
mu uuuu ui iiui imi uui imi uui uiii lull uui uuii uu uii mi

(12) United States Patent
Hinchey et al.

(54) SYSTEMS, METHODS AND APPARATUS FOR
DEVELOPING AND MAINTAINING
EVOLVING SYSTEMS WITH SOFTWARE
PRODUCT LINES

(75) Inventors: Michael G. Hinchey, Bowie, MD (US);
James L. Rash, Davidsonville, MD
(US); Joaquin Pena, Sevilla (ES)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1483 days.

(21) Appl. No.: 11/536,378

(22) Filed:	 Sep. 28, 2006

(65)	 Prior Publication Data

US 2008/0250389 Al	 Oct. 9, 2008

Related U.S. Application Data

(60) Provisional application No. 60/805,484, filed on Jun.
22, 2006, provisional application No. 60/811,147,
filed on May 15, 2006.

(51) Int. Cl.
G06F 9145	 (2006.01)

202
GENERATE

DOMAIN
REQUIREMENTS

204
ANALYZE
DOMAIN

206
ENGINEER

DOMAIN

208
ENGINEER

APPLICATION

(1o) Patent No.:	 US 8,082,538 B2
(45) Date of Patent:	 Dec. 20, 2011

(52)	 U.S. Cl . ....................................................... 717/104
(58) Field of Classification Search ................... 717/107

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
7,305,653 132 * 12/2007 Davis et al . 	 ................... 717/100

2003/0005412 Al * 1/2003 Lanes	 ........................... 717/120
2005/0204339 Al* 9/2005 Davis et al . 	 ................... 717/120
2006/0161888 Al* 7/2006 Lovisa et al .	 ................. 717/107
2007/0162893 Al* 7/2007 Moosmann et al. 	 .......... 717/121
2007/0174811 Al* 7/2007 Kaetker et al ................. 717/104
2007/0186209 Al* 8/2007 Kaetker et al ................. 717/104
2010/0005453 Al* 1/2010 Argue et al . 	 .................. 717/121

* cited by examiner

Primary Examiner John Chavis
(74) Attorney, Agent, or Firm Heather Goo

(57) ABSTRACT

Systems, methods and apparatus are provided through which
an evolutionary system is managed and viewed as a software
product line. In some embodiments, the core architecture is a
relatively unchanging part of the system, and each version of
the system is viewed as a product from the product line. Each
software product is generated from the core architecture with
some agent-based additions. The result may be a multi-agent
system software product line.

13 Claims, 14 Drawing Sheets

200

https://ntrs.nasa.gov/search.jsp?R=20120000545 2019-08-30T18:32:23+00:00Z



U.S. Patent
	

Dec. 20, 2011
	

Sheet 1 of 14
	

US 8,082,538 B2

102

ENGINEER DOMAIN OF
REUSABLE CORE ASSETS

104
ENGINEER APPLICATION
OF THE REUSABLE CORE

ASSETS

FIG. 1	 \^ 100



U.S. Patent	 Dec. 20, 2011
	

Sheet 2 of 14
	

US 8,082,538 B2

202
GENERATE

DOMAIN
REQUIREMENTS

204
ANALYZE
DOMAIN

206
ENGINEER

DOMAIN

208
ENGINEER

APPLICATION

FIG. 2	 I\,-- 200



U.S. Patent	 Dec. 20, 2011	 Sheet 3 of 14	 US 8,082,538 B2

CON W 0^
O?

W u—

CO
C)

_U
0
CO

Z

C)
CO 

	

Q
Z

C
J

(0
N

O
N

m CO

_U

CO	 COCO	 CO

Z
CO

C^
WZ

W C^ zW

Ow ^
w
Y QO
w
W
W

CÔ

N
W
Y

Cy.)

N

W
CO Q

CO

('')

} U Of 2ip UQ w
U) wo ^

z
m c°	 ° c i

N O
(Y) Ce)

c+)



U.R. Patent	 Dec. 20, 2011	 Sheet 4of14	 US 8,082,338 G2

&2
^0FqU) re

//E

UJ

) ^-J
^ 2 //E

®
9 L 0ƒ

U)
<2Leo

/^
CO uJ<q-

E4 Lu00
± ^Of <k \ƒ/U)
%\ E2

v
CO m
00 m0-2 RL

E/>><
< w<

3 Of/L
O\

E ®^

oW e L
/ zƒ

2 /
$? q 2 E
±b/ b
/
2<
w

^

ƒ<
Oƒ N
Q/

K ® ^400FIG.4



U.S. Patent	 Dec. 20, 2011	 Sheet 5 of 14	 US 8,082,538 B2

502TRIMMINGSAILS

STARTING 	 FPROTECTINGPROTECTIONS

504	 OFFSUBSYS

FIG. 5	 500



kS ERD

/

/ 0

/	 Lw \
ƒ^Lu	 co^ <

\ k
\ 0

O

/
/z

zn

§«IL

^

\/^

\/g^

/ I
\\

\\/
/

^

2 ^G
FIG.6 6

^
a

/

\ \
\¥

co^ <
/ R
iI ±

L\\ w	 IG—
\

e

w.

o
0 ^/

a
F-R

\w	 /
§ / ^ i

TWO

W^ §ƒq/
0 % / ®^// 2

iD/^F-
^^ 0 j$\7^

i
\

\	 \\
W I
/f//^ \

e	 a <
^i E

k	 p §.<0 k^}F0 w
W^
q« =2

=\g\<E
/i\ f d

< ^^ 2
o\ƒ i Lu0 =«m gg/c /wD@ ao =wW- / E o<O m0^n 2wm^o

<--°I 4102=+eeelW—
=0<z e

<
^ii§Ih //\\9ƒ0-7 /§

} —60

/

/2

W §
^

0o \

/

/

\
/_
}
\
2

\^= j§\
2

/ §j\
I oa<
LL

w
^ 2	 /
§ §7
E /\0^/

a

U.R. Patent	 Dec. 20, 2011	 Sheet 6of14	 US 8,082,338 G2

F- 00Eg E
zw o<ow Ie
§0) ƒ/

v ^\

/W^u E
0

<um2
_§ go ^i
0 < i \/ ƒ§0 0 e ±000^
%J a_j <±

<0
woe ..mo

^^eou
«g

e^aR
k..<^

owe (D Ica-j /e /C)

W022
@ m
//

u
f\

9E SURE\
2

Z:)
\ ƒ

I	 \ \ / / z
\IL	

/
± o

^^e
2 B \

0 ML
w	 .

2

\^ / C< \ o
/w

/

e§

.0x /
O R I7

0	 \0

/

\7 \	 ±	 Rca in
0 0 0 	 mo x	 0

e
C E	 ^LU\ U)
/\_	 \X§6®z\
co j	 co\%

zol	 0 w	 §-qQ

Z,

/

p^® $
w d\

q
2E	 > ^eq 00	 2

fe
0
w	 LLJ 0	 0 w
0Z	 0(1) \/E 2y	 220Dw

RECEIVER



o \/

/I J

I U)
I 0
I z

w

q
w
C)
O

J LL

U) w
U)

