs to achieve NASA's highest priority objectives – not only for the Science Mission Directorate (SMD), but for all of NASA.

SIOSS Team employed a multi-step process.

- Performed an SMD needs assessment;
- Consolidated the identified technology needs into broad categories and organized them into a Technology Area Breakdown Structure (TABS);
- Generated technology development roadmaps for each TABS element;
- Investigated interdependencies with other TA Areas as well as the needs of Other Government Agencies.

SMD Needs Assessment

First step was to review governing documents (such as Decadal Surveys, roadmaps, and science plans) for each Science Mission Directorate (SMD) divisions: Astrophysics, Earth Science, Heliophysics, and Planetary Science:

2010 Science Plan, NASA Science Mission Directorate, 2010

Agency Mission Planning Manifest, 2010

New Worlds, New Horizons in Astronomy and Astrophysics, NRC Decadal Survey, 2010

Panel Reports: — New Worlds, New Horizons in Astronomy and Astrophysics, NRC Decadal Survey, 2010

Heliophysics, The Solar and Space Physics of a New ERA, Heliophysics Roadmap Team Report to the NASA Advisory Council, 2009

Earth Science and Applications from Space, NRC Decadal Survey, 2007

New Frontiers in the Solar Systems, NRC Planetary Decadal Survey, 2003

The Sun to the Earth — and Beyond, NRC Heliophysics Decadal Survey, 2003

Advanced Telescopes and Observatories, APIO, 2005

Science Instruments and Sensors Capability, APIO, 2005

Astrophysics Technology Needs

National Academy 2010 Decadal Report recommended missions and technology-development programs, (with need date): Wide Field Infrared Survey Telescope (WFIRST), 2018 Explorer Program, 2019/2023 Laser Interferometer Space Antenna (LISA), 2024 International X-ray Observatory (IXO), mid/late 2020s New Worlds Technology Development Program, mid/late 2020s *Epoch of Inflation Technology Development Program, mid/late 2020s* U.S. Contribution to the JAXA-ESA SPICA Mission, 2017 UV-Optical Space Capability Technology Development Program, mid/late 2020s TRL3-to-5 Intermediate Technology Development Program

All can be enhanced or enabled by technology development to reduce cost, schedule, and performance risks.

SMD Needs Assessment

Detailed listings of technology needs for each SMD division were tabulated which enable either:

```
planned SMD missions ('pull technology') or
```

emerging measurement techniques necessary for new scientific discovery ('push technology').

These lists were then reviewed and refined by individual mission and technology-development stakeholders.

Table 2.2.1.1 – 1 Summary of Astrophysics Technology Needs						
Mission	Technology	Metric	State of Art	Need	Start	TRL6
WFIRST	NIR detectors	Pixel array	2k x 2k	4k x 4k	2012	2014
		Pixel size	18 µm	10 µm		
UVOTP	Detector arrays:	Pixel	2k x 2k	4k x 4k	2012	2020
Push	Low noise	OE UV		> 0.5 90-300 nm		
		OE Visible		> 0.8 300-900 nm		
		Rad Hard		50 to 200 kRad		
NWTP	Photon counting arrays	Pixel array visible	512 x 512	1k x 1k	2011	2020
Push		Visible OE	80% 450-750 nm	>80% 450-900 nm		
		Pixel array NIR	128 x 128	256 x 256		
SPICA	Far-IR detector arrays	Sens. (NEP W/ \sqrt{Hz})	1e-18	3e-20	2011	2015
ITP	5	Wavelength	> 250um	35-430um		2020
Push		Pixels	256	1k x 1k		
IXO	X-ray detectors	Pixel array		40 x 40 TES	2011	2015
Push		Noise	10-15 e ⁻ RMS	2-4 e RMS		
		OE		>0.7 0.3-8 keV		
		Frame rate	100 kHz@2e ⁻	0.5 - 1 MHz@2e ⁻		
WFIRST	Detector ASIC	Speed @ low noise	100 kHz	0.5 - 1 MHz	2011	2013
IXO		Rad tolerance	14 krad	55 krad		
NWTP	Visible Starlight	Contrast	$> 1 \times 10^{-9}$	$< 1 \times 10^{-10}$	2011	2016
	suppression:	Contrast stability		1 x 10 ⁻¹¹ /image	2011	2020
	coronagraph or	Passband	10%, 760-840 nm	20%, at V, I, and R		
	occulter	Inner Working Angle	$4 \lambda D$	$2\lambda/D - 3\lambda/D$		
NWTP	Mid-IR Starlight	Contrast	1.65 x 10 ⁻⁵ , laser	$< 1 \times 10^{-7}$, broadband	2011	2016
	suppres: interferometer	Passband mid-IR	30% at 10 um	> 50% 8µm	2011	2020
NWTP	Active WFSC:	Sensing	$\lambda/10.000 \text{ rms}$	$<\lambda/10.000$ rms	2011	2020
UVOTP	Deformable Mirrors	Control (Actuators)	32 x 32	128 x 128		
IXO	XGS CAT grating	Facet size; Throughput	3x3 mm; 5%	60x60mm; 45%	2010	2014
Various	Filters & coatings	Reflect/transmit; temp		· ·	2011	2020
Various	Spectroscopy	Spectral range/resolve			2011	2020
SPICA	Continuous sub-K	Heat lift	<1 µW	$>1 \mu\text{W}$	2011	2015
IXO	refrigerator	Duty cycle	90 %	100 %		
IXO	Large X-ray mirror	Effective Area	0.3 m2	>3 m2 (50 m2)	2011	2020
Push	systems	HPD Resolution	15 arcsec	<5 arcsec (<1 as)		(30)
	5	Areal Density; Active	10 kg/m2; no	1 kg/m2; yes		. /
NWTP	Large UVOIR mirror	Aperture diameter	2.4 m	3 to 8 m (15 to 30 m)	2011	2020
UVOTP	systems	Figure	< 10 nm rms	<10 nm rms		(30)
Push	5	Stability		>9,000 min		. /
		Reflectivity	>60%, 120-900 nm	>60%, 90-1100 nm		
		kg/m2	30 kg/m2	Depends on LV		
		\$/m2	\$12M/m2	<\$1M/m2		
WFIRST	Passive stable structure	Thermal stability	Chandra	WFOV PSF Stable	2011	2014
NWTP	Large structure: occulter	Dia; Petal Edge Tol	Not demonstrated	30-80 m; <0.1mm rms	2011	2016
NWTP	Large, stable telescope	Aperture diameter	6.5 m	8 m (15 to 30 m)	2011	2020
UVOTP	structures	Thermal/dynamic WFE	60 nm rms	< 0.1 nm rms		(30)
Push	(Passive or active)	Line-of-sight jitter	1.6 mas	1 mas		
		kg/m2	40 kg/m2	<20 (or 400) kg/m2		
		\$/m2	\$4 M/m2	<\$2 M/m2		
LISA	Drag-Free Flying	Residual accel	$3x10^{-14} \text{ m/s}^2/\sqrt{\text{Hz}}$	$3x10^{-15} \text{ m/s}^2/\sqrt{\text{Hz}}$	2011	2016
NWTP	Occulter Flying	Range		10,000 to 80,000 km		
		Lateral alignment		±0.7 m wrt LOS		
NWTP	Formation flying:	Position/pointing	5cm/6.7arcmin		2011	2020
Push	Sparse & Interferometer	#; Separation	2; 2; 2 m	5; 15–400-m		
LISA	Gravity wave sensor	Spacetime Strain	N/A	$1 \times 10^{-21} / \sqrt{\text{Hz}}, 0.1$ -	2013	2019
Push	Atomic interferometer	Bandpass		100mHZ		
Various	Communication	Bits per sec		Terra bos		2014

Astrophysics Technology Needs

Astrophysics requires advancements in 5 SIOSS areas:

Detectors and electronics for X-ray and UV/optical/infrared (UVOIR);

Optical components and systems for starlight suppression, wavefront control, and enhanced UVOIR performance;

Low-power sub-10K cryo-coolers;

Large X-ray and UVOIR mirror systems (structures); and

Multi-spacecraft formation flying, navigation, and control.

Additionally, Astrophysics missions require other technologies:

Affordable volume and mass capacities of launch vehicles to enable largeaperture observatories and mid-capacity missions;

Terabit communication; and

Micro-Newton thrusters for precision pointing & formation-flying control

Technology Area Breakdown Structure (TABS)

Technology needs for each SMD area were deconstructed into broad categories.

For example, many missions require new or improved detectors.

These broad categories were condensed into 3 groups:

Remote Sensing Instruments/Sensors,

Observatories, and

In-situ Instruments/Sensors.

and organized into a 4-level TABS.

TA8: Technology Area Breakdown Structure

8.3.4.5 Planetary Protection

Technology Area Breakdown Structure (TABS)

Remote Sensing Instruments/Sensors:

convert electromagnetic radiation (photons or waves) into science data or generate electromagnetic radiation (photons or waves); typically require an observatory; may be stand-alone sharing a common spacecraft bus

<u>Observatory:</u> collect, concentrate, and/or transmit photons.

<u>In-situ Instruments/Sensors</u> create science data from: fields or waves (AC/DC electromagnetic, gravity, acoustic, seismic, etc); particles (charged, neutral, dust, etc.); or physical samples (chemical, biological, etc.).

Technology Development Roadmaps

Development Roadmaps were developed for each SMD Division.

Roadmaps use TABS structure with direct traceability to identified mission needs for each Division.

Each technology need has specific maturity milestones (TRL-6).

Some technology needs have alternative pathway decision points.

Roadmaps explicitly includes 2020 & 2030 Decadal Reviews

Explorer missions do not have explicit technology needs.

Astrophysics Technology Development Roadmap

Top Technical Challenges

Top Challenges list was condensed from SMD assessments.

For near- & mid-term investments, goal is to advance state of art for each Challenge by 2 to 10X.

Long-term goal is to develop revolutionary capabilities

- Investment must be balanced between short- and long-term to account for differences in maturity rates.
- Top Technical Categories are not in any priority order; rather the list is organized by general need within selected timeframes.
- Actual funding decisions will be determined by open competition and peer review. Competition is the fastest, most economical way to advance the state of the art.

