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ABSTRACT

Various color histogram equalization (CHE) methods have
been proposed to extend grayscale histogram equalization
(GHE) for color images. In this paper a new method called
“histogram diffusion” that extends the GHE method to
arbitrary dimensions is proposed. Ranges in a histogram are
specified as overlapping bars of uniform heights and
variable widths which are proportional to their frequencies.
This diagram is called the “vistogram.” As an alternative
approach to GHE, the squared error of the vistogram from
the uniform distribution is minimized. Each bar in the
vistogram is approximated by a Gaussian function. Gaussian
particles in the vistoram diffuse as a nonlinear autonomous
system of ordinary differential equations. CHE results of
color images showed that the approach is effective.

Index Terms— Color image processing, Contrast
enhancement, Mixture of Gaussians

1. INTRODUCTION

A rapid transition from grayscale to color images has been
undergone in the last three decades. There has been an
explosion of color algorithms that ranges from direct
extensions of grayscale methods to more sophisticated
techniques which exploit correlations among color bands.
The grayscale histogram equalization (GHE) is one of the
simplest and most effective methods for contrast
enhancement in many image-processing applications [1][2].
The method is wuseful in processing images with
backgrounds and foregrounds that both are bright or dark.
For example, GHE of the Lena image is shown Figure 1.
The contrast of the equalized image shown in Figure 1 (b) is
enhanced conspicuously. The histogram equalization
technique are useful in alleviating the photometric disparity
of different images from the same scene, e.g., in stereopsis.
The extending of GHE to color images, i.e., color
histogram equalization (CHE), is not simple. Various
methods have been proposed to address this issue. Those
approaches can be categorized as: i) marginal (or
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(a) Lena image (b) GHE equalizec{ Iimage
Figure 1: Grayscale histogram equalization of the Lena Image.

conditional) CHE, and ii) multidimensional histogram
equalization (MHE). Assuming the marginal histograms of a
color image are independent from other aspects of the
histogram, the marginal CHE applies GHE directly to them
[3][4][5][6]. The techniques provide fast and efficient
algorithms to equalize histograms. However, they do not
consider the correlation between different bands.
Multidimensional ~ histogram  equalization = methods
reformulate GHE not to use the order information, thus,
making it extendable to multi-dimension [1][7][8][9].
Approximating the histogram by a mixture of isotropic
Gaussians (MIG), Kim and Yang proposed another CHE
method to fit PDFs and generate an almost uniform
histogram [10][11]. However, to sustain the continuity of
mapping the method required special care to the scale
parameter, which could be difficult to accomplish.

The aims of the research are two-fold: i) to establish a
new concept of histogram diffusion which is dynamically
and numerically stable, and ii) to apply the method to image
enhancement, i.e., CHE. The histogram of any dimension is
approximated by a MIG and thus provides the smooth
probability density function. The disparity between the MIG
and the target distribution function in terms of the squared
error provides a potential energy function for the histogram
diffusion, which has to be minimized. Adding kinetic energy
of Gaussian particles, the histogram diffusion process is
formulated as a nonlinear autonomous system of ordinary
differential equations (ODEs) [16]. The proximity of
Gaussian particles reduces the computational time in a linear
order fashion. Examples of color histogram diffusion
demonstrate its effectiveness in CHE.
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2. HISTOGRAM DIFFUSION

A histogram of a grayscale image is a graphical display of
tabulated frequencies, which are obtained by counting the
number of pixels of a given set of intensity ranges. The
frequency of intensity ranges are usually represented as non-
overlapping rectangular bars of uniform widths and variable
heights which are proportional to the magnitude of
represented quantities. For example, a 1D histogram in the
normalized domain D =[b",b"] , where b’ =405, is
shown in Figure 2 (a). On the other hand overlapping bars of
uniform heights but variable widths represent a histogram
where the heights of overlapped bars are proportional to the
degree of overlap (Figure 2¢). The new diagram is called a
“vistogram.” This is to indicate that the volume of bars in
multi-dimension changes according to their frequencies.