^ z
W

o a
(L

NOI-

/

it

U
w
U) Of

\
0

0
IIOCOI5 oa d

ILuL Of -j 0	 I
0
w

U)

w OfZ75 I

J W LLwI

Qo
w zl

\ 0 a 7

OU
°w	 \
wz

00
U) U	 I

w w
C) w

a_a
LL LL

w w

z^

O

U.S. Patent	 Dec. 20, 2011
	

Sheet 7 of 14	 US 8,082,538 B2

FIG. 7

ZU U)

O0
U

O QO^ LLJ

w

LL0 > ^_
^>- U)(!) 0

Q^^2 w F-
0002 > z
0 LL ( 2E
w02 ly- ry,
-1
0

00
F- F-

m 2 LL 2 U) U)

CO
O

700



802

U.S. Patent	 Dec. 20, 2011	 Sheet 8 of 14	 US 8,082,538 B2

[STMEASURER.SOLARSTORMRISK()>K]

SORBITING U {FPROTECT FROM SOLAR STORMS)

804

[STMEASURER.SOLARSTORMRISK()<=K]

SPROTECTING FROM SOLAR STORMS `{ F PROTECT FROM SOLAR STORMS)

FIG. 8	 800



U.S. Patent	 Dec. 20, 2011	 Sheet 9 of 14	 US 8,082,538 B2

902

W3^

measuring

SolarStormRisk

FIG. 9	 ^ 900



I

I

I YU)

0 I 
O 

_LT	
U) ry

I J
I
O 0
u F-

I

w

1 Q̂
w

w JU Q
a / c07
U)

/
A
A
I-z
2Ew
O QU O

Of0- U
^> >ry

Z 2i0

V OU

0
0T

ry
0U)
Z

Uww^-
Z_

00
U)U)

Qa
aw

z `n `n

U.S. Patent
	

Dec. 20, 2011
	

Sheet 10 of 14
	

US 8,082,538 B2

FIG. 10

(DO
LU	 \
wU
~ Lu
Z

Ofry, 	1
00 1

UU	 I

00	 I

LLL	 I
J J

:) U) U
0

I
I

Iw

Q
w

0
U)US^OfJa-

Ir- w — OQ>-
w Of 	 ^—w^

w2 J w^^

w Lu 0O ^ tzA -
2 N00 Z
(i) Q w ^ UHF

0<o>z^
00
WtoJO'd'Q'

080
0	

000
wil

cfl
0
T ,\^ 1000



U.S. Patent	 Dec. 20, 2011	 Sheet 11 of 14	 US 8,082,538 B2

C612	 r 706

SELFPROTECTORBITER

ROLE GOAL: MAINTAIN ORBIT AND
MEASURE
MRI MEASURE GOAL: GETMODEL
MRI ORBITS GOAL: GET THE ORBIT
MODEL

MRI OFFSUBSYS GOAL: PROTECT FROM
SOLAR STORM
MRI TRIMMINGSAILS: TRIM SAILS
ORBITM: ORBITMODEL
RELATIVEPOS: POS
ASTEROIDRELATIVEPOS: POS
ASTDATA:ASTDATA
ASTMODEL: ASTMODEL

STORMVECTOR:VECTOR3
STORMINTENSITY : REAL

ADJUSTORBIT(RELATIVEPOS,ORBITM)
PPROCESSDATA(M:MEASURE)::MODEL
PMEASUREX(INPUT)::PMEASURE
AMI INSIDEORBIT(POS,ORBITMODEL)::BO
OL
MEASUREFINISHED(ASTMODEL)::BOOL

^ESCAPEOR IB T \

GOAL: ESCAPE AN ORBIT
IATTERN: SELF-PROCEDUR

IN:	 OUTy
ORBITER.
^RBITM

^	 1..N

602	 ORBITER

1100

ORBITER

ORBITER
I..N B

SELFPROTECSC

1C

SSELFFPPRROOTECSC
1.. ^J

ORBITER
1. @

SELFPROTECSC
o

1.1 ORBITER

/ ADJUSTORBIT

GOAL: DISTRIBUTE RESULTS
PATTERN: SELF-PROCEDURE

ORBITER .
	 OUT:

%QRBITM 	 ASTMODE /	 604

FIG. 11



U.S. Patent	 Dec. 20, 2011	 Sheet 12 of 14	 US 8,082,538 B2

i	 MEASURE ~	 ASTEROID
/GOAL: MEASURE ASTEROID

ORBITER.ASTE-
ROIDRELATIVEPOS RER.ASTMO /

1-11 'ffEPORT--
ORBIT

GOAL: REPORT ORBI

1..N
B —^ COLLABORATION

^
^ IN:	 OUT:	 1..N

ORBITMO
608—/ 	 ORBITER. MEASURER

RRBITM ORBITW

C 616

SELFPROTECTORBITMO
DELER

ROLE GOAL: CALCULATE
ORBITS AND SELF
PROTECTOR
MRI GOALS: SEND ORBIT
MODELS
ASTDATA:ATEROI D DATA
ORBITM: ORBITMODEL
CALCULATEORBIT(ASTER
OIDDATA)::ORBITMODEL

SELFPROTECTSC

f	 OFFSUBSYS	 1..N^

1 .. N '	 PATTERN: SELF-PROCEDURE

SELFPROTECSC. STORM

702
	 -40TENSITY

1.IF SELFPROTECSC

1..N SELFPROTECSC

F

1200 -J

FIG. 12



1300

610

a-
ORBITE

U.S. Patent	 Dec. 20, 2011	 Sheet 13 of 14	 US 8,082,538 B2

TRIMMINGSAILS ` \

GOAL: TRIM SAILS

PATTERN: SELF-PROCEDURE

J - IN:
SELFPROTECSC.STORMVECTOR

_/l \ 
SELFPROTECSC.STORMINTENSITY 	 1..N

704
SELFPROTECTSC

1..N
SELFPROTECTSC

SELFPROTECTREC

ROLE GOAL:
KNOW MODEL
MRI GOALS: GET
MODEL
MRI OFFSUBSYS
GOAL: PROTECT
FROM SOLAR
STORM
MRI
TRIMMINGSAILS:
TRIM SAILS
LISTOFMODELS:M
ODEL
LISTOFSENDERS:S
ENDER
STORMVECTOR:
VECTOR3
STORMINTENSITY :
REAL

i 18 J	 ^— 706

FIG. 13



U.S. Patent	 Dec. 20, 2011	 Sheet 14 of 14	 US 8,082,538 B2

•

OFFSUBSYS o
LO

Wm W'

O m zO
W (n

Q
U

WU)W

Qa
W
~

U)
W w O

^
J

J W
~= WCO

W
W

Oz

(D

0	 ^

F-

Q ^^

Q
O^

0 WZ) U)

0 O
U) Q W
Z	 ' U)

u-W F-
W

o
Lo

F- U)
C^	 (1)-

Q V r-- (l)

Q	 (n(^W
w	 OW

QYŴ̂

0-aZ)
jWQ

F- w
OfOf

OY^U)U)Q

W	 >W O^
0-( n W

F-	 QF-2
W22i

O	 WW ^^ U) F-^^
U

wc)a

D ry

Û)

^ m	 uj	 H0	 in
C7z ~

CO

m 0 W a W ^O m O

O^ m ^m m ca O 1400
F- z0^00^ a

a vW
	 °a FIG. 14

U)J
U)
C9

NO



US 8,082,538 B2
1

SYSTEMS, METHODS AND APPARATUS FOR
DEVELOPING AND MAINTAINING

EVOLVING SYSTEMS WITH SOFTWARE
PRODUCT LINES

RELATED APPLICATION

This application claims the benefit of U.S. Provisional
Application Ser. No. 60/805,484, filed Jun. 22, 2006, and U.S.
Provisional Application Ser. No. 60/811,147, filed May 15,
2006, under 35 U.S.C. 119(e).