Top Technical Challenges

¥
Present to 2016
In-situ Sensors for Mars Sample Returns and In-Situ Analysis Miniaturization, Sample gathering, caching, handling, and analysis In situ drilling and instrumentation
Low-Cost, Large-Aperture Precision Mirrors UV and Optical Lightweight mirrors, 5 to 10 nm rms, <\$2M/m2, <30kg/m2 X-ray: <5 arc second resolution, < \$0.1M/m2 (surface normal space), <3 kg/m2
High Efficiency Lasers Higher Power, High Efficiency, Higher Rep Rate, Longer Life, Multiple Wavelengths
Advanced Microwave Components and Systems Active and Passive Systems; Improved frequency bands, polarization, scanning range, bandwidth, phase stability, power
High Efficiency Coolers Low Vibration, Low Cost, Low Mass; Continuous Sub-Kelvin cooling (100% duty cycle), 70K cryostat
In-situ Particle, Field and Wave Sensors Miniaturization, Improved performance capabilities; Gravity Wave Sensor: 5μcy/√Hz, 1-100mHz
Large Focal Plane Arrays All Wavelengths (FUV, UV, Visible, NIR, IR, Far-IR), Higher QE, Lower Noise; Sensors and Packaging (4Kx4K and beyond)
Radiation hardened Instrument Components Electronics, detectors, miniaturized instruments.
2017 to 2022 (Requires Funding Now)
High Contrast Exoplanet Technologies High Contrast Nulling and Coronagraphic Algorithms and Components (1x10^-10, broadband); Occulters (30 to 100 meters, < 0.1 mm rms)
Ultra Stable Large Aperture UV/O Telescopes > 50 m2 aperture, < 10 nm rms surface, < 1 mas pointing, < 15 nm rms stability, < \$2M/m2
Atomic Interferometers Order of magnitude improvement in gravity sensing sensitivity and bandwidths Science and Navigation applications
2023 and Beyond
Advanced spatial interferometric imaging including Wide field interferometric imaging Advanced nulling
Many Spacecraft in Formations Alignment, Positioning, Pointing, Number of Spacecraft, Separation

Interdependencies with other Technology Areas

Each TA identifies whether

Its Technology is Required by another TA It Needs Technology from another Area Technology flows both ways between Tas SIOSS Technology flows both ways with all other TAs

Interdependencies with other Technology Areas

SIOSS technologies have interdependencies with all areas

long-lived high-power lasers and single photon detectors for optical communication;large aperture solar concentrators for space power & solar thermal propulsions;machine vision systems to aid human & autonomous operations ranging from the assembly of flight hardware to AR&D to 3D terrain descent imaging;

sub-20K cryo-coolers for infrared to far-infrared optical systems and detectors.

	Table 3-1 Interdependencies between SIOSS Technology and other Technology Areas					
Technology Area	Other TA Technology required by SIOSS	SIOSS Technology required by Other TA				
TA1: Launch Propulsion	Affordable access to space, Heavy lift vehicle (PUSH)	Integrated Health Monitoring (IHM) Sensors, Wireless				
		communication source/receiver				
TA2: In-Space Propulsion	Electric/ion propulsion, Micro-Newton thrusters, Solar sails, solar electric	IHM Sensors, Solar Power, High Power Lasers, Tracking &				
		Pointing				
TA3: Space Power & Storage	Radioisotopes, L2 Power Grid (PUSH)	Photovoltaic Power, Laser Power Beaming,				
TA4: Robotics	Rovers, sample acquisition & containment, Aerobots, AR&D Robotic	Machine Vision; State Sensors, proximity, tactile; avoidance;				
	servicing (PUSH), Robotic assembly (PUSH)	telepresence; active ranging				
TA5: Com & Nav	Terabit communication; Space Position System; Precision Formation	Optical Communication; Precision Positioning & Laser Ranging;				
	Flying (PUSH)	AR&D sensors; Star Trackers; XNAV; Quantum Communication				
TA6: Human HAB	Human in-space assembly and service; Human Surface Science (PUSH)	Crew-Protection Sensors; Crew Health Sensors; Space Weather				
		Sensors				
TA7: Human Exploration	Heavy lift vehicle (PUSH); Human in-space assembly and servicing	Telescopes to survey NEO population; Instruments for missions to				
	(PUSH)	NEOs & other destinations (Moon, Mars, etc.); IHM sensors for				
		spacesuits; High-strength lightweight windows; solar concentrators				
TA9: Entry, Descent &	Planetary Descent Systems, Landers, Robots, Airships; Thermal Protection	Terrain tracking and hazard avoidance sensors; IHM Sensors;				
Landing		Planetary atmospheric characterization sensors				
TA10: Nano-Technology	Sensors for chemical/bio assessment; High-strength, lightweight, CTE	Nanodevices are produced using optical lithographic methods				
	materials; low-power radiation/fault tolerant electronics; nano-lasers;					
	miniaturized instruments; micro-fluidic labs on chip; single-photon					
	counting sensors; nano-thrusters for formation flying					
TA11: Modeling	Validated integrated performance modeling & model-based systems	Validation Data Sensors				
	engineering					
TA12: Materials &	Low-density, high stiffness, low-CTE materials for large, deployable or	IHM systems; NDE systems; dimensional and positional				
Structures	assembly, active or passive, ultra-stiff/stable, precision structures (PUSH)	characterization; Habitat Windows				
TA13: Ground/Launch Sys	Ability to integrate very large science missions	IHM systems; corrosion detection; anomalous conditions				
		monitoring; NDE systems; Communication				
TA14: Thermal Management	Sub-20K Cryo-Coolers, Low-Power Cryocoolers	Optical emissivity coatings				

Benefits to Other National Needs

SIOSS Technologies have potential benefit for a wide range of national needs, organizations and agencies:

- National Atmospheric and Oceanic Administration (NOAA)
- Department of Defense (DoD)
- Commercial Space Imaging Companies
- Department of Homeland Security (DHS)
- Department of Energy
- Department of Health and Human Services
- Food and Drug Administration
- Environmental Protection Agency

Benefits to Other National Needs

Detectors/Focal Planes

Light-weight, small-size, low-power surveillance and night vision cameras Imaging Spectroscopy (aka Hyperspectral) Systems

Remote precision thermometry for surface-activity and energy-use sensing Remote detection, identification, and quantification of gases

Micro/Radio transmit/receive (T/R) technologies

Dept. of Homeland Security detection systems, extending to THz systems Lasers

Remote sensing of surface properties

High-bandwidth communications

Cryocoolers

Terrestrial precision metrology, quantum instruments

Mirrors/optics

Segmented Mirrors; Space Reconnaissance

Structures and Antennas

Synthetic and distributed aperture antennas

Particle, Fields, and Waves

Radiation detectors

In-Situ (unattended monitoring)

Toxic-substance monitors; Lab-on-a-chip applications

Public Input

The National Research Council received 63 SIOSS inputs.

67% (42/63)	8.1 Remote Sensing Instruments/Sensors
14% (9/63)	8.2 Observatories
19% (12/63)	8.3 In-Situ Instruments/Sensors

Most were corrections, clarifications & amplifications of content already in the report.

Others pointed out technologies which the assessment team had missed – such as needs for Gamma Ray science.

Many were made 'collective' or 'consensus' inputs on behalf of individual science communities.

Public Input

8.1 Remote Sensing Instruments/Sensors

14 inputs regarding Detectors and Focal Planes

14 inputs regarding Electronics

9 inputs regarding Optical Components

3 input regarding Radio/Microwave;

1 input each regarding Lasers and Cryogenic/Thermal.

8.2 Observatories:

4 inputs regarding mirrors, antenna, coating

4 inputs regarding structures

1 input regarding formation flying

8.3 In-Situ Instruments/Sensors

5 inputs regarding gravity wave detection

4 inputs regarding atomic clocks

1 input each for neutral ion detection, quantum communication, mineral testing

Astrophysics Budget Planning

The Decadal Survey recommended technology funding for:

- Future missions at a level of ~10% of NASA's anticipated budget for each mission to reduce risk and cost;
- 2) New Worlds, Inflation Probe and Future UV-Optical Space Capability Definition Technology Programs to prepare for missions beyond 2020; and
- 3) "General" technology to define, mature, and select approaches for future competed missions, and "Blue sky" technology to provide transformational improvements in capability and enable undreamed of missions.

Astrophysics Budget Planning

Recommended Program and Technology Development

<u>Program</u>	<u>10-yr Total</u>	<u>2012</u>	<u>2021</u>
IXO	\$200M	\$4M/yr	\$30M/yr
Inflation Probe	\$ 60 to \$200M	\$4M/yr	\$30M/yr
New Worlds	\$100 to \$200M	\$4M/yr	\$30M/yr
UV-Optical	\$ 40M	\$2M/yr	\$10M/yr

Recommended Augmentations to current \$40M/yr Investment

Advanced Tech	\$5M/yr
APRA	\$20M (25% increase)
Intermediate Tech	\$100M (\$2M/yr now to \$15M/yr by 2021)

10-yr Total is \$1 to \$1.2B for TA8 SIOSS

This Total should be split primarily between TABS 8.1 Science Instruments and TABS 8.2 Observatory.

Astrophysics has limited TABLS 8.3 Sensor Systems needs.

Astrophysics Budget Planning

Decadal recommended a 10-yr Budget of \$1B to \$1.2B

Assuming that all Decadal Recommendations are for External Funding, it is necessary to also define a NASA internal budget.

Assume NASA Internal Funding = 50% of External Funding Allocated 75% of NASA Funding to Labor Allocated 25% of NASA Funding to ODC Thus \$60M/yr = approx 200 FTEs/yr and \$15M/yr ODC

This gives a Total TA8 SIOSS 10-ry Budget of \$1.5B to \$1.8B just to support the needs of Astrophysics, for example:

8.1	Science Instruments	\$ 800 M
8.2	Observatory	\$ 600 M
8.3	Sensor Systems	\$ 200 M

Decadal Analysis

Similar analysis is required for the other Science Mission Directorate Decadal Reports:

Earth Science

Heliophysics

Planetary

Conclusion

Technology advancement is required to enable NASA's high priority missions of the future.

