
Detecting Abnormal Machine Characteristics in Cloud Infrastructures

Kanishka Bhaduri
MCT Inc., NASA Ames

Moffett Field, CA-94035
Kanishka.Bhaduri-1@nasa.gov

Kamalika Das
SGT Inc., NASA Ames

Moffett Field, CA-94035
Kamalika.Das@nasa.gov

Bryan L. Matthews
SGT Inc., NASA Ames

Moffett Field, CA-94035
Bryan.L.Matthews@nasa.gov

Abstract—In the cloud computing environment resources are
accessed as services rather than as a product. Monitoring this
system for performance is crucial because of typical pay-per-
use packages bought by the users for their jobs. With the huge
number of machines currently in the cloud system, it is often
extremely difficult for system administrators to keep track of all
machines using distributed monitoring programs such as Gan-
glia1 which lacks system health assessment and summarization
capabilities. To overcome this problem, we propose a technique
for automated anomaly detection using machine performance
data in the cloud. Our algorithm is entirely distributed and
runs locally on each computing machine on the cloud in order
to rank the machines in order of their anomalous behavior
for given jobs. There is no need to centralize any of the
performance data for the analysis and at the end of the analysis,
our algorithm generates error reports, thereby allowing the
system administrators to take corrective actions. Experiments
performed on real data sets collected for different jobs validate
the fact that our algorithm has a low overhead for tracking
anomalous machines in a cloud infrastructure.

I. I NTRODUCTION

Cloud Computing [1] refers to the infrastructure in which
applications are delivered as services over the Internet.
These infrastructures are supported by very large networked
distributed machines. Users typically can pay for the time
they would like to use these resources, e.g. CPU usage per
hour or storage costs per day. This mode of computation is
beneficial to both the user and provider for several reasons:

• by allowing pay-per-use model, the users can run their
jobs with less cost investment compared to owning the
machines themselves

• since there is a cost associated with the loan of the
resources, users will always have an incentive to return
them, when no longer needed

• an easy way for the cloud provider to add resources
when the demands are not met anymore

With the introduction of any new technology, there is always
a need for developing techniques for health assessment of
these systems. This is true even in the case of clouds, where
providers strive for availability and responsiveness since
expectations on the side of the users are high. System admin-
istrators in charge of such systems have a daunting task in
maintaining them given hundreds and thousands of machines

1ganglia.sourceforge.net/

in the system. In case of failures, these faults may quickly
propagate causing wide spread damage. Therefore system
administrators would like to automatically detect these faults
as early as possible for early mitigation strategies.

Event monitoring programs such as Ganglia2 provides a
web based visualization interface for allowing the system
administrators to view different parameters pertaining tothe
health of each of the machines in the distributed infrastruc-
ture. Detailed list of the parameters are given in Section V.
Given there are hundreds to thousands of machines in the
system, visual inspection of system performance may be too
late or nearly impossible. Moreover, it is also imperative to
isolate the fault to a few subset of variables (fault isolation).
An automated fault detection and isolation technique is
necessary in such scenarios.

In this paper, we describe an automated fault detection
framework for cloud systemFDCSwhich runs on top of the
Ganglia system. The algorithm is entirely decentralized; as
a result does not burden any single machine with excessive
workload and at the same time does not require all the
data to be centralized for execution.FDCS takes all the
measurements of Ganglia into consideration and reports a
ranked list of the machines based on its anomaly or fault
score. Moreover, for each machine in this list, a system
administrator can display the most faulty variable which
caused the anomaly. The algorithm uses distance based
anomaly definition to identify if a machine is faulty or not.
It is extremely fast and can run continuously on changing
data, thereby allowing an uninterrupted monitoring of the
machine performance. UsingFDCS, one can take corrective
actions early before they become fatal faults and thereby
degrading the overall system performance.