ORIGIN OF THE INVENTION

This invention was made by employees of the United States
Government and may be manufactured and used by or for the
Government for governmental purposes without the payment
of any royalties thereon or therefor.

FIELD OF THE INVENTION

This invention relates generally to computer systems soft-
ware development, and more particularly to version control
systems.

BACKGROUND OF THE INVENTION

In computer systems development, the system evolves over
time in response to changes in system requirements. When
dealing with complex systems, and in particular systems
exhibiting any form of autonomy or autonomic properties, it
is unrealistic to assume that the system will be static. Com-
plex systems evolve over time, and the architecture of an
evolving system will change, even at run time, as the system
implements self-configuration and self-adaptation, and meets
the challenges of its environment. An evolving software sys-
tem is typically a system that will likely run for a long period
of time, and which likely will be corrected and enhanced and
changed over a period of time.

In many systems, some portions of the system change very
little, if at all, over time, and yet, other portions of the system
can change significantly. For example, a tax form preparation
program, such as TurboTax® by Intuit, Inc., changes in large
measure every year in response to annual changes in the tax
laws.

An evolving system can be viewed as multiple versions of
the same system. That is, as the system evolves it essentially
represents multiple instances of the same system, each with
its own variations and specific changes. With sufficiently
significant changes, the resulting new version might even be
identified and marketed separately from the earlier versions.
In the example of TurboTax®, each annual change prompts
sufficiently significant changes in the software to package and
market the tax preparation software as a different version
from the tax preparation software of earlier years.

Conventional software change management systems, such
as Revision Control System (RCS), are problematic in that
creation of particular builds of the system requires huge
amounts of computing resources. For example, with large
systems, such as telecommunication management systems,
created by Lucent Technologies, or spacecraft control sys-
tems, the creation of a build often takes over twelve hours
even with complete dedication of the resources of a high-
powered server system.

Similar approaches have appeared also in the object-ori-
ented field, but all of these approaches use role models with

2
the same purpose, namely, representing features of the system
in isolation from the final enterprise architecture.

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art

5 upon reading and understanding the present specification,
there is a need in the art for an architecture of development of
a complex software system that is likely to involve many
interacting components, that affords uses of state-of-the-art
software engineering techniques and reduces the resource

to requirements in generating a build from the system.

BRIEF DESCRIPTION OF THE INVENTION

The above-mentioned shortcomings, disadvantages and
15 problems are addressed herein, which will be understood by

reading and studying the following specification.
In some embodiments, an evolving software system can be

architected as a plurality of software products that are sub-
stantially similar, or which have substantially similar content.

20 For example, flight software for different missions can be
viewed as a line of products that fulfills this purpose, with
many of the products having similarities, or in extreme cases
being very similar with a few specializations.

In other embodiments, an evolving system may include a
25 plurality of products in a product line. Different versions or

releases of the system may be as different "products" that are
substantially similar, which may provide a context and archi-
tecture of developing a complex system that is likely to
involve many interacting components for development as a

30 product line, which can be developed with state-of-the-art
software engineering techniques.

In yet other embodiments, a development architecture of
evolving software systems may include core components that
are common to an entire system and non-core components

35 that change more frequently than the core components, and
wherein the architecture uses a multi-agent approach that
provides for easier composition of components and provides
for a more autonomous system. In some embodiments, the
core components can change infrequently, if at all, from one

40 product to another product, and the non-core components can
change frequently, if not always, from one product to another
product, to yet another product. This architecture can provide
use of state-of-the-art software engineering techniques and
can reduce the resource requirements in generating a build

45 from the system.
In still other embodiments, an architecture may be pro-

vided of an evolving software product line that will likely run
for a long period of time, and which must have corrections,
enhancements and changes made to it over a period of time,

50 from which different versions or releases of the system may
be different products that are substantially similar. The prod-
uct line may include software products that are substantially
similar, or which have substantially similar content and are
distinguished from products in a line of products that the

55 organization develops. For example, flight software for dif-
ferent missions can be viewed as a line of products that fulfills
this purpose, withmany of the products having similarities, or
in extreme cases being very similar with a few specializa-
tions. The architecture can provide for developing a complex

60 system that is likely to involve many interacting components
for development as a product line, which can be developed
with state-of-the-art software engineering techniques.

In further embodiments, different versions/releases of a
system can be viewed as being a distinct product within a

65 product line. The new version of a software system may be
viewed as a product and may be amenable to state of the art
techniques for the development of product lines.



US 8,082,538 B2
3

In yet a further embodiment, a product-oriented architec-
ture of evolving systems can provide development of a
plethora of tools to support development.

Systems, clients, servers, methods, and computer-readable
media of varying scope are described herein. In addition to the
aspects and advantages described in this summary, further
aspects and advantages will become apparent by reference to
the drawings and by reading the detailed description that
follows.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an overview of a method to
develop software, according to an embodiment;

FIG. 2 is a block diagram of an overview of a method to
develop software, according to an embodiment;

FIG. 3 is a block diagram of a hardware and operating
environment in which different embodiments can be prac-
ticed;

FIG. 4 and FIG. 5 are block state diagrams of an acquain-
tance sub-organization as a set of roles collaborating by use of
several multi-role interactions, according to embodiments;

FIG. 6 and FIG. 7 are block diagrams of behavior of
acquaintance organization, according to embodiments;

FIG. 8, FIG. 9 and FIG. 10 are block diagrams of an
evolution plan, according to embodiments measuring solar
storm risk; and

FIG. 11, FIG. 12, FIG. 13 and FIG. 14 are block diagrams
of evolution from one plan to another plan, according to
embodiments.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description, reference is made to
the accompanying drawings that form a part hereof, and in
which is shown, by way of illustration, specific embodiments
that may be practiced. These embodiments are described in
sufficient detail to enable those skilled in the art to practice the
embodiments, and it is to be understood that other embodi-
ments may be utilized and that logical, mechanical, electrical
and other changes may be made without departing from the
scope of the embodiments. The following detailed descrip-
tion is, therefore, not to be taken in a limiting sense.