- To prepare for those missions requires a roadmap of how to get from the current state of the art to where technology needs to be in 5, 10, 15 and 20 years.
- SIOSS identifies where substantial enhancements in mission capabilities are needed and provides strategic guidance for the agency's budget formulation and prioritization process.
- The initial report was presented to the NRC in Oct 2010 (<u>http://www.nasa.gov/offices/oct/home/roadmaps/index.html</u>). And, the NRC review report is expected in late summer 2011.

BACKUP

Earth Science Technology Needs

Earth Science requires 4 areas:

- Advance antennas, receivers, transmitters, signal- and data-processing electronics, and cryo coolers.
- Improve low-areal density telescopes in the 1m range, filters and coatings; advance low noise/highly efficient detectors, and focal planes with readout integrated circuits (ROIC); complementary detector arrays, electronics, cryo coolers and data processing systems and passive hyperspectral/multispectral/imagers, (UV-Vis-IR-FIR) and spectrometers (0.3 to 50 µm)
- Advance lasers in 0.3-2.0 µm range (high power, multi-beam/multi-wavelength, pulsed, and continuous wave), detectors, receivers, larger collecting optics, and scanning mechanisms (including pointing and scanning at high angular resolution); improved quantum efficiency detectors, long-life, high-power laser diode arrays; high damage threshold optics
- Large telescope and RF antenna enable future climate and weather applications.

	Tabl	e 2.2.1.2-1: Summary of Ea	rth Science Technolo	gy Needs		
Mission	Technology	Metric	State of Art	Need	Start	TRL6
ASCENDS	Multi-freq laser	Output energy	25 µJ/25 µJ/30mJ	>3/3/65 mJ	2012	2014
	0.765/1.572/2.05	Rep rate	10kHz/50 Hz	10kHz/10kHz/50 Hz		
	µm Pulsed	Efficiency	<2/4%	3.5/7/10%		
	1.6 µm CW laser	Power/module/efficiency	5W/7/8%	35W/1/10%	2012	2014
	1.26 µm CW laser	Power/module/efficiency	4W/1/3%	20W/1/8%	2012	2014
	1.57 µm detector	QE/gain/bandwidth		10%/300/10 MHz	2012	2015
	2 µm APD detector	QE/Bandwidth	> 55%/10 MHz	>55%/>500 MHz	2012	2014
anion		NEP	10 · · W/Hz · ·	10 ⁺⁺ W/Hz ^{//z}		
SWOT	Ka-band power	Power capacity	~ 500 W peak	2.5 kW peak, 110-	2012	2015
	switch matrix	NI - 1 11 - 1 - 1 - 1	50 I (0 ID	165 w avg.; Stable	2012	2015
	Ka-band receiver	Phase stability, isolation	\sim 50 mdeg, 68 dB,	~40 mdeg over 3min,	2012	2015
	D. 1. 11.	Bandwidth	80 MHz	>80 dB, >200MHz	2012	2015
	Deployable-antenna	Boom length	6.5 m	10-14 m	2012	2015
	structure	Pointing stability	~0.05 arsec roll	0.005 arcsec roll/3min		
HyspIRI	TIR spectrometer	Frame rate	~ 1 Mpixels/sec	256 Mpixels/sec at	2012	2016
CEO	(8cn, 3-12 µm)			140its; 32 kHz	2012	2010
GEO-	UV-VIS-NIR	Size, pixel pitch, frame		$1024 \times 2048, <13 \mu m,$	2013	2019
CAPE	spectrometer ROIC	rate, quantization, QE	200 JULOO JA (00)	4MHZ,16Dit, >60%uv	2012	2010
ACE	Damage-resistant	Energy, repetition rate	250mJ/100 Hz/5%	300 mJ, 100Hz,	2012	2019
	UV laser at 355 nm	efficiency, lifetime		10%, 3-5 YFS	2012	2010
	CCD Array (355/	QE, sampling rate		> /0%/90%, > 5MHZ	2012	2019
	532 nm)	With an end of the second of the	100.1	> 10) (- ! /	2012	2010
	Multi-angle	High-processing speed @	~100 kpix/sec	>10 Mpix/sec	2012	2019
	polarimeter ROIC	low noise		<40 electrons	2012	2010
	W-band radar	Reflector diameter	1.5 mm rms @ 5 M	Main 5-6 m; sub4-5m	2013	2019
	W/K a hand dual	# Elements		V hands 2500	2012	2010
	w/Ka-band dual-	# Elements		W-band: 2500	2013	2019
LICT	Dhoton counting dat	OF	200/ in a 4 x 4 am	Ka-band: 900	2011	2019
LIST	Photon-counting det	QE Wallplug afficiency	20% in a 4 x 4 arr	30% in a 1 x 1000 arr	2011	2018
	Laser animeter	Multi-beam array	~10% 0@222µI/beam	2076 1000 @ 100u I/beam	2012	2018
	(1µm)	DD E	9@222µ3/0eam	10 kHz		
PATH	Correlator	Power level	224uW@375MHz	250 µW @ 1 GHz	2014	2020
	Low-mass low-	Noise level power	500 K	400 K < 50 mW	2014	2020
	noise receiver	mass frequencies	500 R	<150g 60 - 183 GHz	2014	2020
GRACE-2	Accelerometer	Acceleration accuracy	1e-11 m/s/s	$< 1e_{-12} \text{ m/s/s} \ 1-100 \text{ s}$	2018	2021
SCLP	Dual-polarized	Frequency bands	10 11 11/5/5	9.6 to 17.2 GHz	2010	2022
JULI	multi-frequency	Polarization		H and V for all freq	2017	1 2022
	feed array	Scanning range		>10-20 degrees		
GACM	Stable sub- mm	Size surface accuracy	1.8 m 10 µm rms	4 m 10 µm rms	2015	2023
onem	scanning antenna	Areal density	10 kg/m^2	$<10 \text{ kg/m}^2$	2015	2025
	Radiation-tolerant.	Bandwidth	0.75 GHz	8 GHz	2018	2023
	digital spectrometer	Efficiency	6 W/GHz	<1.5 W/GHz	2010	2020
	angina spectrometer	Channels	4000	8000		
nush	UV laser at 305-	Efficiency Output Energy	100mi	50mi	2012	2023
push	308nm / 320-325nm	Emelency, Supur Energy	roomj	Joinj	2012	2025
3-D Winds	Multi-freq laser	Output energy/rep rate/	250/5Hz/2% at	250/500 mJ/5/200Hz	2014	2024
2 25 11 11 11 11 10	- 2/1 um pulsed	WPE/laser lifetime	2um	5%/12%, 500M/15B	2011	1 1
				shots		
	- 2 um CW seed	Power	60 mW	100 mW	2014	2024
	laser					
	Damage-resistant	Output energy: pulse rep		320-32mJ/nulse: 120-	2014	2024
	355 nm pulsed laser	rate: WPE: life		1500 Hz; >5%; 3 vrs	2014	2024
	Lightweight mirrors	Diameter: areal density		$> 0.7 \text{ m}; < 6 \text{ kg/m}^2$	2018	2024
	i manuficient millors	i construction, areas actionly	1	- 0.7 m, ~0 Kg/m 2	- 2010	202 T

Heliophysics Technology Needs

Heliophysics requires 5 areas:

- UV and EUV detectors (sensitivity, solar blindness, array size, and pixel counts)
- Reduce noise and insensitivity of electronics and detectors to heat and radiation
- Improve UV and EUV optical components (coating reflectivity and polarization uniformity, grating efficiency, and surface figure quality)
- Improve cryo-coolers for IR detectors
- Improve in-situ particle sensoraperture size and composition identification.