The rest of the paper is organized as follows. In Section
II we discuss some previous work related to this area of
research. Next in Section III we discuss the notations and
problem definition. In Section IV we present our fault detec-
tion and isolation (FDCS) framework. Empirical evaluation
is presented in Section V. Finally, we conclude and discuss
some future directions in Section VI.

2ganglia.sourceforge.net/

https://ntrs.nasa.gov/search.jsp?R=20120000081 2019-08-30T18:38:08+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10565239?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. RELATED WORK

In this section we present some work related to this area
of research.

Arshad et al. [2] presents a framework for intrusion
detection and diagnosis for clouds. The goal of the paper
was to map the input call sequences to one of the five
severity levels: “minimal”, “medium”, “serious”, “critical”,
and “urgent”. The authors have used decision trees for this
task. The tree learns rules which can perform predictions
on unseen instances. Experiments with publicly available
system call sequences from the University of New Mexico
(UNM) show that the algorithm exhibits good performance.
A similar approach was also developed by Zhenget al. [3]
and [4]. The last paper uses canonical correlation analysis
(CCA) for tracking maximally correlated subspaces over
time. One problem with both these techniques is that they
both need labeled examples for training which are difficult
to acquire.

Most of the existing techniques for failure detection
are rule-based [5] which defines a set of watchdogs. The
method comprises of monitoring a single sensor using some
hard thresholds. Whenever, the sensor value crosses the
threshold, an alarm is raised. However, this threshold needs
to be changed for different types of jobs to prevent missed
detections and false alarms.

Bodik et al. [6] develop a method for identifying time
cycles in machine performance which fall below a certain
threshold. They use quantiles of the measured data to
statistically quantify faults. They optimize the false positive
rate and provide the user to directly control it. This method
was evaluated on a real datacenter running enterprise level
services giving around 80% detection accuracy. However,
as with some of the previous techniques, this method too
requires labeled examples. An overview article on this topic
is available at [7].

Pelleget al. [8] explore failure detection in virtual ma-
chines. They use decision trees to monitor counters of the
system. First of all, this method requires labeled instances
for training and. Moreover, the counters which are moni-
tored are manually detected which reduces the scope of its
general applicability. It is only suitable for well managed
settings that include predictable workloads and previously
seen failures.

Some data mining techniques have also been applied for
monitoring distributed systemse.g. the Grid Monitoring
System (GMS) by Palatinet al. [9] and the fast outlier
detection by Bhaduriet al. [10]. GMS uses a distributed
distance-based outlier detection algorithm, which detects
outliers using the average distance tok nearest neighbors.
Similar to our method, GMS is based on outlier detection
and is unsupervised and requires no domain knowledge. But
the detection rate of GMS can be very slow due to the
quadratic time complexity ofk-nn computation. The authors

in [10] propose to speed up this computation using fast
database indexing and distributed computation.

Gabelet al. [11] presents a technique for latent fault de-
tection on clouds. The proposed framework is unsupervised
and based on statistical tests for fault detection. The main
idea behind it is to compare machines performing the same
task at the same time. A machine is flagged as abnormal
when it deviates from the normal behavior. The authors
demonstrate three tests within this framework and provide
theoretical guarantees on the false detection rates of the
proposed tests. The experiments are performed on several
production services of various sizes and natures, including
ones using virtual machines. However, this method is not
distributed, thereby requiring one machine to run the tests.

III. N OTATIONS AND PROBLEM DEFINITION

In this section we present some notations which are
necessary for discussing ourFDCS framework.

Let P1, . . . , Pp be p machines in the cloud infrastructure
connected to each other via a communication infrastructure
such that the set of (one-hop) neighbors ofPi, Γi is known
to Pi. EachPi holds a datasetDi (e.g. its status or log file)
containingn vectors each inRd. We assume

• Disjoint property: Di ∩Dj = ∅, ∀i 6= j

• Global property: D =
⋃p

i=1 Di

In real applications, it is not feasible to computeD due to
massive data sizes, changing datasets or both. In this paper,
we have only introduced this notation to formally define our
global fault detection task via distributed processing.