The detailed description is divided into five sections. In the
first section, a system level overview is described. In the
second section, embodiments of methods are described. In
the third section, a hardware and operating environment in
conjunction with which embodiments may be practiced is
described. In the fourth section, a conclusion of the detailed
description is provided.

System Level Overview

FIG. 1 is a block diagram of an overview of a method 100
to develop software, according to an embodiment. Method
100 may solve the need in the art for an architecture of
development of complex software systems that involves
many interacting components and that affords use of state-of-
the-art software engineering techniques and reduces the
resource requirements in generating a build from the system.

In some embodiments of method 100, an evolving system
may be viewed as a product line of systems, where the core
architecture of the product line is fixed (i.e., the substantial
part of the system that does not change), and each version of
the evolving system may be viewed as a particular product
from the product line. Similarly, an enterprise architecture
may be designed to include a core architecture that is

4
unchanging, and various specializations of the architecture
(as the enterprise evolves) may implement various products
of the product line.

Method 100 may include domain engineering 102 of reus-
5 able core assets. The domain engineering 102 can provide

reusable core assets or components that are exploited during
application engineering when assembling or customizing
individual applications.

Method 100 may also include application engineering 104
10 of the reusable core assets or components.

The reusable core assets and the application engineered
portions may be suitable for state-of-the-art software engi-
neering techniques. Thus, method 100 may solve the need for
an architecture of development of a complex software system

15 that is likely to involve many interacting components that
affords uses of state-of-the-art software engineering tech-
niques and reduces the resource requirements in generating a
build from the system.

In some embodiments, the specialization to various prod-
20 ucts (versions of the system) can be viewed as agent-based

additions. The result can be an evolving system that may be a
software product line of multi-agent systems (MAS).

The method and architecture of FIG.1 may scale to enter-
prise architectures and software architectures for two reasons.

25 First, a multi-agent system (MAS) can be an appropriate way
of representing an enterprise and the interactions and coop-
eration between agents in the MAS, as a result of an organi-
zational metaphor that architects the system and reflects the
real enterprise organization. In addition, differences between

30 the enterprise architecture and the software architecture can
be mitigated through the addition of architectural concepts at
the running platform. MAS platforms may be able to manage
architectural evolutions and support architectural concepts at
the implementation level. In particular, method 100 can fac-

35 torize a complex system into a set of simpler systems, such as
storing and managing how to evolve from product one to
another product. Tests of a product that are based on formal
methods may be more feasible since the product to be
checked may require less storage space and the test may be

40 less complex.
FIG. 2 shows an embodiment of method 100 in which

actions 102 and 104 are divided into requirements, analysis,
design, and implementation (e.g. a typical software develop-
ment lifecycle). FIG. 2 is described in more detail below.

45 The system level overview of the operation of some
embodiments is described in this section of the detailed
description. Some embodiments can operate in a multi-pro-
cessing, multi-threaded operating environment on a com-
puter, such as computer 302 in FIG. 3. The operating envi-

50 ronment of FIG. 3 is discussed in more detail below.
While the method 100 is not limited to any particular

domain engineering 102 and application engineering 104, for
sake of clarity, simplified domain engineering 102 and appli-
cation engineering 104 are described.

55

Method Embodiments

In the previous section, a system level overview of the
operation of an embodiment is described. In this section,

60 some embodiments of methods are described by reference to
• series of flowcharts. Describing the methods by reference to
• flowchart can enable one skilled in the art to develop pro-
grams, firmware, and hardware, including instructions to
carry out the methods on suitable computers, and executing

65 the instructions from computer-readable media. Similarly,
the methods performed by the server computer programs,
firmware, or hardware can also be composed of computer-



US 8,082,538 B2
5
	

6
executable instructions. Methods 100-200 can be performed

	
nization of the system. The core architecture can be formed as

by a program executing on, or performed by firmware or	 a composition of the role models corresponding to the more
hardware that is a part of a computer, such as computer 302 in 	 stable features in the system.
FIG. 3.	 In some embodiments of method 200 of generating 202 the

FIG. 2 is a block diagram of an overview of a method 200 5 domain requirements, analyzing 204 the domain, and engi-
to develop software, according to an embodiment. Method 	 neering 206 the domain may comprise domain engineering
200 may solve the need in the art for an architecture of

	
102 of reusable core assets of FIG. 1.

development of complex software systems that involves	 Method 200 may also include application engineering 208.
many interacting components and that affords uses of state- 	 Application engineering 208 can build/generate concrete
of-the-art software engineering techniques and reduces the 10 products.
resource requirements in generating a build from the system. 	 The reusable core assets and the application engineered

Method 200 may include generating 202 domain require- 	 portions may be suitable for state-of-the-art software engi-
ments. Generating 202 domain requirements can provide a 	 neering techniques. Thus, method 100 may solve the need for
description of the requirements of the complete family of 	 an architecture of development of a complex software system
products, highlighting both the common and variable features 15 that is likely to involve many interacting components that
across the family. In generating 202 the domain requirements, 	 affords uses of state-of-the-art software engineering tech-
commonality analysis can assist in distinguishing between 	 niques and reduces the resource requirements in generating a
commonalities and variations. Models may use generating 	 build from the system.
202 domain requirements for specifying features such as	 In some embodiments, methods 100-200 may be imple-
when a feature is optional, mandatory or alternative in the 20 mented as a computer data signal embodied in a carrier wave
family. Such models may be called feature models. A feature 	 that represents a sequence of instructions, which, when
could be a characteristic of the system that is observable by	 executed by a processor, such as processor 304 in FIG. 3,
the end user, which in essence represents the same concept as 	 cause the processorto perform the respective method. In other
a system goal, as shown previously.	 embodiments, methods 100-200 may be implemented as a

Method 200 may also include domain analysis 204. Ana- 25 computer-accessible medium having executable instructions
lyzing 204 the domain can produce architecture-independent 	 capable of directing a processor, such as processor 304 in
role models, i.e. acquaintance organization models that define 	 FIG. 3, to perform the respective method. In varying embodi-
the features of the family and the domain of application. In a	 ments, the medium may be a magnetic medium, an electronic
software product line of multi-agent systems (MAS-PLs), 	 medium, or an optical medium.
role models can represent the interfaces and interactions 30

needed to cover certain functionality, such as a feature or a set
	

Hardware and Operating Environment
of features, independently. In regards to acquaintance orga-
nization models, an acquaintance organization can be mod- 	 FIG. 3 is a block diagram of a hardware and operating
eled orthogonally to its structural organization. Such orthogo-	 environment 300 in which different embodiments can be
nal modeling can provide change to the system goals that are 35 practiced. The description of FIG. 3 provides an overview of
enabled in the system by changing the parts of the acquain-	 computer hardware and an example of a suitable computing
tance organization present in the structural organization. 	 environment in conjunction with which some embodiments
Changing the parts of the acquaintance organization can be an 	 can be implemented. Embodiments are described in terms of
important aspect of both software product lines and MAS-	 a computer executing computer-executable instructions.
PLs.	 4o However, some embodiments can be implemented entirely in

This software product line paradigm (SPL) may augur the 	 computer hardware in which the computer-executable
potential of developing a core architecture from which cus- 	 instructions are implemented in read-only memory. Some
tomized products can be rapidly generated, reducing time-to- 	 embodiments can also be implemented in client/server com-
market, costs, and so forth, while simultaneously improving 	 puting environments where remote devices that perform tasks
quality by making greater effort in design, implementation 45 are linked through a communications network. Program mod-
and testing more financially viable, as this effort can be amor- 	 ules can be located in both local and remote memory storage
tized over several products.	 devices in a distributed computing environment.