	Table	2.2.1.3-1: Summary of F	leliophysics Tech	nology Needs		
Mission	Technology	Metric	State of Art	Need	Start	TRL6
DGC INCA CISR	Pointing system	Accuracy and knowledge	0.1 deg/.05 deg	0.02 deg/0.02 deg	2013	2018
DGC	Wide angle optical	Wide FOV	20 deg	30 deg,	2011	2014
ONEP	reflective systems	Aperture	3 cm	6 to 50 cm		
	Isolate 83.4 nm from	Spectral rejection of	1:30	1:3000		
	121.6 nm	121.6 and acceptance of 83.4 nm				
DGC	Spectral filters	Resolution	5 nm FWHM	2 nm FWHM	2011	2014
ONEP		Reflectivity in 60-200	80%	>90%		
INCA	Solar blind sensors	nm; Rejection	10e-6	10e-8		
CISR	FUV sensors	QE 60-200 nm	20%	>50%		
Push	Miniaturization	Mass and power	15 kg/10 W	3 kg/5 W	2013	2016
SEPAT	Fast, low-noise,	Pixel array, pixel rate,	1kx1k, 10	2kx2k, 60 MHz,	2013	2016
HMag	Rad-hard O/UV	Read noise, rad	MHz, 100 e-,	20 e-, 200 krad		
DGC	detector	tolerance	50 krad			
GRIPS	70 K cryostat	Number of channels	~30,	~5000,	2011	2014
	with many channels	Thermal leakage	~10 mW/ch	<1 mW/ch.		
GRIPS	~20-m boom	Boom control, tip mass		~0.5 deg, 50 kg	2012	2014
Push	Fast electronics	Timing	10 ns	~3 ns	2012	2014
		Dead time per event	300 ns	~30 ns		
ONEP	2 spacecraft	Alignment	None	1 arcsec	2011	2015
Push	Formation flying	Aspect		0.1 arcsec		
		Separation control		100±0.1 m		
Push	X-ray focusing lens	Energy range	~6 keV	1 – 20 keV	2011	2014
		Angular resolution	1 arcsec	<0.1 arcsec		
FOXSI	Hard X-ray focusing	Energy range	5 - 30 keV	5 - 100 keV	2011	2014
D1.	mirrors V	F WHM Resolution	<10 arcsec	5 arcsec	2011	2014
Push	A-ray polarization	Energy range	<10 KeV	Up to 50 kev	2011	2014
Decel	V mar madulation	Finant nitch	10%	1%	2011	2014
Push	A-ray modulation	No. of pitches per grid	54 μm 16	10 μm 100	2011	2014
Push	X-ray TES	Resolution count	4 eV 300 c/s	2 eV 1 000 c/s	2011	2015
i usn	microcalorimeters	rate/pixel	32 x 32	1000×1000	2011	2015
	meroculormeters	Number of pixels.	150 x 150 um	75 x 75 µm		
		Pixel packing				
Push	Solid-state X-ray	Counting rate	1000 c/s	10.000 c/s	2011	2014
	detectors	Pixel size	500 µm	100 µm		
Solar	Deployable photon	Diameter	30 cm, 1 %,	2 m, > 5 %	2012	2014
CubeSat	sieve	Transmission	0.5 arcsec	0.1 arcsec		
		Optical resolution				
ONEP	\geq 20 m Boom	Stiffness		10^7 N m^2	2012	2015
Push	UV image slicer	Number of slices	5	20	2012	2014
		Wavelength range	> 300 nm	Down to 90 nm		
ONEP	E-field boom	Length, mass	10 m, 7 kg	20 m, 4 km	2012	2014
ONEP	Electrostatically	Power loss due to	20-25% loss;	5%, \$500K		
Various	clean solar array	cover and coating	cost is \$Ms		2011	2013
SEPAT	Fast (0.01 s) imaging	0.01 s Static 4Pi sr	0.5 s - Top Hat	0.01s/velocity distribut		
	electron	FOV/.01-2 keV with	Energy-angle	SEAAs: 4Pi sr/ energy	2011	2013
	spectrometer	static energy angle	analyzer (not	0.01-2 keV//% energy		
INCA	WINCE, Wind I	analysis (SEAA)	static)	resolution	2012	2017
INCA	drift (temperatures)	WINCE @ 400 less	cross-track	/ / / / / / / / / / / / / / / / / / /	2013	2017
	Neutral/ior	altitude - 1W total	wind only @20	/ IonDrift/Temn/Comn		
	Composition	nower	W for all	@400 km altitude -		
	Composition	Poner	measurements	1W total power with		
				onboard data analysis		

Planetary Science Technology Needs

Planetary Science needs:

- Active spectroscopy and lasers
- Chemical and mineralogy assessment for Inner Planets missions
- Sample caching, handling and screening for Mars sample return
- Radiation-hardened electronics technology for Outer Planets missions
- Mass spectroscopy and organic detection technologies for missions to Saturn/Titan
- Sample gathering, handling and analysis for future Small Bodies mission.

Table 2.2.1.4-1: Summary of Planetary Science Technology Needs							
Mission	Technology	Metric	State of Art	Need	Start	TRL6	
Discovery 13/14,	Large arrays: Vis & IR	Pixel count	1 k x 1k format	>2k x 2k format	2011	2015	
New Frontiers 4,	Spectral-tunable IR	Narrow-band/ range	1 μm/ few μm	0.1 μm / 1-15 μm	2015	2018	
EJSM	Spectral-tune Sub- mm	Tunability @ x GHz	60 @600 GHz	>150 GHz @1200	2015	2018	
	γ-ray, neutron	Energy resolution,	1%, 10 deg	0.1%, 1 deg	2015	2018	
	Polarization	s/p, switching speed	50%, ~1 Hz	>90%, >50 Hz	2013	2018	
	Photon Counting	Λ, array size	Some λ 's:	UV/vis InGaAs	2010	2018	
	Rad hard Detector	TID, no SEU/SEL	Heavy shielding	<100 mils shield	2010	2020	
D'- 12/14	D 111 151 (TID (1	01111	2.16-1	2010	2020	
D18 13/14, NF 4	Low Noise	Noise level (%)	0.1-1 Mrad	3 Mrad <0.01%	2010	2020	
EJSM	Electronics	Troise level (70)	~170	-0.0170	2011	2020	
	Extreme Environment Electronics	Operating temperature	-55C to 125C	-180C to125C	2011	2020	
D:- 12/14	LIVIA Colomba Ellana	The second second	T. 000/-	T> 070/	2012	2020	
NF 4,	& Optical Coatings	Uniform Polarize;	1~90%; U~80%;	1>97%; U>90%;	2012	2020	
Mars 2018,	Mail Constant and a	Band-pass	I nm	< 1nm	2010	2020	
Dic 12/14	Mini Spectrometer	Mass & Function	5-10 kg; Single	1-3 kg	2010	2020	
NF 4,	mods.	efficiency	10-30 W, 40%	10-30 w, 80%	2015	2020	
	Integrated radiometer receiver	Size, Frequency, Temp	100-ele; 100 GHz, Ambient Ops	Quantum-limited; 30-110 GHz; Cryo	2013	2020	
Dis 13/14, NF 4, Mars 2018, EJSM	Pulsed lasers: Altimeters, LIDAR	Profiling, lifetime, sampling rate, power	Single profiling, 6x10 ⁸ shots, 1-40 Hz 200-10 mJ/pulse	Multi-beams, >10 ⁹ shots, 40-100kHz 300-0.3mJ/pulse	2013	2020	
	Pulsed lasers: Raman, LIBS	Lifetime, Sampling rate, Power	6x10 ⁸ shots, 5 Hz 40 mJ/pulse	>10 ⁹ shots, >10 Hz, >200mJ/pulse	2013	2020	
	CW lasers	Peak power at <250nm	10 mW	>100 mW	2013	2020	
	CW tunable NIR/IR	Room temp. operation	Some λ regions	1-15 μm	2013	2020	
	Diode lasers	Power at 1.083 µm	1 mW	>10 mW	2013	2020	
Dis 13/14, NF 4,	Particle Detectors	Energy thresholds	~10 keV, small array	~1 keV, large array	2013	2020	
Mars 2018, EJSM	Magnetometers	Sensitive, boom dist	~10 pT; 3-10 meter	~1 pT; <1 m	2013	2020	
	EM Field Sensors	ADC; Coverage	8-bit; limited	18-bit; entire band	2013	2020	
Dis 13/14, NF 4,	Gas composition	Detection; Precision	1ppmv- 1ppbv;10/mil	0.01ppbv; 0.1/mil	2011	2020	
Mars 2018 MSR	Elemental composition	Separation	0.5 wt%	0.1 wt%	2011	2020	
	Mineral: APXS, IR, γ-, Raman, XRD, neutron	Detection limits	Few wt%	<1 wt%	2011	2020	
	Age dating	±Myr error/Byr	±20Myr in lab	±200Myr on surface	2011	2020	
	Biological	Sensitivity	Ppb	ppt	2011	2020	
	Sample handing	% cross contam	3-5%	<0.1%	2011	2020	
1	Instrument extreme	Temperature	-100 to 200 C	-100 to 200 C	2011	2020	

Technology Area 8.1 Science Instruments

Major challenges include:

- Detectors/Focal Planes: Improve sensitivity and operating temp of single-element and large-array devices.
- Electronics: Radiation-hardened with reduced volume, mass and power.
- Optics: High-throughput with large fields of view, high stability, spectral resolution, and uniformity at many different temperatures.
- Microwave/Radio Transmitters and Receivers: Low-noise amplifier technologies, with reliable low-power high-speed digital- and mixed-signal processing electronics and algorithms.
- Lasers: Reliable, highly stable, efficient, radiation hardened, and long lifetime (>5 years)
- Cryogenic/Thermal Systems: Low power, lightweight, and low vibration

Technology	State of Art	Need	Start	TRL6	SMD Division
8.1.1.1 Large Format Array	ys				
NIR & TIR Detectors	Pixel array: 2k x 2k	4k x 4k	2011	2014	Astro Earth
	Pixel size: 18 µm	10 µm			
TIR Spectrometer	Frame rate	256 Mpix/sec at 32 kHz	2012	2016	Earth
detectors					
(8ch, 3-12 µm)					
UV & IR CCD arrays	Pixel array: 4k x 4k	10k x 10k	2011	2014	Earth Astro
UV-VIS spectrometer	Well Depth: Pixel	1M electrons 4k x	2010	2013	Earth
Hybrid arrays	array: 1k x 1k	4k			Helio
UV-VIS-NIR	Pixel array: 256 x 256	1024 x 2048,	2013	2019	Earth
spectrometer ROIC	Quantization level: 50% QE	> 90% VIS-NIR			
Backscatter lidar	Quantum efficiency:	>70% at 355 nm; >90%	2012	2019	Earth
CCD array		at 532 nm			

Examples from Table 2.2.2.1-1

Technology Metric	State of Art	Need	Start	TRL6	Mission	
8.1.2.1 Radiation Hardened			•			
Radiation-hardened electronics	TID tolerance 0.1-1 Mrad	3 Mrad	2010	2020	Planet	
8.1.2.2 Low Noise	•					
ROIC	Well: <100K e Format: 4k x 4k Speed: Low	>2 Me 8k X 8k >60 FPS	2013	2019	Earth Astro	
Low-noise electronics	Noise level: <1% Temperature -55C to 125C	<0.01% -180 C to125 C	2011	2020	Planet, Astro, Earth, Helio	
HV power supply	Voltage out Eff=~15%@20 kV, TID tolerance 0.1 Mrad	20 kV >20% 0.7 Mrad	2013	2019	Earth Helio	
8.1.2.3 High Speed	8.1.2.3 High Speed					
Fast electronics	Timing 10 ns Dead T/event 300 ns	~3 ns ~30 ns	2012	2014	Helio	
High-speed: altimetry	Freq: 200 Mz	2-8 GHz	2012	2020	Planet	