To understand the GHE method and the concept of
vistogram the centralized GHE method is introduced. For a
given histogram represented by probability {p,} at points

{x,}7_, in the domain D , the centralized GHE method is

M
x; =32pk sgn(x; —x,) . (0)
k=1

Application of the centralized GHE method to the histogram
in Figure 2 (a) is presented in Figure 2 (b). Correspondingly,

the equalized vistogram shows the perfect uniform
distribution (Figure 2d):
D
xjﬂ—x;:% for i=1,2,-n. (0)

The histogram equalization, therefore, can be achieved by
removal and minimization of overlapping and vacant areas
of the corresponding vistogram.

Minimizing the squared error of vistogram provides an
alternative to GHE and can be extended to CHE. In fact, (0)
is a minimizer of the squared errors. However, it does not
guarantee the continuity of transformation. This is the result
of heavy overlap of bars in the vistogram because the
squared error has plateaus in some places. To avoid these
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Figure 2: Histogram vs. vistogram equalization.
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Figure 3: Scaled and smoothed vistograms.

anomalies a scaled smoothed version of vistogram is
diffused (Figure 3).

To construct a scaled vistogram in three dimensions a
scale parameter s<R", which is embedded into each
hypercylinder of the vistogram, is chosen. This procedure
adjusts the height and base volume of each four-dimensional
hypercylinder, while its mass is preserved. Let B(¢,R) be a
d-dimensional ball of the radius R centered at ¢ . Then its
volume integral, V' (R), is calculated as [12]

V(R)=4R’. 0)
Let u(x) be a uniform distribution function in D =[b",b" ] :
u(x)::{l : xeD )

0 : x¢gD,

and B(x;c,r,s) be a scaled hypercylinder function of the
radius » and the scale s centered at ¢ in D :
57 —c|<
B(x;e,r,s)=1" Ix=elissr ()
0 : [[x—cl>sr.
Then the mass of the scaled hypercylinder is p =V (r) . For

a sufficiently small s all hypercylinders in the vistogram
are reduced in size and do not overlap each other.
To approximate the scaled hypercylinder the Gaussian

distribution function g(x;p,o’I) of x with mean p and

isotropic covariance o”I (I is a three-dimensional identity
matrix) is employed

oo [x—nlf
g(xsp,o I)—(\/go_)3 exp{ Py } 0)

To determine p and o that fit g(x;p,o’T) to B(x;c,r,s),

their squared error is minimized. The hypercylinder of
known volume p in three-dimensional vistogram is well

approximated by the Gaussian function of the same weight,
mean and standard deviation: o o i/; . Hence, all
hypercylinders can be converted into Gaussian functions.

For a given histogram {(x,,p,)};, in the domain
D =[b",b" T, the probability density function is

Fp.5X)=Y pg (), ©)

where: p:=(p,,p,,--,p,) is the vector of n probabilities;

X is a concatenated vector of all x. ’s;

i



g,(x) = g,(x;x,,5°3 p’1) is the ith component of MIG. The

squared error of MIG from the uniform distribution is
employed to measure the uniformity. The uniformity
potential £ for the uniform distribution is

E=, {u(x)—ip,-g,(x)} dx
~1-23C+Ys,,

where: C, = ID p,8,(x)dx be the coherence of the ith

©)

component. It represents the volume of the ith component in
D; S, = Iw p:p;8(X)g,(X)dx is the scattering of the ith
and jth components. It represents their intersection volume.
Let C:=)" C, and S:= Z,-,,-Si/ be total coherence and

scattering potentials, respectively. Integrating the ith
component of C,
3
C = piHG?,i B (0)
£=1

where: G2, :=G(b"; &,5°3p})-G(b; &.,5°3p}) is the
definite integral of the marginal distribution of g,(x) with
respect to &-coordinate (£ €[b7,b"]). Each term §; is

b,

S, = v 0
! (x/ﬁsy)deXp{ 2 } ©

where: s = («3/ p; +3p; )s2 is the pooled-scale variance of

-1
i

the ith and jth Gaussian components, z, := (X, —X,)s; is
the pooled-scale displacement.

