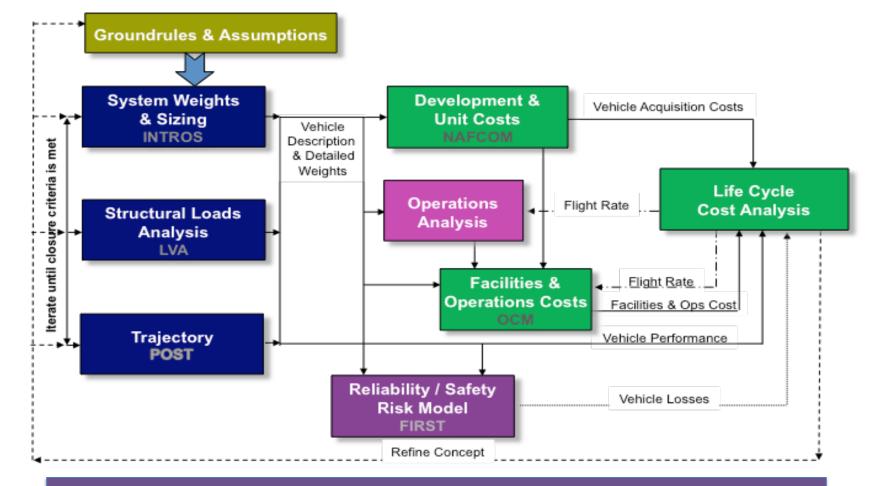


AIAA Space 2011 Conference & Exposition

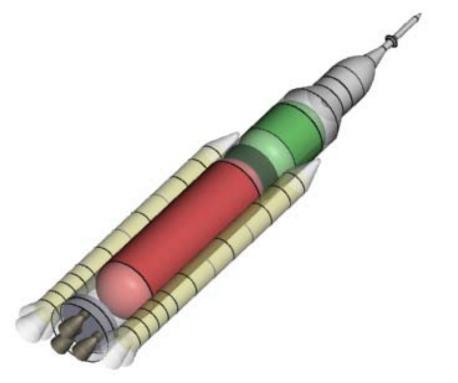
Launch Vehicle Demonstrator Using Shuttle Assets

Dennis M. Creech, Jacobs Engineering – Jacobs ESTS Group Grady E. Threet, Jr., and Alan Phillips, NASA MSFC Eric D. Waters, Dynamic Concepts Inc. – Jacobs ESTS Group

- MSFC ACO Overview
- Study Objective/Methodology
- Baseline Concept Configurations
- Early Demonstrators
- Operational Concepts
- Evolutionary Pathway
- Conclusions


We Are An Office Specializing In Pre-Phase A & Phase A Concept Definition

Launch Vehicle Design Process



Note: Cost and Reliability Analyses were not performed for this study

To characterize the performance capabilities of an inline, shuttle-derived launch vehicle using two design strategies: the first as an early program demonstrator utilizing high structural margins, maximum shuttle assets, and minimal pad impact, the later having undergone structural optimization, flying operational mission GR&A and serving as a baseline for evolutionary upgrades.

Baseline Concept Configurations

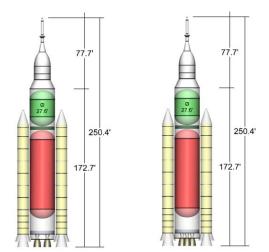

- Common GR&A between demo and operational concepts
 - 1.5 Stage
 - 2 or 3 RS-25D @ 104.5%
 - 2, 4-segment PBAN SRB
 - ET diameter (27.6 ft)
 - ET LH2 tank cylindrical length
 - Approximately 1.6M-lbm loaded propellant

Crewed concepts

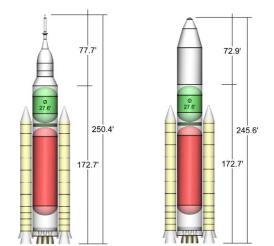
- MPCV dimensions (current as of 03/11)
- 16,500 lbm LAS (jett. 30 sec after SRB sep.)
- -11 x 100 nmi insertion
- 4.0g limit

