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moelectric lines and under the silicon ni-
tride infrared absorber. After the detec-
tor structure is fabricated, the sacrificial
layers are removed, typically by etching
in an oxygen plasma. The removal of the
sacrificial layers is what provides the ther-
mal isolation mentioned above.

The design facilitates maximization of
the number of thermoelectric legs to in-
crease the responsivity and the electrical
impedance of the detector. Using 2-µm
widths and 2-µm spacings of thermoelec-
tric lines, it is possible to place about 11
thermocouples under a 50-µm-wide pixel.

Absorption of infrared radiation is en-
hanced by use of a quarter-wave cavity. In

each pixel, a thin layer of metal on the
silicon nitride layer constitutes a front
absorber, while the thermoelectric legs
and interconnecting wires, together,
constitute a back-side mirror.

At the time of reporting the infor-
mation for this article, partially com-
pleted detectors (lacking the silicon
nitride absorbers) of 100-µm pixel size
had been built and tested. The results
of the test indicate a pixel resistance
of 250 kΩ, responsivity of 1.5 kV/W,
response time of 1.7 ms, and detectiv-
ity (D*) of 2.4 × 108 cm⋅Hz1/2/W. Im-
provements are ongoing.
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Cascade Back-Propagation Learning in Neural Networks
This method would be implemented in VLSI circuitry.
NASA’s Jet Propulsion Laboratory, Pasadena, California

The cascade back-propagation (CBP)
algorithm is the basis of a conceptual de-
sign for accelerating learning in artificial
neural networks. The neural networks
would be implemented as analog very-
large-scale integrated (VLSI) circuits,
and circuits to implement the CBP algo-
rithm would be fabricated on the same
VLSI circuit chips with the neural net-
works. Heretofore, artificial neural net-
works have learned slowly because it has
been necessary to train them via soft-
ware, for lack of a good on-chip learning
technique. The CBP algorithm is an on-
chip technique that provides for contin-
uous learning in real time.

Artificial neural networks are trained
by example: A network is presented
with training inputs for which the cor-
rect outputs are known, and the algo-
rithm strives to adjust the weights of
synaptic connections in the network to
make the actual outputs approach the
correct outputs. The input data are
generally divided into three parts. Two
of the parts, called the “training” and
“cross-validation” sets, respectively,
must be such that the corresponding
input/output pairs are known. During
training, the cross-validation set en-
ables verification of the status of the
input-to-output transformation learned
by the network to avoid overlearning.
The third part of the data, termed the
“test” set, consists of the inputs that are
required to be transformed into out-
puts; this set may or may not include
the training set and/or the cross-valida-
tion set.

Proposed neural-network circuitry for
on-chip learning would be divided into
two distinct networks; one for training
and one for validation. Both networks
would share the same synaptic weights.
During training iterations, these weights
would be continuously modulated ac-
cording to the CBP algorithm, which is

so named because it combines features of
the back-propagation and cascade-corre-
lation algorithms. Like other algorithms
for learning in artificial neural networks,
the CBP algorithm specifies an iterative
process for adjusting the weights of
synaptic connections by descent along
the gradient of an error measure in the
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Figure 1. The Cascade Back-Propagation Algorithm provides the theoretical basis for design of an ana-
log neural network that learns rapidly.
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vector space of synaptic-connection
weights. The error measure is usually a
quadratic function of the differences be-
tween the actual and the correct outputs.

The CBP algorithm (see Figure 1) be-
gins with calculation of the weights be-
tween the input and output layers of neu-
rons by use of a pseudo-inverse technique.
Then learning proceeds by gradient de-
scent with the existing neurons as long as
the rate of learning remains above a spec-
ified threshold level. When the rate of
learning falls below this level, a new hid-
den neuron is added. When the quadratic
error measure has descended to a value
based on a predetermined criterion, the
rate of learning is frozen. Thereafter, the
network keeps learning endlessly with the
existing neurons.

Figure 2 illustrates the cascade aspect
of the CBP algorithm. To each newly
added hidden neuron there are not
only weighted connections from all the
inputs but also a new dimension of in-
puts from the previous hidden neu-
rons. The cascade aspect provides two
important benefits: (1) it enables the
network to get out of local minima of
the quadratic error measure and (2) it
accelerates convergence by eliminating
the waste of time that would occur if
gradient descent were allowed to occur
in many equivalent subspaces of synap-
tic-connection-weight space. The cas-
cade scheme concentrates learning

into one subspace that is a cone of a hy-
percube.

The gradient descent involves, among
other things, computation of derivatives
of neuron transfer curves. The proposed
analog implementation would provide
the effectively high resolution that is
needed for such computations. Provi-
sions for addition of neurons at learning-
rate-threshold levels could be made eas-
ily in hardware.
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Figure 2. The Cascade Configuration of connections to added hidden neurons helps to accelerate con-
vergence on the desired state of learning.