Given two user-defined parameterst, k > 0, let Nk(x,D)
denote the set ofk nearest neighbors from{D \ {x}}
to x (with respect to Euclidean distance with ties broken
according to some arbitrary but fixed total ordering≺).
Let δk(x,D) denote the maximum distance betweenx and
all the points inNk(x,D) i.e. the distance betweenx and
its k-nearest neighbors inD. δk(x,D) can be viewed as
an outlier ranking function. Let Ot,k(D) denote the top
t points (outliers) inD according toδk(., D). In the rest
of the description, for simplicity, we rewriteNk(b,D),
δk(b,D) andOt,k(D) asNk(b), δk(b) andOk.

Definition 3.1 (Distributed fault detection):Given
integerst, k > 0, and datasetDi at each machinePi, the
goal of distributed fault detection algorithm is to compute
the outliersOk (in D =

⋃

Di).

In the above definition, we have assumed that the dis-
tributed outlier detection algorithm produces the same setof
outliers as its centralized counterpart [12]. The distributed
algorithm that we discuss in this paper guarantee global
correctness.

IV. FAULT DETECTION IN CLOUD SYSTEMS (FDCS)

In this section we describe our Fault Detection in Cloud
Systems (FDCS) framework in which the participating ma-
chines in a cloud computing environment can collaboratively
track the performance of other machines in the system
and raise an alarm in case of faults. Our algorithm relies
on in-network processing of messages, thereby making it
faster than the brute force alternative approach of data
centralization. Moreover, as we discuss in this section, it
also allows fault isolation — determining which features are
most faulty — which is valuable to take remedial actions.

In our distributed setup, we assume that there is a central
machine in the cloud infrastructure called reporter which
does the final reporting of all the outliers. We also as-
sume that all computational entitiesP1, . . . , Pp form a uni-
directional communication ring (except the leader machine
P0) i.e. any machinePi can communicate with the machine
with the higher idPi + 1, 1 ≤ i < p. Furthermore, each
machine holds its own data partitionDi while the test points
are either sent byP0 or read from the disk.

At any point of time,P0 maintains a current list oft
outliers Ok found so far. These are the points which, by
definition, currently have the highest anomaly scoresδk(, D)
on the global datasetD. When the algorithm starts,Ok

is empty and it gets updated as new candidate outliers
are received fromP1, . . . , Pp. Another quantity which the
reporter needs to maintain is the cutoff thresholdc which is
initially set to−∞ and it monotonically increases in value
as more and more outliers are found. Whenever,Ok changes,
it is set to the smallest value inOk and then broadcast to all
the other machines in the cloud for more efficient pruning
of outlier points.

In FDCS, each worker has two modes of operationpush
and pull. Alg. 1 gives the pseudo code for the push mode.
The goal of the push mode is to test a block of data read from
the memory, populate itsk-nn based on its local dataset,
prune the points which are less than the current thresholdci
and then send the residual number of test points to the next
machine in the ring. The details of this step are as follows.
MachinePi maintains a thresholdci it has received from
the reporterP0. Initially ci = −∞. For each pointb in the
test data blockB, machinePi also maintains:

• Lk(b)— the k-nearest neighbors found thus far forb

• rb = max{‖b− y‖ : y ∈ Lk(b)}

Initially, Lk(b) ← ∅ and rb = 0 for each pointb ∈ B.
The algorithm populatesLk(b) for b and checks to see if
the current score ofb is below ci i.e. if rb < ci. If this is
true, then the point is no longer tested and pruned; otherwise
b along with its nearest neighbors found so farLk(b) and
rb are forwarded (pushed) to the next machinePi+1 for
validation.