In a MAS-PL, the enterprise architecture of the system can
	

Computer 302 may include a processor or CPU 304, com-
be observed from at least two different points of view. These	 mercially available from Intel, Motorola, Cyrix and others.
two views are as follows: 	 50 Computer 302 may also include random-access memory

First, an acquaintance point of view can show the organi- 	 (RAM) 306, read-only memory (ROM) 308, and one or more
zation as the set of interaction relationships between the roles 	 mass storage devices 310, and a system bus 312, that opera-
played by agents in models called role models. The acquain- 	 tively couples various system components to the processing
tance point of view can focus on the interactions within the 	 unit 304. The memory 306, 308, and mass storage devices,
system and also on representing how a functionality desig- 55 310, may be types of computer-accessible media. Mass stor-
nated by a system goal can be achieved. 	 age devices 310 can be more specifically types of nonvolatile

Second, the structural point of view can show agents as 	 computer-accessible media and can include one or more hard
artifacts that belong to sub-organizations, groups and teams. 	 disk drives, floppy disk drives, optical disk drives, and tape
In this view, agents may be structured into hierarchical con-	 cartridge drives. The processor 304 may execute computer
structions showing the social structure of the system. The 60 programs stored on the computer-accessible media.
structural point of view can show which agents may be play- 	 Computer 302 can be communicatively connected to the
ing which roles in the acquaintance organization, and thus

	
Internet 314 via a communication device 316. Internet 314

may show how system goals can be achieved by the interac- 	 connectivity is well known within the art. In one embodiment,
tion of agents.	 a communication device 316 can be a modem that responds to

Method 200 may also include domain engineering 206. In 65 communication drivers to connect to the Internet via what is
domain engineering 206, a core architecture of the family can

	
known in the art as a "dial-up connection." In another embodi-

be produced, which may be termed the core structural orga- 	 ment, a communication device 316 can be an Ethernet(k or



US 8,082,538 B2
7

similar hardware network card connected to a local-area net-
work (LAN) that itself is connected to the Internet via what is
known in the art as a "direct connection" (e.g., TI line, etc.).

A user can enter commands and information into the com-
puter 302 through input devices such as a keyboard 318 or a 5

pointing device 320. The keyboard 318 can permit entry of
textual information into computer 302, as known within the
art, and embodiments are not limited to any particular type of
keyboard. Pointing device 320 can permit the control of the
screen pointer provided by a graphical user interface (GUI) of 10

operating systems such as versions of Microsoft Windows®.
Embodiments are not limited to any particular pointing
device 320. Such pointing devices may include mice, touch
pads, trackballs, remote controls and point sticks. Other input 15

devices (not shown) can include a microphone, joystick,
game pad, satellite dish, scanner, or the like.

In some embodiments, computer 302 may be operatively
coupled to a display device 322. Display device 322 can be
connected to the system bus 312. Display device 322 can 20

permit the display of information, including computer, video
and other information, for viewing by a user of the computer.
Embodiments are not limited to any particular display device
322. Such display devices may include cathode ray tube
(CRT) displays (monitors), as well as flat panel displays such 25

as liquid crystal displays (LCD's). In addition to a monitor,
computers can typically include other peripheral input/output
devices such as printers (not shown). Speakers 324 and 326
can provide audio output of signals. Speakers 324 and 326
may also be connected to the system bus 312. 	 30

Computer 302 may also include an operating system (not
shown) that is stored on the computer-accessible media RAM
306, ROM 308, and mass storage device 310, and is and
executed by the processor 304. Examples of operating sys-
tems may include Microsoft Windows®, Apple MacOS®, 35

Linux®, UNIX®. Examples are not limited to any particular
operating system, however, and the construction and use of
such operating systems are well known within the art.

Embodiments of computer 302 are not limited to any type
of computer 302. In varying embodiments, computer 302 can 40

comprise a PC-compatible computer, a MacOSO-compatible
computer, a Linux®-compatible computer, or a UNIX®-
compatible computer. The construction and operation of such
computers are well known within the art.

Computer 302 can be operated using at least one operating 45

system to provide a graphical user interface (GUI) including
a user-controllable pointer. Computer 302 can have at least
one web browser application program executing within at
least one operating system, to permit users of computer 302 to
access an intranet, extranet or Internet world-wide-web pages 50

as addressed by Universal Resource Locator (URL)
addresses. Examples of browser application programs
include Netscape Navigator® and Microsoft Internet
Explorer®.

The computer 302 can operate in a networked environment 55

using logical connections to one or more remote computers,
such as remote computer 328. These logical connections can
be achieved by a communication device coupled to, or a part
of, the computer 302. Embodiments are not limited to a par-
ticular type of communications device. The remote computer 60

328 can be another computer, a server, a router, a network PC,
a client, a peer device or other common network node. The
logical connections depicted in FIG. 3 include a local-area
network (LAN) 330 and a wide-area network (WAN) 332.
Such networking environments are commonplace in offices, 65

enterprise-wide computer networks, intranets, extranets and
the Internet.

8
When used in a LAN-networking environment, the com-

puter 302 and remote computer 328 can be connected to the
local network 330 through network interfaces or adapters
334, which is one type of communications device 316.
Remote computer 328 may also include a network device or
NIC 336. When used in a conventional WAN-networking
environment, the computer 302 andremote computer 328 can
communicate with a WAN 332 through modems (not shown).
The modem, which can be internal or external, may be con-
nected to the system bus 312. In a networked environment,
program modules depicted relative to the computer 302, or
portions thereof, can be stored in the remote computer 328.

Computer 302 can also include a power supply 338. Each
power supply can be a battery.

Apparatus for Analyzing Complex Multiagent
Systems Implementations

In FIGS. 4-12, particular implementations are described in
conjunction with the system overview in FIG. 1 and the
methods described in conjunction with FIGS.1 and 2. FIGS.
4-12 use the Unified Modeling Language (UML) 2.0, which
is an industry-standard language to specify, visualize, con-
struct, and document the object-oriented artifacts of software
systems. Composition can define the attributes of an instance
of a class as containing an instance of one or more existing
instances of other classes in which the composing object does
not inherit from the object(s) it is composed of.