Push Technologies: 8.1 Science Instruments

Push Technology	Description
8.1 Remote-Sensing Instrume	ents/Sensors
Quantum Optical Interferometry	Produce and measure quantum entangled-photons with lasers with the potential to improve the sensitivity of optical interferometers by multiple orders of magnitude.
Imaging Lidar	Imaging Lidar technologies involving fiber lasers and 2D detector arrays will enable "range imaging" of Earth and planetary surfaces.
Atmospheric Trace-Gas Lidar	Atmospheric trace-gas Lidar technologies for biogenic trace gas measurement and localization (Earth and Planets)
Long Range Laser Induced Mass Analysis	Long range laser induced mass analysis (LIMA) methods for atmosphere-less bodies (NEO's, Moon, Mercury, outer planets)
Hyper-resolution Visible- NIR	Hyper-resolution Visible-NIR imaging using TDI detectors and lightweighted optics in the 1-1.5m class (5 cm/pixel class)
K-Band Radar	Compact K-band imaging and sounding radars (nadir and sidelooking) for planetary sciences (small antennae, lower power)
IR Spectrometers	Advanced, multi-detector Fabry Perot IR spectrometers for trace-gas detection
Optical Communications	Mass efficient optical telecommunications systems capable of 100 Mbps to 1 Gbps from Mars or Venus orbit (to Earth) or up to 100 Mbps from Jupiter or Saturn would increase bandwidth by a factor of 10-100 and improve scientific ranging to spacecraft by a factor of 10-50 over RF methods.
Lidar Fiber Transmitters	Advanced fiber-based laser transmitters with 0.01 to 20 mJ pulse energy in the Green to NIR for lidars
3-D Imaging Flash Lidar	3-D Imaging Flash Lidar for Safe landing on planetary bodies by enabling Hazard Detection and Avoidance. 3-D Imaging Flash Lidar has also been identified as the primary sensor for Automatic Rendezvous and Docking.
Radar 3-D Imaging	Shallow, radar 3D imaging via a sounding-imaging-SAR would allow the lunar regolith to be mapped in 3D at spatial scales of 10-20m and vertically to 3-5m; the same could be done for Europa or NEO's
Hyper-Resolution SAR	Hyper-resolution SAR enabled by wideband electronically steered array based technologies and advanced T/R switches and microwave power modules could enable sub-meter RADAR imaging of cloud-enshrouded planets such as Titan and Venus at scales of 50 cm to 1 m and have the equivalent impact as the optical high resolution imaging at Mars and the Moon (HiRISE and LROC)
Extended-Life IR Sensors	The first essential ingredient for success for a human mission to a NEO is to complete the NEO survey to identify the most interesting human-accessible targets. A space- based IR survey telescope in a heliocentric orbit ~0.65 to 0.72 Astronomical Units (AU) from the Sun will enable mapping of the remaining NEOs not visible from Earth-based observatories and identification of the orbital dynamic characteristics.
Soil Moisture using L-band GPS	Use the earth-surface "bounced" L-band GPS signal to measure changes in soil moisture with time to improve crop yields and climate models that utilize soil moisture.
Ocean wind speed measurement	Deploy small GPS bistatic receivers on commercial cargo aircraft to utilize ocean- reflected ("bounced") GPS signals for ocean wind speed measurement. Since GPS is available globally, high-resolution wind speed measurements can be taken over large portions of the ocean to study detailed weather patterns and storm development.

8.1 Remote Sensing Instruments/Sensors

Technology Area 8.2 Observatory

Major challenges include:

X-ray Grazing Incidence Mirror Systems UV-Vis-IR Normal Incidence Mirror Systems Large Ultra-stable Structures Large Deployable/Assembled Structures Control of Large Structures Distributed Aperture / Formation flying

Technologies support 3 applications: X-ray astronomy, UVOIR astronomy, and Radio / microwave antenna.

Most important metric for all observatories is cost per square meter of aperture.

Table 2.2.2.1: Observatory Technology Challenges									
	Technology Metric	State of Art	Need	Start	TRL6	Mission			
	8.2.1.1 Grazing Incidence								
	1 to 100 keV FWHM resolution	10 arcsec	<5 arcsec	2011	2014	FOXSI-3			
	Aperture diameter	0.3 m2	>3 m2	2011	2020	IXO			
	FWHM resolution	15 arcsec	<5 arcsec						
	Areal density: Areal cost	10 kg/m2							
	Aperture diameter	0.3 m2	>50 m2	2011	2030	Push			
	FWHM angular resolution	15 arcsec	<1 arcsec			GenX			
	Areal density (depends on LV)	10 kg/m2	1 kg/m2 (depend LV)						
	Active Control	No	Yes						
	8.2.1.2 Normal Incidence				-				
s	Size & polarization	Planck	1.6 m	2011	2020	ITP			
em	Areal density	~20 kg/m2	<6 kg/m2	2018	2024	3DWinds			
yst	Aperture diameter	2.4 m	3 to 8 m	2011	2020	NWTP			
r S	Figure	< 10 nm rms	<10 nm rms			UVOTP			
ш	Stability (dynamic & thermal)		>9,000 min						
Mi	Reflectivity	>60%, 120-900nm	>60%, 90-900 nm						
ge	Areal density (depends on LV)	240 kg/m2	20 (or 400) kg/m2						
Lar	Areal cost	\$12M/m2	<\$2M/m2						
-	Aperture diameter	6.5 m	15 to 30 m		2030	Push			
3.2.	Areal density (depends on LV)	50 kg/m2	5 (or 100) kg/m2			EL-ST			
~	Areal cost	\$6M/m2	< \$0.5M/m2						
	8.2.2.1 Passive Ultra-Stable Structures								
	Thermal stability	Chandra	WFOV PSF Stability	2011	2014	WFIRST			
	Aperture diameter	6.5 m	8 m	2011	2020	NW/UVO			
	I nermal/dynamic stability	60 nm rms	15 nm rms						
	Areal density (denends on LV)	1.0 mas	1 mas (20 (or 400) kg/m2						
	Areal cost	40 kg/m2 \$4 M/m2	<20 (01 400) kg/m2						
	8 2 2 2 Doployable/Assembled T	54 IVI/IIIZ	<\$2 IVI/III2						
-	Antenna aporturo	5 m	6 m	2012	2010	ACE			
	Antenna aperture	5 111	> 10 m	2015	2019	SCLP			
	Surface figure	1.5 mm rms	<0.1 mm rms	2010	2025	SCLI			
	Boom length	1.5 1111 1115	> 20 m	2011	2014	GRIPS			
	Stiffness		10^7 N m^2	2011	2014	ONEP			
	Pointing stability		0.005 arcsec roll/3 min			SWOT			
	Occulter diameter	Few cm	30 to 100 m	2011	2020	NWTP			
nna	Aperture diameter	65m	8 m	2011	2020	NW/UVO			
Iter	Aperture diameter	6.5 m	15 to 30 m	2011	2030	FL-ST			
AI	8 2 2 3 Active Control	010 111	10 10 00 11		2000	22.01			
s &	Occulter pedal control		< 0.5 deg	2011	2020	NWTP			
ine	Occulter modal control		< 0.1 mm rms	2012	2014	GRIPS			
rctu	Boom tip control		~0.5 deg						
Str	Aperture diameter	6.5 m	8 m	2011	2020	NW/UVO			
e,	Aperture diameter	6.5 m	15 to 30 m		2030	Push			
arg	Thermal/dynamic stability	60 nm rms	15 nm rms			EL-ST			
2 1	Line-of-Sight jitter WFE	1.6 mas	1 mas						
5.7	Areal density (depends on LV)	40 kg/m2	<20 (or 400) kg/m2						
8	Areal cost	\$4 M/m2	<\$2 M/m2						
	8.2.3.1 Formation Flying								
-	Range		10,000 to 80,000 km	2013	2016	LISA			
to a	Separation control	2 m	100 to 400 ±0.1 m	2011	2015	ONEP			
i he	Lateral alignment		±0.7 m wrt LOS			Occulter			
2.3	Relative position	5 cm rms	< 1 cm rms		2024	NWTP			
∞ A	Relative pointing	67 arcmin rms	$< 1 \pm 0.1$ arcsec		2030	Push			

Tal	Table 2.2.2-1: Observatory Technology Challenges						
	Technology Metric	State of Art	Need	Start	TRL6	Mission	
	8.2.1.1 Grazing Incidence					•	
	1 to 100 keV FWHM resolution	10 arcsec	<5 arcsec	2011	2014	FOXSI-3	
	Aperture diameter	0.3 m2	>3 m2	2011	2020	IXO	
	FWHM resolution	15 arcsec	<5 arcsec				
	Areal density: Areal cost	10 kg/m2					
	Aperture diameter	0.3 m ²	>50 m2	2011	2030	Push	
	FWHM angular resolution	15 arcsec	<1 arcsec			GenX	
	Areal density (depends on LV)	10 kg/m2	1 kg/m2 (depend LV)				
	Active Control	No	Yes				
	8.2.1.2 Normal Incidence				1		
	Size & polarization	Planck	1.6 m	2011	2020	ITP	
sms	Areal density	~20 kg/m2	<6 kg/m2	2018	2024	3DWinds	
ste	Aperture diameter	2.4 m	3 to 8 m	2011	2020	NWTP	
S	Figure	< 10 nm rms	<10 nm rms			UVOTP	
ror	Stability (dynamic & thermal)		>9.000 min				
Mir	Reflectivity	>60%, 120-900nm	>60%, 90-900 nm				
e l	Areal density (depends on LV)	240 kg/m2	20 (or 400) kg/m2				
arg	Areal cost	\$12M/m2	<\$2M/m2				
	Aperture diameter	6.5 m	15 to 30 m		2030	Push	
2.1	Areal density (depends on LV)	50 kg/m2	5 (or 100) kg/m2			EL-ST	
×.	Areal cost	\$6M/m2	< \$0.5M/m2				
	8.2.2.1 Passive Ultra-Stable Struc	ctures		•			
	Thermal stability	Chandra	WFOV PSF Stability	2011	2014	WFIRST	
	Aperture diameter	6.5 m	8 m	2011	2020	NW/UVO	
	Thermal/dynamic stability	60 nm rms	15 nm rms				
	Line-of-sight jitter WFE	1.6 mas	1 mas				
	Areal density (depends on LV)	40 kg/m2	<20 (or 400) kg/m2				
	Areal cost	\$4 M/m2	<\$2 M/m2				
	8.2.2.2 Deployable/Assembled Te	elescope Support Stru	cture and Antenna				
	Antenna aperture	5 m	6 m	2013	2019	ACE	
	Antenna aperture		> 10 m	2016	2023	SCLP	
	Surface figure	1.5 mm rms	<0.1 mm rms				
	Boom length		≥ 20 m	2011	2014	GRIPS	
	Stiffness		10^7 N m^2			ONEP	
	Pointing stability		0.005 arcsec roll/3 min			SWOT	
es.	Occulter diameter	Few cm	30 to 100 m	2011	2020	NWTP	
uu	Aperture diameter	6.5 m	8 m	2011	2020	NW/UVO	
nte	Aperture diameter	6.5 m	15 to 30 m		2030	EL-ST	
Z A	8.2.2.3 Active Control						
s s	Occulter pedal control		< 0.5 deg	2011	2020	NWTP	
ure	Occulter modal control		< 0.1 mm rms	2012	2014	GRIPS	
uct	Boom tip control		~0.5 deg				
Str	Aperture diameter	6.5 m	8 m	2011	2020	NW/UVO	
ge	Aperture diameter	6.5 m	15 to 30 m		2030	Push	
ar	Thermal/dynamic stability	60 nm rms	15 nm rms			EL-ST	
2 I	Line-of-Sight jitter WFE	1.6 mas	1 mas				
5	Areal density (depends on LV)	40 kg/m2	<20 (or 400) kg/m2				
8	Areal cost	\$4 M/m2	<\$2 M/m2				
	8.2.3.1 Formation Flying						
	Range		10,000 to 80,000 km	2013	2016	LISA	
100	Separation control	2 m	100 to 400 ±0.1 m	2011	2015	ONEP	
	Lateral alignment		±0.7 m wrt LOS			Occulter	
2.3	Relative position	5 cm rms	< 1 cm rms		2024	NWTP	
∞ C	Relative pointing	6.7 arcmin rms	$< 1 \pm 0.1$ arcsec		2030	Push	