In the second phase ofFDCS, which is thepull phase,
the goal of the algorithm is to check the received buffer for

Algorithm 1: FDCSpush mode at any machinePi.
Procedure PUSH Anom()
begin

for all blocks of data inDi do
B ← getNextBlock(Di);
for all points b ∈ B do
Lk(b)← ∅;

for all points x ∈ Di do
for b ∈ B, b 6= x do

if dist(b, x) < rb or |Lk(b)| < k then
UpdateLk(b) with x by removing
the farthest point;
Recomputerb;
if rb < ci then

removeb from B;
τi ← τi + 1;

for b ∈ B do
Send(b,Lk(b), rb) to machinePi+1

mod p;

Call PULL Anom();

Algorithm 2: FDCSpull mode at any machinePi.
Procedure PULL Anom()
begin

for all x ∈ received bufferdo
Extract (x,NN k(x), rx) from received buffer;
UpdateLk(x) usingNk(x) andNN k(x);
Updaterx;
if rx > ci then

if x originated in machinePi then
Send(x, rx,Lk(x)) (a potential outlier
message) to the reporter machine (P0);

else Send(x,Lk(x), rx) to machinePi+1

mod p;

elseτi ← τi + 1;

messages, extract the anomalies and their nearest neighbors
and merge the nearest neighbors with the existing ones.
The pseudo code is shown in Alg. 2. For every pointx

in the received buffer,Pi finds the nearest neighbors from
NN k(x) (which are the best set ofk neighbors found so far)
andDi. The neighbor list and the value ofrx are updated
accordingly. As a result, ifrx becomes less thanci, then
x is pruned. Otherwise, ifx originated inPi itself, it has
survived the pruning of all the machines and is sent to the
leader machineP0 (since it can be a potential outlier data
point). If x did not originate onPi, is forwarded toPi+1

Reference data

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

����

��������

����

����

����

��������

��������

����

����

����

����

����

����

��
��
��
��

����

Test points

Reference data

Reference data Reference data

Reference data

Reference dataReference data

Reference data

Reference data

Test points Test points

D2

D3

D1

D3

D2D1

D3

D1
D2

Figure 1. Execution of distributed algorithm. The leftmostpicture shows the setup: the test points are color coded to show which block is assigned to
which machine. Second picture shows that assignment. Thirdfigure shows how the non-pruned points are tested at the othermachines.

with the updated nearest neighbors. MachinePi then goes
back to thepush mode and begins testing the new set of
points. In any step of the execution, if any machine gets
a new cutoff thresholdc, it immediately setsci ← c and
resumes the processing.

Alg. 3 shows the tasks executed by the leader machine in
FDCS. It initializes the outlier listOk to null. Whenever it
receives a new potential outlier it does one of the following:

• If Ok contains less thant outliers,x is added toOk

• If Ok containst outliers, the outlier already inOk with
the smallest score is replaced byx.

If due to either of these computations, the outlier list
becomes full, the cutoff is set to the score of the smallest
outlier and it is then broadcast to all the machines.

Fig. 1 shows a snapshot of the distributed algorithm. The
leftmost figure shows how 3 machines are connected in a
ring. The test points are shown in the middle, color coded to
show that each block is assigned to one machine. The second
figure shows its initial assignment. As the test blocks move
in the ring, each machine prunes points as nearest neighbors
are found. As a result, the size of the test blocks shrinks.
This is shown in the last figure.

One critical component of any distributed algorithm is the
termination criterion. InFDCS this can be implemented in
one of two ways. Each machinePi keeps track ofτi, the total
number of points that it has pruned, and the leader machine
keeps track ofρ, the total number of points it received as
potential outliers. Periodically the leader polls the workers
for their values ofτi’s. Whenever

∑n

i=1 τi + ρ = |D|,
the leader sends a terminate message to all the machines.
Alternatively, each machine can send a termination signal
to the leader when the remaining test block size becomes
zero.