In FIGS. 4-12, some embodiments of an evolutionary MAS
are modeled. As discussed above, each product in a MAS-PL
can be defined as a set of features. Given that all the products
present a set of features that may remain unchanged, the core
architecture can be defined as the part of all of the products
that implement these common features. Thus, a system can
evolve by changing, or evolving, the set of non-core features.

A product or a state in an evolutionary system may be
defined as a set of features with the following relationships,
by way of example. Let F={fl ... fn} be the set of all features
of a MAS-PL. Let cF - F be the set of core features and
ncF=F\cF be the set of non-core features. A valid state S of the
system may be defined as the set of core features and a set of
non-core features, that is to say, S—cF U sF, where sF - ncF
is a subset of non-core features.

Thus, the evolution from one state S z _ 1 to another S can be
characterized as: S Sz_1UnF,z_1\dF,_,wherenf,z_1=:ncFis
the set of new features and dF ,z_ 1 =: ncF is the set of deleted
features. A,,z _, can describe the variation or change between
the product of the state i-1 and the product of the state i, that
is to say, nF,,z_1\dF,,z_1.

In some embodiments, a feature may correlate with a role
model. Thus, for a system to evolve from one state to another,
the role models in nF and dF may be composed or decom-
posed. Specifically, the role models may be composed corre-
sponding to the features in nF with the role models corre-
sponding to the features that remain unchanged from the
initial state S z _ 1 , that is to say S,\dF,,,_1. Decomposition can be
used for role models that must be eliminated.

In FIGS. 4-12, some embodiments of role models and the
operations for composition and decomposition are described.
In the illustrated embodiments, the Methodology for Analyz-
ing Complex Multiagent Systems (MaCMAS) methodology
is implemented, although one skilled in the art will recognize
that other methodologies may be implemented that fall within
the scope of this invention. MaCMAS is an agent-oriented
software engineering (AOSE) methodology. MaCMAS is
specially tailored to model complex acquaintance organiza-



US 8,082,538 B2
9

tions. MaCMAS is implemented herein by way of example
because MaCMAS provides explicit support for MAS-PLs.

A static acquaintance organization view can show the static
interaction relationships between roles in the system and the
knowledge processed by the roles. In this category there may 5

be models for representing the ontology managed by agents,
models for representing their dependencies, and role models.

FIGS. 4-12 can be used by way of example to describe a
swarm of pico-spacecraft that may be used to prospect or
explore the asteroid belt. The enterprise architecture of the io
system may change at run-time depending on the environ-
ment and the state of the swarm. From all the possible evo-
lutions, only two states of the system are shown in FIGS.
4-12.

FIG. 4 is a block state diagram that describes a plan 400 of 15

a role model, for example the role model described in FIG. 6.
Plan 400 shows the order of execution of a multi-Role Inter-
action (mRI). In FIG. 4, a first state 402, depicts a swarm
orbiting an asteroid in order to analyze the asteroid; in a
second state, a solar storm occurs in the environment and the 20

system changes 404 the state of the system to protect itself.
FIG. 5 is a block state diagram that describes a plan 500 of

a role model, for example the role model described in FIG. 7.
Plan 500 shows an order of execution of a mRI, according to
an embodiment. In FIG. 5, examples of role models for both 25

states are shown and an example of composition of both
states, since both features of the system may not be com-
pletely orthogonal. To protect from a solar storm the space-
craft may take two basic actions: (a) orient its solar sails to
minimize the area exposed to the solar storm particles (e.g. 30

trim sails 502), and (b) power-off 504 all possible electronic
components. Action 502 can minimize the forces from
impinging solar-storm particles, which could affect the
spacecraft's orbit. Both actions 502 and 504 can minimize
potential damage from the charged particles in the storm, 35

which can degrade sensors, detectors, electronic circuits, and
solar energy collectors.

FIG. 6 and FIG. 7 are block diagrams of static acquaintance
sub-organizations as a set of static roles 600 and 700, respec-
tively. Roles 600 and 700 may collaborate by use of several 40

multi-Role Interactions (mRI), according to embodiments.
Roles 600 and 700 show all roles, in comparison to plans 400
and 500 that show the order of execution of multi-Role Inter-
actions (mRI). Such mRls can be used to abstract the acquain-
tance relationships among roles in the system. As mRIs allow 45

abstract representation of interactions, these models can be
implemented at one or more levels.

In FIG. 6, static role model 600 represents how a swarm of
spacecraft may orbit an asteroid and measure the asteroid,
according to an embodiment. In FIG. 7, static role model 700 50

represents how a swarm of spacecraft may protect from a
solar storm while the swarm spacecraft continues in orbit,
according to an embodiment. In FIG. 6 and FIG. 7, interfaces,
shown as boxes, can represent the static features of roles
showing their goals, the knowledge managed, and the ser- 55

vices provided. The mRIs, shown as dashed ellipses and
circles, can represent the interactions between the roles linked
to them, showing the goal when collaborating, the pattern of
collaboration, and the knowledge consumed, used, and
obtained from the collaboration. Static role model 600 may 60

include mRIs EscapeOrbit 602, AdjustOrbit 604, Measure
606, ReportOrbit 608 and ReportMeasures 610. Static role
model 600 may further include roles Orbiter 612, «Environ-
ment» Asteroid 614, OrbitModeler 616, and Receiver 618.
Static role model 700 may include mRIs OffSubsys 702 and 65

TrimmingSails 704. Static role model 700 may also include
role SelfProtectSC 706. These roles can be part of an object.

10
Descriptions of the system at different levels of abstraction
may provide simplification of the tests based on formal meth-
ods, for example performing tests at a high level of abstrac-
tion and descending to a lower level of abstraction when one
of these tests fails.

FIG. 6 and FIG. 7 are block diagrams of examples of
behavior of acquaintance organization view. The behavioral
aspect of an organization can show the sequencing of mRIs in
a particular role model. The role model may be represented by
two equivalent models.

A plan of a role separately can represent the plan of each
role in a role model showing how the mRIs of the role
sequence. By way of example, the plan is represented herein
using UML 2.0 Protocol StateMachines. ProtocolStateMa-
chines can be used to focus on a certain role, while ignoring
others.

In FIGS. 8 and 9, plans 800 and 900, respectively, of role
models are shown to represent the order of mRIs in a role
model with a centralized description. The plan of the role
model is herein represented using UML 2.0 StateMachines.
StateMachines can be used to facilitate easy understanding of
the whole behavior of a sub-organization.

Adding a new model to MaCMAS can represent the evo-
lutions of the system. This model can be called the evolution
plan.

FIG. 8, FIG. 9 and FIG. 10 are block diagrams of an
evolution plan, according to embodiments, measuring solar
storm risk. The evolution plan may be represented by a UML
state machine where each state represents a product, and each
transition represents the addition or elimination of a set of
features, that is to say, A. In addition, the conditions in the
transitions can represent the properties that must hold in the
environment and in the system in order to evolve to the new
product.