Observatory Budget Recommendations

\$400M over 10-yrs to Industry/Academia for X-Ray mirrors, large UV mirrors, large structures, and formation flying:

<u>Program</u>	10 year	2012	2021
IXO	\$150M	\$3M/yr	\$20M/yr
New World	\$100M	\$2M/yr	\$15M/yr
UVO	\$ 20M	\$1M/yr	\$5M/yr
General	\$100M	\$10M/yr	\$10M/yr
Earth/Helio	\$ 30M	\$1M/yr	\$5M/yr
TOTAL	\$400M	\$17M/yr	\$55M/yr

Plus another \$200M over 10-years for Internal NASA funding 75 FTE/yr & \$5M/yr ODC

1 4.01	Technology Metric	State of Art	Need	TRL	TRL6	Mission	10-	yr Extern	al	NASA	Internal
							Total	FY12	FY21	FTE/vr	ODC/yr
	8.2 Observatory Technology						\$400M	\$19M	\$48M	75/vr	\$5M/yr
	8 2 1 1 Grazing Incidence						\$170M	\$6M	\$22M	30	\$2M
	1 to 100 keV FWHM resolution	10 arcsec	<5 arcsec	5	2014	FOXSL3	5	2	φ221 VI	6	φ21 ν1 5
	Aperture diameter	0.3 m ²	>3 m2	5	2014	10/01-5	5	2		0	
	FWHM resolution	15 arcsec	<5 arcsec	3	2020	IXO	150	3	20	22	1.5
	Areal density; Areal cost	10 kg/m2				-		-	-		
	Aperture diameter	0.3 m2	>50 m2								
	FWHM angular resolution	15 arcsec	<1 arcsec	2	2030	Push	15	1	2	2	_
	Areal density (depends LV)	10 kg/m2	1 kg/m2 (depend LV)	2	2050	GenX	15	1	2	2	
	Active Control	No	Yes				\$003 f	\$23.6	\$03.6	17	\$13.6
	8.2.1.2 Normal Incidence	D1 1	1.6		2020	ITT	\$80M	\$3M	\$8M	15	\$1M
ms	Size & polarization	Planck 20.1 m/m2	1.6 m	5	2020	TTP 2DWinda	5	1	-	3	-
ster	Areal density	~20 kg/m2	<0 kg/m2	3	2024	5D winds					
Sy	Figure	< 10 nm rms	< 10 nm rms								
ror	Stability (dynamic & thermal)	< 10 mm mms	>9.000 min			NWTP					
Miı	Reflectivity	>60%, 120-900nm	>60%, 90-900 nm	4	2020	UVOTP	75	2	9	10	1
ge	Areal density (depends LV)	240 kg/m2	20 (or 400) kg/m2								
Lar	Areal cost	\$12M/m2	<\$2M/m2								
	Aperture diameter	6.5 m	15 to 30 m			Push					
8.2	Areal density (depends LV)	50 kg/m2	5 (or 100) kg/m2	2	2030	EL-ST	TBD	TBD	TBD	2	-
	Areal cost	\$6M/m2	< \$0.5M/m2				¢203.4	¢21.6	()	4	¢0.214
	8.2.2.1 Passive Ultra-Stable Struc	Chandra	WEOV DEE Stability	5	2014	WEDET	\$20M	\$3M	\$2M	4	\$0.3M
	Aporture diameter	Chandra 6.5 m	8 m	5	2014	WFIRST	5	2	-	2	-
	Thermal/dynamic stability	60 nm rms	15 nm rms								
	Line-of-sight jitter WFE	1.6 mas	1 mas	3	2020	NW/UVO	15	1	2	2	.3
	Areal density (depends LV)	40 kg/m2	<20 (or 400) kg/m2	-							
	Areal cost	\$4 M/m2	<\$2 M/m2								
	8.2.2.2 Deployable/Assembled Te	lescope Support Struct	ure and Antenna	•	-		\$50M	\$4M	\$6M	10	\$0.7M
	Antenna aperture	5 m	6 m	5	2019	ACE					
	Antenna aperture	1.5	> 10 m	3	2023	SCLP	5	1	-	1	-
	Surface figure	1.5 mm rms	<0.1 mm rms			CDIDC					
	Stiffness		$\geq 20 \text{ m}$ 10^7 N m^2	5	2014	ONEP	5	2		3	3
	Pointing stability		0.005 arcsec roll/3 min	5	2014	SWOT	5	2	-	5	.5
_	Occulter diameter	Few cm	30 to 100 m	2	2020	NWTP	20	1	3	3	.3
nna	Aperture diameter	6.5 m	8 m	4	2020	NW/UVO	20	1	3	2	.1
nte	Aperture diameter	6.5 m	15 to 30 m	2	2030	EL-ST	TBD	TBD	TBD	1	-
ξ A	8.2.2.3 Active Control					-	\$30M	\$2M	\$4M	6	\$0.4M
es	Occulter pedal control		< 0.5 deg	3	2020	NWTP					
tur	Occulter modal control		< 0.1 mm rms	5	2014	GRIPS	15	1	2	3	.2
inc	Boom tip control		~0.5 deg	5	2011	Gitti 5					
e St	Aperture diameter	6.5 m	8 m								
arge	Aperture diameter	6.5 m	15 to 30 m	2	2020	NW/UVO					
Ë,	Line-of-Sight jitter WFF	1.6 mas	1.5 IIII IIIIS 1 mas	2	2020	Push	15	1	2	3	.2
2.2	Areal density (depends LV)	40 kg/m^2	<20 (or 400) kg/m2	2	2050	EL-ST					
×.	Areal cost	\$4 M/m2	<\$2 M/m2								
	8.2.3.1 Formation Flying						\$50M	\$1M	\$7M	10	\$0.6M
Ited	Range		10,000 to 80,000 km	5	2016	LISA	TBD	TBD	TBD	1	-
ibu	Separation control	2 m	100 to 400 ±0.1 m	F	2015	ONED					
istı	Lateral alignment		±0.7 m wrt LOS	5	2015	Occultor					
3 D	Relative position	5 cm rms	< 1 cm rms	3	2024	NWTP	50	1	7	9	.6
3.2.	Relative pointing	6. / arcmin rms	$< 1 \pm 0.1$ arcsec	2	2024	Push					
00			1		2000	1 4011			1		1

Tabl	Table 2.2.2.1: Observatory Technology Challenges										
	Technology Metric	State of Art	Need	TRL TRL6 Mission 10-yr External NA		NASA Internal					
							Total	FY12	FY21	FTE/yr	ODC/yr
	8.2 Observatory Technology		•				\$400M	\$19M	\$48M	75/yr	\$5M/yr
	8.2.1.1 Grazing Incidence					_	\$170M	\$6M	\$22M	30	\$2M
	1 to 100 keV FWHM resolution	10 arcsec	<5 arcsec	5	2014	FOXSI-3	5	2	-	6	.5
	Aperture diameter	0.3 m2	>3 m2								
	FWHM resolution	15 arcsec	<5 arcsec	3	2020	IXO	150	3	20	22	1.5
	Areal density; Areal cost	10 kg/m2									
	Aperture diameter	0.3 m2	>50 m2		2030	Push GenX	15	1	2	2	-
	FWHM angular resolution	15 arcsec	<1 arcsec	2							
	Areal density (depends LV)	10 kg/m2	1 kg/m2 (depend LV)	2							
	Active Control	No	Yes								
	8.2.1.2 Normal Incidence						\$80M	\$3M	\$8M	15	\$1M
S	Size & polarization	Planck	1.6 m	5	2020	ITP	5	1		3	
en	Areal density	~20 kg/m2	<6 kg/m2	5	2024	3DWinds	5	1	-	5	-
yst	Aperture diameter	2.4 m	3 to 8 m								
or S	Figure	< 10 nm rms	<10 nm rms								
irrc	Stability (dynamic & thermal)		>9,000 min	4	2020	NWTP	75	2	9	10	1
M	Reflectivity	>60%, 120-900nm	>60%, 90-900 nm	-	2020	UVOTP	15	2	,	10	1
ge	Areal density (depends LV)	240 kg/m2	20 (or 400) kg/m2								
Laı	Areal cost	\$12M/m2	<\$2M/m2								
1	Aperture diameter	6.5 m	15 to 30 m			Push					
3.2.	Areal density (depends LV)	50 kg/m2	5 (or 100) kg/m2	2	2030		TBD	TBD	TBD	2	-
~	Areal cost	\$6M/m2	< \$0.5M/m2								