A. Fault Isolation

In FDCS, it is fairly easy to isolate the attribute or feature
which caused the outlier score to be high. Letxt be the
entity with the highest anomaly score (i.e. δk(xt, D)) and
y1, y2, . . . , yk be itsk-nearest neighbors. Then, the anomaly

Algorithm 3: FDCSat master machine
Output : Ok, the set of outliers
Initialization : Ok ← ∅;
if (x, rx,Lk(x)) is receivedthen

ρ← ρ+ 1;
if |Ok| ≤ t− 1 then

Add x to Ok;

if |Ok| = t− 1 then
c← min{δk(y,D) : y ∈ Ok};
Broadcastc to all machines;

if |Ok| ≥ t then
if rx > min{δk(y,D) : y ∈ Ok} then

Drop y ∈ Ok with minimum δk;
Add x to Ok;
c← min{δk(y,D) : y ∈ Ok};
Broadcastc to all machines;

score is:

δk(x,D) =
1

k

k
∑

i=1

dist(x, yi)

wheredist(x, yi) is the squared euclidean distance between
x andyi:

dist(x, yi) =
d

∑

j=1

(

x(j) − y
(j)
i

)2

This shows that the overall score can be decomposed
amongst its individual components and the contribution of
the j-th (j = 1 : d) variable towards the outlier score is:

1

k

k
∑

i=1

(

x(j) − y
(j)
i

)2

.

This is the quantity that we have used in our experiments
as the contribution of thej-th feature towards the overall
score.

B. Efficient Preprocessing for Faster Computation

It has been shown earlier in [10][13] that distance based
algorithms suffer from computational overhead due to its po-
tential quadratic time complexity. To overcome this, Bhaduri
et al. [10] proposed a novel reordering technique of the data.
In the main technique, the test points are ordered according
to their distance to a fixed (randomly chosen) point in space,
with the largest being the one tested first. Moreover, when
searching thek-nn of a single point, the data is processed
in a spiral fashion as shown in Fig. 2. They have shown
that this search strategy exploits better spatial locality, and
therefore, shorter running times. Also by ordering the test
points in largest to smallest distance to a fixed point, it is
intuitive that the cut off may increase faster, resulting in
better pruning. We have used this index at each machine of
our distributed algorithm to execute the local computation
faster.

Reference point

Test point

1

.

.

.

T
est point order

2

3

4

5

6

Figure 2. Description of the index. Left figure shows a dataset with normal
points in blue, outliers in red and the reference and test point. The right
figure shows the order in which the test points are processed with the points
farthest from the reference point being processed first.

V. EXPERIMENTS

In this section we describe an empirical evaluation of our
FDCSalgorithm.

A. Infrastructure Description

FDCS algorithm is implemented in C/C++ using MPI
architecture for message passing. We have run all our
experiments in a cluster infrastructure at NASA containing
128 nodes with 16 machines each having two, quad core
Intel Xeon 2.66 GHz processors and 8 GB of memory,
running Red Hat Linux. Cluster jobs are managed by the
open source torque PBS scheduler. All machines have an
NFS mounted raid array for data storage from a central
machine connected through Gigabit Ethernet.

B. Data Description

The data collection for this experiment has been done
using the cluster performance parameters recorded by the

Ganglia monitoring system version 3.0.7. There are a total
of 30 parameters measured here which cover different per-
formance aspects of the cloud (cluster in this case) such as
CPU usage, RAM usage, disk access, secondary memory
access, job submission time, job completion time, boot time
of the machine and so on. The parameter list is shown in
Table V-C. The system monitors the performance parameters
every 15 seconds and logs the average for each 6 minute
interval. The files are exported daily at this resolution in
comma separated format.

C. Experimental Setup

For our experiments, we monitored the cluster perfor-
mance in a controlled environment by submitting a fixed
set of 64 jobs to run on 8 machines for 3 days. Our job
consists of reading 200 MB numerical data followed by a
kernel and SVD computation, and finally writing the solution
on disk files. The code written in MATLAB is shown in
Figure 3. TheFDCS algorithm in our experiment uses the
last 27 parameters.