The histogram diffusion is a conservative system. Its
uniformity potential £ depends only on x, ’s. Since the
histogram is a set of particles of different masses, its total
kinetic energy T is

T==>pX . 0)

The Euler-Lagrange formulation provides equation of
motion for the histogram diffusion:
pX, =—V E=-V §+V Cfori=12,-,n, (0)

with a balancing constraint for the scaling factor s,

V.S=VvV.C. 0)
The histogram diffusion process is a nonlinear autonomous
system of ODEs with a single time-independent constraint.
The histogram diffusion process possesses valuable
properties: 1) dynamical and numerical stability, and ii) low
computational complexity [13][14][15].

3. EXPERIMENTAL RESULTS

The histogram diffusion method provides almost the same (a) Canonical configuration

mapping of the centralized GHE (0) as shown in Figure 5
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(a) Histogram diffusion (b) Mesh deformation [8]
Figure 5: GHEs for the Lena image.

(a). The equalized image resembles the image in Figure 1
(b). The histogram of the Lena image is positive at 219 gray
values out of 256. Figure 5 (b) shows that the transformation
function of GHE [8] is a piecewise linear approximation of
cumulative histogram.

The error of 1D histogram diffusion from conventional
GHE is calculated as the difference between the exact
solution x" (0) and an actual solution X that is obtained by
minimization of (0). However, the solution X cannot be
obtained explicitly and, therefore, the true error cannot be
calculated directly. Newton’s method is used to estimate the
standard error, but it does not provide a satisfactory estimate.

The canonical configuration of a 1D histogram is
shown in Figure 4 (a) where p +p,+p,=1,
x,=05(p, -1) and x, =0.5(1- p,). It is assumed that p,

does not interact with histogram values inside the domain.
But it interacts with p and p, at the end points. This

assumption is valid only when the scaling factor is
sufficiently small. The absolute error calculated as | X, — x; |
can be scaled down if p, + p, + p, <1. Its projection on the
plane p, x p, is shown in Figure 4 (b). The intensity of

shadowed areas corresponds to the value of absolute error,
i.e., the black zone corresponds to the maximum value. The
mean value of absolute error is 0.0126. It reaches a
maximum of 0.5 for 0 < p, <0.4 or 0< p, <0.4. The level

of error is too small for the human eye to detect it in
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Figure 4: Absolute error for a canonical configuration.



() Color-equalized image. (d) Equalization of (b).
Figure 6: Two-band color histogram equalization.

equalized images.

Figure 6 (a) is the original (335x228) red-green image
of the head of a moth [8]. It has two (R-red and G-green) 16
level bands. Its histogram is positive at 588 colors. The
contrast of image is low because its histogram (Figure 6b) is
dense along the diagonal. Using the histogram diffusion
method the histogram was expanded to fit the uniform
distribution. Figure 6 (c¢) and (d) show that the equalized
image has higher contrast than the original image. The
squared error of color-equalized image in Figure 6 (b) was
0.00615.

The results are compared to images reconstructed with
the use of marginal CHE method. Figure 7 shows (768x512)
images with 16 levels in each R, G, and B bands.
Histograms of all images have 1501 colors. The image
obtained with the marginal CHE method shows little
enhancement of contrast compared to the original image.
The image equalized with the proposed method shows even
greater variety of colors compared to others. The squared
error of color-equalized image in Figure 7 (b) was 0.092.

4. CONCLUSION

Histogram diffusion is developed and extends the GHE
method to multi-dimension. As an alternative GHE the
squared error of vistogram from the uniform distribution is
minimized. To acquire smoothness, convexity and
simplicity in mathematical formulation, all bars in the
vistogram are approximated with Gaussian functions. As a
result, the vistogram is approximated with a MIG. The
histogram diffusion process is formulated as a nonlinear
autonomous system of ODEs.

Results of histogram equalization for color images
show the effectiveness of the histogram diffusion method.
1D histogram diffusion provides a solution which is nearly
identical to conventional GHE and preserves the order of
occurrences. Numerical error analysis of GHE and the

(a) Original color image. (b) Color-equalized image.
Figure 7: Histogram equalization of a color image.

histogram  diffusion method with their canonical
configurations shows the mean absolute error = 1%. Results
of histogram equalization of color images present uniform
histograms and guarantee a greater variety of colors
compared to original images.
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