	8.2.2.1 Passive Ultra-Stable St	tructures					\$20M	\$3M	\$2M	4	\$0.3M
	Thermal stability	Chandra	WFOV PSF Stability	5	2014	WFIRST	5	2	-	2	-
	Aperture diameter	6.5 m	8 m								
	Thermal/dynamic stability	60 nm rms	15 nm rms								
	Line-of-sight jitter WFE	1.6 mas	1 mas	3	2020	NW/UVO	15	1	2	2	.3
	Areal density (depends LV)	40 kg/m2	<20 (or 400) kg/m2								
	Areal cost	\$4 M/m2	<\$2 M/m2								
	8.2.2.2 Deployable/Assembled	l Telescope Suppor	t Structure and Antenna				\$50M	\$4M	\$6M	10	\$0.7M
	Antenna aperture	5 m	6 m	5	2019	ACE					
	Antenna aperture		> 10 m	3	2013	SCLP	5	1	-	1	-
_	Surface figure	1.5 mm rms	<0.1 mm rms	5	2025	Jeh					
	Boom length		$\geq 20 \text{ m}$			GRIPS					
	Stiffness		$10' \mathrm{N} \mathrm{m}^2$	5	2014	ONEP	5	2	-	3	.3
_	Pointing stability		0.005 arcsec roll/3 min			SWOT					
Ia	Occulter diameter	Few cm	30 to 100 m	2	2020	NWTP	20	1	3	3	.3
enr	Aperture diameter	6.5 m	8 m	4	2020	NW/UVO	20	1	3	2	.1
Ant	Aperture diameter	6.5 m	15 to 30 m	2	2030	EL-ST	TBD	TBD	TBD	1	-
& I	8.2.2.3 Active Control							\$2M	\$4M	6	\$0.4M
es e	Occulter pedal control		< 0.5 deg	3	2020	NWTP					
tur	Occulter modal control		< 0.1 mm rms	5	2020	GRIPS	15	1	2	3	.2
Inc	Boom tip control		~0.5 deg	5	2014	OKII 5					
St	Aperture diameter	6.5 m	8 m								
rge	Aperture diameter	6.5 m	15 to 30 m			NW/UVO					
La	Thermal/dynamic stability	60 nm rms	15 nm rms	3	2020	Push	15	1	2	3	2
5	Line-of-Sight jitter WFE	1.6 mas	1 mas	2	2030	FI -ST	15	1	2	5	.2
8.2	Areal density (depends LV)	40 kg/m2	<20 (or 400) kg/m2								
~~	Areal cost	\$4 M/m2	<\$2 M/m2								
	8.2.3.1 Formation Flying		1				\$50M	\$1M	\$7M	10	\$0.6M
itec	Range		10,000 to 80,000 km	5	2016	LISA	TBD	TBD	TBD	1	-
ibı	Separation control	2 m	100 to 400 ± 0.1 m	~	2015	ONED					
istr	Lateral alignment		± 0.7 m wrt LOS	Э	2015	ONEP					
D	Eutoral anglinion										
	Relative position	5 cm rms	< 1 cm rms	2	2024	Occulter	50	1	7	9	.6
2.3	Relative pointing	5 cm rms 6.7 arcmin rms	< 1 cm rms < 1 ±0.1 arcsec	3	2024	NWTP Duch	50	1	7	9	.6

Push Technologies: 8.2 Observatories

Technology	Description
8.2 Observatories	
Synthetic Aperture Imaging Lidar (SAIL)	Synthetic Aperture Imaging Lidar (SAIL) for hyper-resolution imaging and 3D ranging (range imaging). SAIL methods could map dynamics of planetary surfaces on Mars (polar caps), Titan (moving landscapes), and even on Europa much more efficiently than current single beam or multi-beam approaches. SAIL may be a method worth pursuing for ICESat-3 in the 2020's to rapidly build up 3D geodetic maps of the ice covered surfaces of Earth
Super High-Resolution Imaging of High-Energy Photons	The technology need is to build a large area (much larger than current optics) high energy optic and then have it fly it formation with the imaging spacecraft
Radar Arrays	Wideband active electronically steered array radar with lightweighted antennae
Precision Interferometry	Requires CW single-frequency and frequency-stabilized lasers for space (GSFC applications so far are pulsed). Digital techniques including coded modulation for time-of-flight resolvable interference, and flexible in-flight changes. Time-Domain Interferometry (LISA's equal-path-length synthesis techniques).
Hyper-Resolution Visible- NIR	Hyper-resolution Visible-NIR imaging using lightweighted optics in the 1-1.5m class (5 cm/pixel class)
K-Band Radar	Compact K-band imaging and sounding radars (nadir and sidelooking) for planetary sciences (small antennae)
Conductive Carbon Nanotubes	Spectacular new material for the fabrication of lightweight antennas could be enabled by the unbelievable conductivity of individual carbon nanotubes.
Deployable Large Aperture Telescopes	Ultra low mass/volume large deployable large aperture telescopes (>2 meter) for direct detection LIDAR. Concepts include inflatable fresnel, deployable reflector and petal-based techniques.
High stability optical platforms	Includes optical benches, telescopes, etc, requiring passive thermal isolation for temperature stability. Hydroxide or silicate bonding for precision alignment capability and dimensional stability. Precision materials such as Silicon Carbide and single crystal silicon, Zerodur

8.2 Observatories Roadmap

Observatory Technology Needs

Regardless of whether the incumbent is 0.5 m or 5 m, the driving need is larger aperture with similar or better performance.

The technologies for achieving performance are the ability to manufacture and test large-mirror systems; the structure's ability to hold the mirror in a stable, strain-free state under the influence of anticipated dynamic and thermal stimuli; and, for extra-large apertures, a method to create the aperture via deployment, assembly, or formation flying – where formation-flying technology is simply an actively controlled virtual structure.

One non-telescope application is the manufacture, deployment, in-plane and formation-flying control of an external-occulting starshade to block starlight for exo-planet observation.

Other Technology Assessment Observatory Needs

- The ability to produce large aperture observatories depends upon advances in other technology assessment areas:
 - volume and mass capacities of launch vehicles;
 - validated performance models that integrate optical, mechanical, dynamic, and thermal models for telescopes, structures, instruments, and spacecraft to enable the design and manufacture of observatories whose performance requirements are too precise to be tested on the ground;
 - new materials and design concepts to enable ultra-stable very large space structures;
 - terabit communication; and
 - autonomous rendezvous and docking for on-orbit assembly of very large structures.

Technology Area 8.3 Sensor Systems

Major challenges include:

- Particle and Plasma Sensors
- Energetic Particle Detectors (>30 keV N MeV)
- Plasma Detectors (<1 eV 30 keV)
- Magnetometers (DC & AC)

Fields and Waves Sensors

- EM Field Sensors (DC & AC)
- Gravity-Wave Sensors

In-Situ Sensors

- Sample Handling, Preparation, and Containment
- Chemical and Mineral Assessment (Beyond APXS)
- Organic Assessment (Beyond INMS)
- Biological Detection & Characterization
- Planetary Protection (PP)

Techniques for acquiring, processing, transferring, delivering, and storing subsurface samples are critical and represent a huge gap between needed and available *in-situ* sensor technologies

Tab	le 2.2.2.1-1: Sensor-Techi	10logy Challenges				
	Metric	State of Art	Need	Start	TRL6	Mission
	8.3.1.1 Energetic Particle	Detectors (>30 keV – N MeV)				
	Energy threshold	~10 keV w. limited array	2013	2016	Helio	
		-				Planet
s	8.3.1.2 Plasma Detectors	(<1 eV - 30 keV)				
icle	Environment tolerance;	Polar	Rad-hard ion & electron sensors,	2013	2016	Helio
art	data handling		improve out-of-band rejection,			Planet
Р			data compression			
3.	8.3.1.3 Magnetometers (I	DC & AC)				
~	Sensitivity	~10 pT @ 3-10 m	~1 pT @ <1m	2013	2020	H, P
	8.3.2.1 EM Field Sensors	s (DC & AC)				
3	Sensitivity; Operations	8-bit ADC; operations on	18-bit ADC; robust	2013	2016	Helio
2		Polar, FAST, THEMIS	deployment, fast observations			Planet
8.3. 2.1	8.3.2.2 Gravity-Wave Se	nsors	-			
<i>∞</i> •	Low-Freq Sensitivity	30 mW w. <1 yr lifetime	~1 W w. >5 yr lifetime	2013	2020	A; H; P
	8.3.4.1 Sample Handling	Preparation, and Containment				
	Sample acquisition	MSL: SA/SPaH	Subsurface drilling ≥ 1 m; intact	2011	2014-	Planet
		ExoMar: drill	cores 5-10 cm length		2016	
	Sample preparation	MSL: SA/SPaH; MER: RAT;	Core sub-sampling; powdering	2011	2016	Planet
		ExoMars: jaw crusher	for XRD, GC-MS			
	Sample transfer and	MSL: Dry powder aliquot	Transfer of various sample types	2011	2016	Planet
	delivery	transfer w. < 5% contamination	(powder, ice) under many			
		in gravity atm.	conditions (µG, vac.)			
	Sample temperature	Limited temperature control	Cryogenic & sealing, preserve	2011	2018	Planet
	control		volatile components			
	Contamination &	Phoenix: pre-launch steril. &	Sample control & monitor for	2011	2018	Planet
	sample integrity	cruise biobarrier; MSL: sample	<0.1% cross-contamination			
	9.2.4.2 Chaminal and Mi	chamber clean.				
	8.5.4.2 Chemical and Mil	Discourse WCI	Maximum annual a day ant	2011	2016	Dlanat
	dissolved solids	Phoenix WCL	dissolved ions to 1 nmm	2011	2016	Planet
	dissolved solids	MGL XDD/XDE:	Creatial accelered XDE are latered	2011	2016	Discost
	(LIDE VDE)	WISL ARD/ARF: whole sample	Spatial resolved ARF w. lat res	2011	2016	Planet
	(LIBS, AKF)	norformance 0.5 wt%	~10 μm; High eff. AK tubes;			
		elemental separation	atomic $\# (\leq 18)$ canability			
	Mineralogy (Paman	MSL CheMin: detect limit few	Detect limit <1 wt%: reflection	2011	2016	Planet
	XRD, IR and UV	wt%: ExoMars Raman w. 10s	mode XRD wo/ sample prep:	2011	2010	1 funct
	spectrometers)	um imagery/analysis	spatially resol Raman			
	Microscopy	MSL MAHLI: 15um res:	SEM imaging w 10 nm res:	2011	2020	Planet
	meroscopy	Phoenix MECA: 4um/pix clr	Hyperspectral micro imaging	2011	2020	1 funct
	8.3.4.3 Organic Assessm	ent (Beyond INMS)				
	Detection sensitivity &	Phoenix: ppb sensitivity with	ppb sensitivity: non-thermal	2011	2017	Planet
	contamination	ppm contamination	methods, contamin, prevention	2011	2017	1 milet
	Mass range &	Cassini INMS: Range: 100	Range: >100 AMU: Resolution:	2011	2019	Planet
	resolution	AMU; Res: 0.1 AMU	<0.1 AMU			
	8.3.4.4 Biological Detect	ion & Characterization				
	Biomarker detection &	Characterize viable organisms	Biomarkers quantitative	2011	2016	Planet
	characterization	that are culturable; terrestrial	assessment w. ppb sensitivity;			
		contamin > detection limits	terrestrial contam prevention			
	Complex Organic	ExoMars	ppb sensitivity	2011	2016	Planet
	Polymer					
itu	8.3.4.5 Planetary Protect	ion (PP)				
n-S	Organism detection	Characterization of viable	Characterization of any viable	2013	2016	Planet
I C	(sensitivity/breadth)	organisms that are culturable	organism			
3.3	System & component	DHMR sterile w. detect <	DHMR & e-beam irrad w.	2013	2016	Planet
8	sterilization	sterile: ppb organic contamin	detection > sterilization level			

