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3 Detecting Moving Targets by Use of Soliton Resonances
Faint targets moving uniformly would be distinguished from background clutter.
NASA’s Jet Propulsion Laboratory, Pasadena, California

A proposed method of detecting mov-
ing targets in scenes that include clut-
tered or noisy backgrounds is based on a
soliton-resonance mathematical model.
The model is derived from asymptotic so-
lutions of the cubic Schroedinger equa-
tion for a one-dimensional system ex-
cited by a position-and-time-dependent
externally applied potential. The cubic
Schroedinger equation has general sig-
nificance for time-dependent dispersive
waves. It has been used to approximate
several phenomena in classical as well as
quantum physics, including modulated
beams in nonlinear optics, and superflu-
ids (in particular, Bose-Einstein conden-
sates). In the proposed method, one
would take advantage of resonant inter-
actions between (1) a soliton excited by
the position-and-time-dependent poten-
tial associated with a moving target and
(2) “eigen-solitons,” which represent dis-
persive waves and are solutions of the
cubic Schroedinger equation for a time-
independent potential.

In nondimensionalized form, the
cubic Schroedinger equation is
WUy + Uy + Viu?u = Vu,

where x is the nondimensionalized po-

sition coordinate, / is nondimensional-

ized time, u(x,t) is a complex state vari-

able, v is a coupling constant, V(x,?) is

the nondimensionalized externally ap-
plied potential, and the subscripts de-
note partial differentiation with respect
to the variables shown therein. The
equation admits of a variety of solutions
that have different qualitative and
quantitative properties: Depending on
the magnitudes and signs of model pa-
rameters, the model can represent a
positive or negative moving target po-
tential that induces “bright” or “dark”
solitons in an attractive or repulsive
Bose-Einstein condensate.

In the proposed method, one would
exploit a property of “bright” soliton so-
lutions: Any uniformly moving compo-
nent of an external potential (for ex-
ample, representing uniform motion of
a target) is amplified, while the remain-
ing components (for example, repre-
senting noise) are dispersed. This phe-
nomenon is similar to a classical
resonance, in which out-of-resonance
components eventually vanish.

A target-detection algorithm ac-
cording to the proposed method
would begin with conversion of read-
ings of target-motion-detecting sen-
sors into values of a fictitious moving
potential. The values would, in turn,
be fed as input to a computational
model of a dynamic system governed

by the cubic Schroedinger equation.
The only surviving output signal com-
ponents would be those having space
and time dependence proportional to
the moving potential. The algorithm
could be implemented computation-
ally — possibly by use of a neural-net-
work mathematical model. Alterna-
tively, the algorithm could be
implemented by use of a physical
model — for example, a superfluid or
a nonlinear optical system.

The algorithm could be expanded to
detect a moving target in a two- or three-
dimensional space. It would not be nec-
essary to develop a two- or three-dimen-
sional soliton-resonance model. For this
purpose, it would suffice to use two or
three one-dimensional soliton-reso-
nance models, each of which would be
used to detect the projection of the mo-
tion of the target onto one of the two or
three coordinate axes. One would then
construct a representation of the two- or
three-dimensional target motion from
the outputs of the algorithm for the two
or three axes.

This work was done by Michael Zak
and Igor Kulikov of Caltech for NASA’s
Jet Propulsion Laboratory. Further in-
Jormation is contained in a TSP (see page 1).
NPO-30895

¢ Finite-Element Methods for Real-Time Simulation of Surgery

Some accuracy is traded for computational speed.
NASA's Jet Propulsion Laboratory, Pasadena, California

Two finite-element methods have
been developed for mathematical mod-
eling of the time-dependent behaviors
of deformable objects and, more specif-
ically, the mechanical responses of soft
tissues and organs in contact with surgi-
cal tools. These methods may afford the
computational efficiency needed to sat-
isfy the requirement to obtain compu-
tational results in real time for simulat-
ing surgical procedures as described in
“Simulation System for Training in
Laparoscopic Surgery” (NPO-21192)

NASA Tech Briefs, October 2003

on page 31 in this issue of NASA Tech
Briefs.

Simulation of the behavior of soft tis-
sue in real time is a challenging prob-
lem because of the complexity of soft-
tissue mechanics. The responses of soft
tissues are characterized by nonlineari-
ties and by spatial inhomogeneities and
rate and time dependences of material
properties. Finite-element methods
seem promising for integrating these
characteristics of tissues into computa-
tional models of organs, but they de-

mand much central-processing-unit
(CPU) time and memory, and the de-
mand increases with the number of
nodes and degrees of freedom in a
given finite-element model. Hence, as
finite-element models become more re-
alistic, it becomes more difficult to
compute solutions in real time.

In both of the present methods, one
uses approximate mathematical models
— trading some accuracy for computa-
tional efficiency and thereby increasing
the feasibility of attaining real-time up-
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date rates. The first of these methods is
based on modal analysis. In this
method, one reduces the number of
differential equations by selecting only
the most significant vibration modes of
an object (typically, a suitable number
of the lowest-frequency modes) for
computing deformations of the object
in response to applied forces.

The second method involves the use
of the spectral Lanczos decomposition
to obtain explicit solutions of the fi-
nite-element equations that describe
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the dynamics of the deformations. The
explicit solutions are used to generate
an “impedance map” of the object: this
involves the precomputation of dis-
placement fields (in effect, a look-up
table), each field being the response to
a unit load along each nodal degree of
freedom. Thereafter, the deformation
of an object is computed as a superpo-
sition of the individual responses of the
nodes. In computing the response of a
given node, one uses the responses of
only those neighboring nodes that lie

within an arbitrary radius of influence.
This method is suitable for a linear
(but not for a nonlinear) finite-ele-
ment model of tissue.

This work was done by Cagatay Basdogan
of Caltech for NASA’s Jet Propulsion Lab-
oratory. I'urther information is contained in
a TSP (see page 1).

This software is available for commercial
licensing. Please contact Don Hart of the Cal-
tfornia Institute of Technology at (818) 393-
3425. Refer to NPO-21190.
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