Cargo concepts

- 27.6 x 40 ft cylindrical shroud (jett. when FMHR reached)
- 30 x 130 nmi insertion
- 5.0g limit



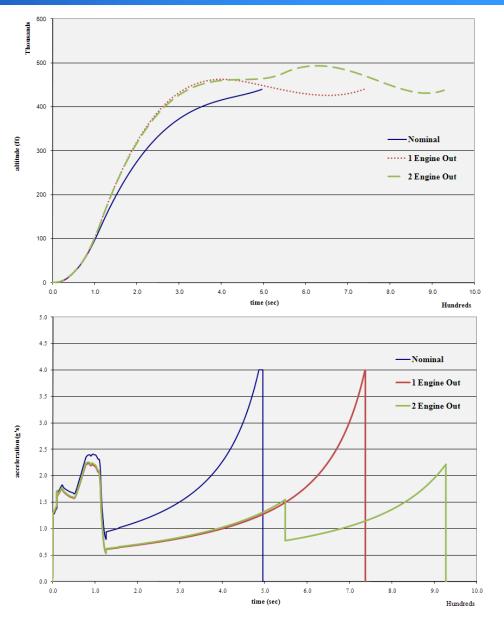
- Minimize development timeline and cost
- "Battleship" structural design
 - Monocoque
 - 2.0 safety factor (1.4 standard)
 - Uniform tank dome thickness
 - Approx 25% increase in main dry structural mass
- Air start RS-25 at tower clear
- -11 x 100 nmi @ 29.0°
- LEO mass delivery
 - 42.6t / 67.0t
 - Two engine variant could support MPCV
 - Three engine may yield more valuable data


Vehicle ID	107.02.00	107.03.00
# RS-25D	2	3
Booster	4-seg PBAN SRB	4-seg PBAN SRB
Payload Element	MPCV	MPCV
GLOW (M-lbf)	4.14	4.54
Propellant Offload	21.3%	-
Payload (t)	42.6	67.0
Insertion Orbit	-11x100nmi @ 29.0°	-11x100nmi @ 29.0°

Operational Concepts

- Operational design/baseline for concept evolution
- Optimized structures
 - Isogrid stiffening pattern
 - 1.4 safety factor
 - In-depth mechanical testing
- Ground start RS-25
- -11 x 100 nmi @ 51.6° (Crew)
- 30 x 130 nmi @ 29.0° (Cargo)
- LEO mass delivery
 - More than sufficient for MPCV to ISS and significant LEO cargo
 - Marginal increase over demonstrator suggests 5-seg evolution

Vehicle ID	107.03.05	107.03.06
# RS-25D	3	3
Booster	4-seg PBAN SRB	4-seg PBAN SRB
Payload Element	MPCV	Cargo Shroud
GLOW (M-lbf)	4.53	4.54
Propellant Offload	-	-
Payload (t)	73.1	74.5
Insertion Orbit	-11x100nmi @ 51.6°	30x130nmi @ 29.0°


Engine Out Analysis

- MPCV payload
- -11x100 nmi @ 51.6°
- Scenario One
 - Ground start
 - One engine out at 1 sec after liftoff
 - 33.5 t to LEO (-11x100 @ 51.6)

• Scenario Two

- Ground start
- One engine out at 1 sec after liftoff
- Determined earliest time on ascent which 2nd LOE could occur and still achieve 25t delivery (548 sec)

Evolutionary Path

• Early demonstrator concepts provide advantages

- Minimize development schedule and initial monetary investment
 - STS resources, high structural margins, lower pad interference with air start
- Serve as a working test platform
 - MPCV, MPS, GN&C
- Can provide 67 t of LEO payload

• Operational version of demonstrator

- Optimize structures, ground start main engines
- Can provide 75 t of LEO payload
- Marginal increase over demonstrator may dictate moving directly to 5-seg, 5-eng
 - Utilize demo vehicle in interim
- Engine out analysis
 - Payload margin available for 1 and 2 engine out scenarios

Evolutionary pathway

 Depending on funding, scheduling and ultimate goals, shuttle-derived inline can eventually provide LEO payload in the 140 t range

Thanks

Questions?