Push Technologies: 8.3 Sensor Systems

Technology	Description
8.3 In-Situ Instruments/Senso	rs
Atomic Magnetometers	This technology has the potential to greatly reduce the resources required to execute vector magnetic field measurements.
Neutron Spectroscopy	In situ dynamic neutron spectroscopy with active sources and collimated detectors (beyond MSL's DAN)
Scanning Electron Microscope	In-situ scanning electron microscope imaging at 1 um and smaller for planetary surfaces
X-Ray Imaging	In-situ X-ray imaging for definitive mineralogy without sample preparation
<u>Human Tissue Equivalent</u> <u>Proportional Radiation</u> <u>Counter (TEPC)</u>	Current SOA is a space station devices operating in near-atmospheric condition that measure dosages on crew. Robust sensors capable of operating for long periods in environment of space are needed to measure the radiation at the destination as well as during the journey. Previous TEPCs on Mars missions have mostly failed en-route. Until we get better data on interplanetary environment, the JSC human health group wants to limit human trips to 150 days or less.
Tricorder Health Monitoring System	As a related topic to humans in space, a monitoring system that will provide a reading of astronauts' health.

8.3 Sensor Systems

Remote Sensing Instruments/Sensors Public Inputs

Detectors and Focal Planes:

CZT detectors for x-ray or gamma-ray; next-generation solar-blind photocathodes; TES detectors; CMB detectors; BGO scintillators; UV photon counting detectors; NIR photon counting detectors; detector with small pixels than specified; detector arrays of size larger than specified; detectors with lower noise than specified.

Electronics:

5 for ASIC; 3 on miniaturizing; & 2 each regarding multiplexers, lownoise amplifiers & gravity wave phase sensor electronics.

Optical Components:

- 2 for WFSC to correct phase, intensity, amplitude & polarization; 4 for components ranging from x-ray & UV diffraction gratings to narrow band spectral filters to electronically steerable laser beam; 3 microwave polarization feed horns and planar antenna.
- 3 Radio/Microwave; 1 Lasers and 1 Cryogenic/Thermal.

Public Inputs

Observatory:

8m UVOIR and 4m UVOIR telescopes, 100 meter microwave antenna, high reflectance UV coatings, x-ray and gamma ray imaging optics on 20 meter booms, athermal telescope structures, 400 sq meter microwave phased array antenna structure, 300 meter booms for atom interferometers and distributed aperture systems.

In-Situ Instruments/Sensors:

1 regarding neutral ion detection, 4 regarding atomic clocks, 5 regarding gravity wave detection, 1 for quantum communication, 1 for mineral assessment and 1 other.

Acronyms

ACE — Aerosol/Cloud/Ecosystems ADC — Analog to Digital Converter AMU — Atomic Mass Unit AO — Autonomous Operation APD — Avalanche Diodes APIO — Advanced Planning and Integration Office AR&D — Applied Research and Development ASCENDS — Active Sensing of CO2 Emissions over Nights, Days, and Seasons ASIC — Application Specific Integrated Circuit ATLAST — Advanced Technology Large Aperture Space Telescope APXS — Alpha Particle X-Ray Spectrometer AU — Astronomical Units **BEP**— Beamed Energy Propulsion CCD — Charged Coupled Device CheMin — Chemical Mineral Instrument CISR --- Climate Impacts of Space Radiation COM — Communications CW — Continuous Wave DIAL — Differential Absorption Lidar DGC — Dynamic Geospace Coupling DHMR — Dry Heat Microbial Reduction EDL — Entry, Descent and Landing EJSM — Europa-Jupiter System Mission ELST — Extremely Large Space Telescopes EM — Electromagnetic EMS — Environmental Monitoring and Safety FAST — Fast Auroral SnapshoT FOV — Field of View FOXSI — Focusing Optics X-ray Solar Imager

FPA — Focal Plane Array FWHM-Full Width Half Maximum GACM — Global Atmospheric Composition Mission GC-MS — Gas Chromatography-Mass Spectroscopy GenX — Generation-X Vision GEO — Geosynchronous Orbit GEO-CAPE — Geostationary Coastal and Air Pollution Events GPS — Global Positioning Satellite GRACE — Gravity Recovery and Climate Experiment GRIPS — Gamma-Ray Imager/Polarimeter for Solar HEDS — Human Exploration Destination Systems HERO — High-Energy Replicated Optics HiRISE — High Resolution Imaging Science Experiment HMaG — Heliospheric Magnetics HyspIRI — Hyperspectral Infrared Imager Hz — Hertz IHM — Integrated Health Management InGaAs — Indium Gallium Arsenide INMS — Ion and Neutral Mass Spectrometer INCA — Ion-Neutral Coupling in the Atmosphere IXO — International X-ray Observatory JAXA — Japanese Aerospace and Exploration Agency LCAS — Low-Cost Access to Space LIBS — Laser-Induced Breakdown Spectroscopy LIMA — Long-range laser Induced Mass Analysis LISA — Laser Interferometer Space Antenna LIST — Lidar Surface Topography LROC — Lunar Reconnaissance Orbiter Camera MAHLI — Mars Hand Lens Imager MCP — Microchannel Plate Mdeq — Millidegree MECA — Microscopy, Electrochemistry, and Conductivity Analyzer MER — Mars Exploration Rovers MKIDS — Microwave Kinetic Inductance Detectors MSL — Mars Science Lab

Acronyms

MSR — Mars Sample Return NDE — Non-Destructive Evaluation NEO — Near Earth Object NEP — Noise Equivalent Power NF — New Frontiers NIR — Near Infrared NRC — National Research Council NuSTAR — Nuclear Spectroscopic Telescope Array NW — New Worlds O - OpticalONSET - Origins of Near Earth Plasma OR&PE - Object Recognition and Pose Estimation PATH - Precipitation and All Weather Temperature and Humidity PNT — Position, Navigation, and Timing PRF—Pulse Repetition Frequency PSF — Point Spread Function PVP — Photovoltaic Power QE — Quantum Efficiency RAT — Rock Abrasion Tool RFI — Radio Frequency Interference ROIC — Readout Integrated Circuit SAIL — Synthetic Aperture Imaging Lidar SAR — Synthetic Aperture Radar SA/SPaH — Sample Acquisition / Sample Processing and Handling SCLP — Snow and Cold Land Processes SEM — Scanning Electron Microscope SEM — Space Experiment Module SEPAT — Solar Energetic Particle Acceleration and Transport

SEU/SEL — Single Event Upset/Single Event Latchup SIOSS — Science Instruments, Observatories, and Sensor Systems SMD — Science Mission Directorate SPICA — Science Investigation Concept Studies SSE — Solar System Exploration STP — Solar Thermal Propulsion SWOT — Surface Water and Ocean Topography TABS — Technology Area Breakdown Structure TEPC — Tissue Equivalent Proportional Radiation Counter TES — Transition Edge Sensors THEMIS — Time History of Events and Macroscale Interactions during Substorms THz — TeraHertz TID — Total Ionizing Dose **TIR**—Thermal Infrared TPF-C — Terrestrial Planet Finder-Coronagraph TPS — Thermal Protection System T/R — Transmitter/Receiver UAV — Unmanned Aerial Vehicle UV — Ultraviolet UVOIR — UV-Optical-near IR Telescope VIS — Visible WCL — Wet Chemistry Laboratory WFE — Wall Plug Efficiency WFOV — Wide Field of View WFIRST — Wide-Field Infrared Survey Telescope WFSC — Wavefront Sensing and Control WINCS - Wind Ion-drift Neutral-ion Composition WPT — Wireless Power Transmission XMM — X-ray Multi-Mirror Mission XRD — X-Ray Diffraction XRF — X-ray Fluorescence