D. Results

The cluster performance data for each of the 8 machines
concatenated as 6 minute composites for 3 days is stored
locally at each machine and we run the distributedFDCS
algorithm on this data to identify the top 50 global out-
liers. The outliers identified are unique<machine-id-time
interval> tuples in this data set. The report generated by
FDCS identifies the most frequent machine id in this list of
top 50 outliers and returns that machine as the highest ranked
faulty machine for the given job and time period. Figure
4 shows a possible report generated as the output of the
FDCS algorithm. The report lists the topk (user specified)
number of anomalies from the entire data set. For each of the
anomalies, the algorithm computes the anomaly scores and
also the respective weights associated with the parameters
responsible for the anomalous behavior. The histogram on
the right of Figure 4 shows the counts of the most anomalous
machines in the topk list. The most frequently occurring
machine id in the topk list is designated as the most faulty
machine in the list.

TheFDCSalgorithm can not only identify the most faulty
machine for a job, but also can isolate the cause of the
fault by indicating the parameter which behaves in the most
erratic fashion compared to the others. In our analysis,
the cluster shows no signs of anomaly and, therefore, we
have artificially injected faults for demonstration purposes.
We have made the free swap space of machine number 8
decrease by 80% for 10 consecutive intervals towards the
tail end of the job and then run theFDCSalgorithm on this
data set. We see that the algorithm reports machine 8 as
the most anomalous machine and the free swap space and
the processor load as the two most anomalous features in the
data set. Figure 5 shows the plot of these two features for the

job schedule date, time, boottime
network bytes in, bytes out, pkts in, pkts out
processor cpu aidle, cpu idle, cpu nice, cpunum, cpuspeed, cpusystem, cpuuser, cpuwio
process load fifteen, loadfive, load one, procrun, proc total

main memory mem buffers, memcached, memfree, memshared, memtotal, part max used
storage disk free, disk total, swapfree, swaptotal

Table I
L IST OF PERFORMANCE PARAMETERS OBTAINED USINGGANGLIA

Figure 3. Matlab code for fictitious job used to measure cluster performance

entire job span. The red curve represents the time series for
machine 8 while the blue curve represents the most normal
time series for the same feature. We call the machine with
the lowest frequency of occurrence in the topk list as the
most normal machine.

In another scenario, we have run our experiment in a
regular cluster environment with multiple other jobs running
simultaneously. For this data, we identify the features that
occur the maximum number of times in the topk anomaly
list. The processor load and memory cache appear to be
the two most frequent parameters identified to be most
anomalous. Figures 6 and 7 shows the time series of both
of these features for the entire 26 hour period that we
have monitored the cluster system. This experiment validates
that the anomalies identified by the centralized and the

distributed algorithm are identical. Most of the anomalies
for the cache memory are outside of our submitted job
execution indicating that the other job(s) running must have
been extremely memory intensive. On the other hand, quite
a few anomalies in the processor load variable occur during
the execution of our submitted job, indicating that the out
job is a computation intensive job adding to the processor
load.

VI. CONCLUSION

Given a cloud infrastructure with hundreds to thousands
of machines, it is always a challenge for the system admin-
istrators to monitor the health of the machines. Monitoring
programs such as Ganglia only allow the administrators
to visualize the performance of all the machines using a
web based GUI. As the scale of the system increases, it

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Time (Hours)

S
ys

te
m

 L
oa

d

Anomalous Node (8)
Normal Node (1)

(a) CPU load vs. time

5 10 15 20 25

1.023

1.0232

1.0234

1.0236

1.0238

1.024

1.0242
x 10

8

Time (Hours)

F
re

e
S

w
ap

 S
pa

ce
 (

K
b)

Anomalous Node (Node 8)
Normal Node (Node 1)

(b) Free swap space vs. time

Figure 5. Time series plots of two most anomalous features for the most faulty machine identified by theFDCSalgorithm

Figure 4. Sample report generated for identifying the topk outliers in the
performance data. The report highlights the most faulty machine from the
top k list.