In FIG. 8, a part of the evolution plan is shown. In FIG. 8,
each role model is represented by state machines of system
evaluation for adding system protection from solar storms. In
FIG. 8, two products are represented, one product 802 repre-
senting the swarm when orbiting an asteroid under normal
conditions, and another product 804 representing the swarm
when orbiting and protecting from a solar storm. As can be
seen, features can be added or deleted corresponding to pro-
tection from a solar storm depending on whether or not the
swarm is under risk of solar storm, which can be measured by
the feature represented in the role model of FIG. 9 and FIG.
10.

FIG. 9 is a state diagram that describes a plan 900 of a role
model, for example the role model described in FIG. 10. Plan
900 shows the order of execution of a multi-Role Interaction
(mRI), according to some embodiments. In plan 900, a first
state 902, depicts measuring an asteroid in order to analyze
the asteroid. FIG. 10 depicts static acquaintance sub-organi-
zations as a set of static roles 1000. Static role 1000 may
include mRI SolarStormRisk 1002. Static role 1000 may also
include role «Environment» Space 1004 and role STMea-
surer 1006.

FIG. 11, FIG. 12, FIG. 13 and FIG. 14 are block diagrams
of an evolution from one plan to another plan, according to
embodiments. Evolution from one plan to another plan can
involve two general actions, namely, composing role models
and decomposing role models. FIGS. 11-14, depicting evolv-
ing plans 1100, 1200, 1300 and 1400, respectively, illustrate
the roles and plans of the embodiments of FIGS. 4-10.

The composition of role models may be used to map an
acquaintance organization onto a set of agents, or in other
words, a structural organization. This mapping may not
always be orthogonal between all role models; applying two



US 8,082,538 B2
11

related features to a product may require their integration. The
composition of a role model can be the process required to
perform this integration. In the case of having orthogonal
features, and thus orthogonal role models, only the prescribed
roles can be assigned to the corresponding agents.

When composing several role models that are not indepen-
dent, artifacts such as emergent roles and mRIs, can appear in
the composition that do not belong to any of the initial role
models. Composed roles and mRIs, the roles and mRIs in the
resultant models that represent several initial roles or mRIs as
a single element, and, unchanged roles and mRIs, can be left
unchanged and imported directly from the initial role models.

Once the role models have been determined, the core archi-
tecture can be completed by composing those role models.
Composing role models may also be performed to obtain a
certain product. Importing an mRI or a role may require only
its addition to the composite role model. The following shows
an example of how to compose roles and plans.

In some embodiments, when several roles are merged in a
composite role model, their elements can be merged as fol-
lows:

GOAL OF THE ROLE: The new goal of the role may
abstract all the goals of the role to be composed. This infor-
mation can be found in requirements hierarchical goal dia-
grams or this information can be added as the `and' (conjunc-
tion) of the goals to be composed. In addition, the role goal for
each mRI can be obtained from the goal of the initial roles for
that mRI.

CARDINALITY OF THE ROLE: This can be the same as
in the initial role for the corresponding mRI.

INITIATOR(S) ROLE(S): If mRI composition is not per-
formed, as in the instant exemplary case, this feature may not
change.

INTERFACE OF A ROLE: All elements in the interfaces
of roles to be merged can be added to the composite interface.
Notice that there may be common services and knowledge in
these interfaces. When this happens, the common services
and knowledge can be included only once in the composite
interface, or renamed, depending on the composition of their
ontologies.

GUARD OF A ROLE/MRI: The new guards can be the
and' (conjunction) of the corresponding guards in initial role

models if roles composed participate in the same mRI. Oth-
erwise, guards may remain unchanged.

Evolution from the product Maintain Orbit And Measure,
that may also have the feature Measure Storms, to the product
Protect From Solar Storm may require the addition of the
feature to protect from a solar storm. This may be true for at
least two reasons. First, the features Maintain Orbit And
Measure, and Measure Storms, may belong to the core archi-
tecture, and second, the Protect From Solar Storm can happen
in any moment, and the last-made measurements of the aster-
oid must, in some embodiments, be reported before power-
ing-off subsystems. Thus, as these role models may not be
orthogonal, a composition of the roles models can be per-
formed. This composition, represented in FIG. 11, can be
done following the merged elements, or rules, prescribed
above. As can be observed, all the mRIs and mostroles canbe
imported. In addition, a composition of roles Self-ProtecSC
and the rest in the role model Maintain Orbit And Measure
may have been performed.

The composition of plans may include setting the order of
execution of mRIs in the composite model and using the role
model plan or role plans. One of several algorithms can be
implemented to assist in this task, for example, extraction of
a role plan from the role model plan and vice versa, and
aggregation of several role plans.

12
Because of these algorithms, both plan views may be main-

tained as consistent without any prompting. Depending on the
number of roles that have to be merged, the composition of
the plan of the composite role model can be based on the plan

5 of roles or on the plan of the role model. Several types of plan
composition can be used for role plans and for role model
plans, for example:

SEQUENTIAL: The plan can be executed atomically in
sequence with others. The .nal state of each state machine can

to be superimposed withthe initial state of the state machine that
represents the plan that is to be executed, except the initial
plan that maintains the initial state unchanged and the final
plan that maintains the final state unchanged.

15 INTERLEAVING: To interleave several plans, a new state
machine can be built where all mRIs in all plans are taken into
account. Notice that usually the order of execution of each
plan to be composed can be preserved. Algorithms can be
implemented to check behavior inheritance to ensure that thi s

20 constraint can be preserved, since to ensure this property, the
composed plan may inherit from all the initial plans.

The composition of role model plans can be performed
following one of the plan composition techniques described
previously. Later, if the plan of one of the composed roles, as

25 it may be neededto assignthe new planto the composedroles,
may be of interest, the plan can be extracted using the algo-
rithms mentioned previously.

A composition of role plans can be performed following
one of the techniques to compose plans described previously.

so Later, if there is interest in the plan of the composite role
model, for example for testing, the plan can be obtained using
the algorithms mentioned previously.

In each of FIG. 12, FIG. 13 and FIG. 14, a composed plan
is shown, according to embodiments. This exemplary plan is

35 shown to follow an interleaving composition in which the
mRI Report Orbit 608 can measure before starting the Protect
From Solar Storm. Notice that when finishing the solar storm,
the system can evolve to the other product deleting the feature
Protect From Solar Storm. Then, the plan of the feature Main-

40 tain Orbit and Measure can start from its initial state, thus
restarting the exploration of the asteroid.

Decomposing role models can be simpler than composi-
tion. When the role model to be eliminated is orthogonal to
the rest, only the corresponding roles may be deleted from the

45 agents that are playing the roles. In the case where the role
model is dependent with others, the elements of role models
can be deleted and all the interactions that refer to the role
models are eliminated. Given that, in the software architec-
ture described herein, the system can support the role concept

5o and its changes at run-time, the above-mentioned changes can
be made easily with a lower impact on the system.

However, features may appear whose role models involve
a dependency. In these cases, some roles may have to be
decomposed. These roles can be those whose mRIs belong to

55 the scope of the role model(s) that may be eliminated. In these
cases, the role can be decomposed into several roles in order
to isolate the part of the role to be deleted.