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3
]

Time (Hours)

cpu system
Anomaly Identified
Job Start
Job Finished

Figure 6. Time series plot of CPU load for the entire monitoring duration
with anomaly time points highlighted for Machine 8

5 10 15 20 25
0.9

1

1.1

1.2

1.3

1.4

1.5x 10
6

Time (Hours)

Mem Cache
Anomaly Identified
Job Start
Job Finished

Figure 7. Time series plot of cache memory for the entire monitoring
duration with anomaly time points highlighted for Machine 8

is imperative to develop automated methods to detect the
faulty machines and isolate the causes before these faults
have cascading effects on the entire system. By replacing
the human in the loop by an automated fault detection tech-
nique, the response time decreases dramatically. OurFDCS
framework achieves this goal by deploying a distributed
outlier detection algorithm that does not require data to be
centralized, allowing extremely fast detection.FDCS has a
reporting system which returns the top few faulty machines
along with the reasons as to why they are faulty.

As part of future work, we plan to deploy this system to
large production systems to test the performance ofFDCS.

ACKNOWLEDGMENTS

This research is supported by the NASA System Wide
Safety Assurance Technologies project under NASA Aero-
nautics Mission Directorate.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the Clouds: A Berkeley View of
Cloud Computing,” Electrical Engineering and Computer
Sciences University of California at Berkeley, Tech. Rep.
UCB/EECS-2009-28, 2009.

[2] J. Arshad, P. Townend, and J. Xu, “An Automatic Intrusion
Diagnosis Approach for Clouds,”International Journal of
Automation and Computing, vol. 8, pp. 286–296, 2011.

[3] A. X. Zheng, J. Lloyd, and E. Brewer, “Failure Diagnosis Us-
ing Decision Trees,” inProceedings of the First International
Conference on Autonomic Computing, 2004, pp. 36–43.

[4] H. Chen, G. Jiang, and K. Yoshihira, “Failure Detection in
Large-Scale Internet Services by Principal Subspace Map-
ping,” IEEE Trans. on Knowl. and Data Eng., vol. 19, pp.
1308–1320, 2007.

[5] M. Isard, “Autopilot: Automatic Data Center Management,”
Operating Systems Review, vol. 41, pp. 60–67, 2007.

[6] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. An-
dersen, “Fingerprinting the datacenter: automated classifica-
tion of performance crises,” inProceedings of EuroSys’10,
2010, pp. 111–124.

[7] M. Goldszmidt, D. Woodard, and P. Bodik, “Real-time
identification of performance problems in large distributed
systems,” inMachine Learning and Knowledge Discovery for
Engineering Systems Health Management, A. Srivastava and
J. Han, Eds. Taylor and Francis, 2011.

[8] D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and
T. Adeshiyan, “Vigilant: out-of-band detection of failures in
virtual machines,”SIGOPS Oper. Syst. Rev., vol. 42, pp. 26–
31, 2008.

[9] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff,
“Mining for misconfigured machines in grid systems,” in
Proceedings of KDD’06, 2006, pp. 687–692.

[10] K. Bhaduri, B. Matthews, and C. Giannella, “Algorithmsfor
Speeding up Distance-Based Outlier Detection,” inProceed-
ings of KDD’11, 2011, pp. 859–867.

[11] M. Gabel, R. Gilad-Bachrach, N. Bjorner, and A. Schuster,
“Latent Fault Detection in Cloud Services,” Microsoft Re-
search, Tech. Rep. MSR-TR-2011-83, 2011.

[12] S. Bay and M. Schwabacher, “Mining distance-based outliers
in near linear time with randomization and a simple pruning
rule,” in Proceedings of SIGKDD’03, 2003, pp. 29–38.

[13] M. Otey, A. Ghoting, and S. Parthasarathy, “Fast Distributed
Outlier Detection in Mixed-Attribute Data Sets,”DMKD,
vol. 12, pp. 203–228, 2006.