In addition, the mRI(s) of the role models) can be elimi-
nated from the role model plan or the role plans. This may be

6o done starting from the plan of the initial dependent role mod-
els. Each separate role model usually can maintain the order
of execution of mRIs determined in the initial model, but
executes only a subset of mRIs of the initial role models. The
behavior of the role model to be deleted can be extracted

65 automatically. This algorithm may allow the extraction of the
plan of remaining role models from the initial ones constrain-
ing this to the set of mRIs that remains in the model.



US 8,082,538 B2
13

Apparatus components of the FIGS. 4-12 can be embodied
as computer hardware circuitry or as a computer-readable
program, or a combination of both. In another embodiment,
components in FIGS. 4-12 can be implemented in an appli-
cation service provider (ASP) system.

More specifically, in the computer-readable program
embodiment, the programs can be structured in an object-
orientation using an object-oriented language such as Java,
Smalltalk or C++, and the programs can be structured in a
procedural-orientation using a procedural language such as
COBOL or C. The software components can communicate in
any of a number of ways that are well-known to those skilled
in the art, such as application program interfaces (API) or
inter-process communication techniques such as remote pro-
cedure call (RPC), common object request broker architec-
ture (CORBA), Component Object Model (COM), Distrib-
uted Component Object Model (DCOM), Distributed System
Object Model (DSOM) and Remote Method Invocation
(RMI). The components can execute on as few as one com-
puter as in computer 302 in FIG. 3, or on at least as many
computers as there are components.

CONCLUSION

A software product line of multi-agent systems is
described. Although specific embodiments have been illus-
trated and described herein, it will be appreciated by those of
ordinary skill in the art that any arrangement which is calcu-
lated to achieve the same purpose may be substituted for the
specific embodiments shown. This application is intended to
cover any adaptations or variations. For example, although
described in object-oriented terms, one of ordinary skill in the
art will appreciate that implementations can be made in a
procedural design environment or any other design environ-
ment that provides the required relationships.

In particular, one of skill in the art will readily appreciate
that the names of the methods and apparatus are not intended
to limit embodiments. Furthermore, additional methods and
apparatus can be added to the components, functions can be
rearranged among the components, and new components to
correspondto future enhancements and physical devices used
in embodiments canbe introduced without departing from the
scope of embodiments. One of skill in the art will readily
recognize that embodiments are applicable to future commu-
nication devices, different file systems, and new data types.

The terminology used in this application is meant to
include all object-oriented, database and communication
environments and alternate technologies which provide the
same functionality as described herein.

We claim:
1. A tangible computer-accessible storage medium having

executable instructions to create a multi-agent system soft-
ware product line, the software product line being a collection
of software systems, the software systems of each collection
exhibiting common properties and common code, the soft-
ware systems of each collection differing from each other
software system in at least a supported functionality, the
executable instructions capable of directing a processor to
perform:

generating a domain of reusable core assets; and
generating a software product, wherein the software prod-

uct is an implementation of a software system from the
reusable core assets, the core assets being software com-
ponents considered to be common to the software prod-
ucts in the product line from at least one agent-based
addition.

14
2. The tangible computer-accessible storage medium of

claim 1, wherein the instructions are further capable of direct-
ing a processor to perform:

generating domain requirements for systems in the product
5	 line;

analyzing a domain; and
engineering the domain, wherein engineering the domain

comprises generating the product from the core assets
common to the software products and variations specific

l0	 to the system software product.
3. The tangible computer-accessible storage medium of

claim 2, wherein the instructions are further capable of direct-
ing a processor to perform:

15 providing a description of the requirements of a family of
products, wherein products comprise software systems
that share a core of common code and common func-
tionality, describing both common and variable features,
wherein a feature is a function or support for a function

20 provided by the software system across the family where
the family is a number of software systems that share a
common set of core assets, the core assets comprising
common code, common features, or common function-
ality,) and differ in functionality or platform;

25	 determining which common and variable features exist in
the domain; and

specifying features that are optional, mandatory, and alter-
native in the family.

4. The tangible computer-accessible storage medium of
30 claim 3, wherein the instructions are further capable of direct-

ing a processor to perform:
producing architecture-independent models that define the

features of a family and the domain of application; and
orthogonally modeling an acquaintance organization,

35 wherein the acquaintance organization specifies which
entities or components in the system interact with one
another to provide change to system goals enabled in the
system by changing parts of the acquaintance organiza-
tion present in a structural organization.

40 5. The tangible computer-accessible storage medium of
claim 2, wherein the instructions are further capable of direct-
ing the processor to perform:

producing a core architecture, wherein the core architec-
ture comprises architecture common to the software

45 products in a family, the core architecture being formed
as a composition of role models corresponding to the
reusable core assets, wherein a role model describes the
roles that a component plays in a system.

6. The tangible computer-accessible storage medium of
50 claim 3, wherein each of the features comprises:

a characteristic of the system that is observable by an end
user, which represents a system goal.

7. The tangible computer-accessible storage medium of
claim 1, wherein the agent-based addition further comprises:

55	 an agent-based addition that is changed more than the
reusable core assets.

8. The tangible computer-accessible storage medium of
claim 1, wherein the system further comprises:

a plurality of cooperating agents.
60 9. A computer-implemented method to evolve from one

plan to another plan, the method comprising:
integrating role models to map an acquaintance organiza-

tion onto a set of agents; and
integrating role models into a composite role model to

65	 generate a product,
wherein a role model describes the roles that a component

plays in a system.



US 8,082,538 B2
15

10. The computer-implemented method of claim 9,
wherein a plurality of the role models further comprise:

an acquaintance sub-organization operable to collaborate
by use of a plurality of multi-role interactions.

11. The computer-implemented method of claim 10, 5
wherein the multi-role interactions further comprise:

a representation of interactions between linked roles,
showing a goal when collaborating, the pattern of col-
laboration, and knowledge consumed, used, and io
obtained from the collaboration.

12. The computer-implemented method of claim 9,
wherein integrating the role models into a composite role
model further comprises:

16
merging several roles into the composite role model, in

consideration of at least one goal of at least one of the
roles, at least one cardinality of at least one of the roles,
at least one initiator of at least one of the roles, at least
one interface of at least one of the roles, and at least one
guard of at least one of the roles.

13. The computer-implemented method of claim 9,
wherein integrating role models to map an acquaintance orga-
nization onto a set of agents further comprises:

integrating role models that are not independent;
leaving unchanged roles; and
importing directly from initial role models.


	8082538-p0001
	8082538-p0002
	8082538-p0003
	8082538-p0004
	8082538-p0005
	8082538-p0006
	8082538-p0007
	8082538-p0008
	8082538-p0009
	8082538-p0010
	8082538-p0011
	8082538-p0012
	8082538-p0013
	8082538-p0014
	8082538-p0015
	8082538-p0016
	8082538-p0017
	8082538-p0018
	8082538-p0019
	8082538-p0020
	8082538-p0021
	8082538-p0022
	8082538-p0023

