
Joseph A. Ishac
Glenn Research Center, Cleveland, Ohio

SpaceWire Tiger Team Findings and Suggestions

NASA/TM—2011-217201

November 2011

https://ntrs.nasa.gov/search.jsp?R=20110023755 2019-08-30T18:16:04+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/10564773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientific and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientific and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443–757–5803

• Telephone the NASA STI Help Desk at
 443–757–5802

• Write to:

 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320

Joseph A. Ishac
Glenn Research Center, Cleveland, Ohio

SpaceWire Tiger Team Findings and Suggestions

NASA/TM—2011-217201

November 2011

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

The Team would like to thank the contributions of many members of the CoNNeCT staff, including Linda Moore, Doug Reese,
Larry Vincent, and Dale Walters, for attending and hosting meetings regarding the SpaceWire system and its status.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identification
only. Their usage does not constitute an official endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

Level of Review: This material has been technically reviewed by technical management.

This report is a formal draft or working
paper, intended to solicit comments and

ideas from a technical peer group.

NASA/TM—2011-217201 1

SpaceWire Tiger Team Findings and Suggestions

Joseph A. Ishac
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Abstract

This technical report intends to highlight the key findings
and recommendations of the SpaceWire Tiger Team for the
CoNNeCT project. It covers findings which are technical in
nature, covering design concepts and approaches.

1.0 Introduction
The CoNNeCT SpaceWire Tiger Team (hereafter referred

to as the “Team”) was directed to observe the current opera-
tional system and provide suggestions on means to improve
and correct deficiencies which would prevent CoNNeCT from
adhering to its SpaceWire based requirements. These sugges-
tions will be given to the CoNNeCT project to review and
implement as deemed appropriate. It is also CoNNeCT’s
responsibility to properly test such modifications as the Tiger
Team was not provided direct access to hardware or software.

The intended audience of this document is someone familiar
with both the project and the technical structure of the soft-
ware. Detailed background information on the project and
subjects such as Direct Memory Access (DMA) will not be
covered.

The Team held meetings with CoNNeCT staff members and
also had a single meeting with the developer of the SpaceWire
driver code. Outside of these meetings, the Team also took
part and witnessed several testing sessions. The tests consisted
of attempts to transmit data to and from the different software
defined radios over SpaceWire and were performed on the
engineering model located in the main CoNNeCT laboratory.
The Team was not able to directly witness tests on the flight
system. Test results deemed appropriate by the CoNNeCT
staff were occasionally passed along to Team members and
other results were shared upon request.

The remainder of this document is structured as follows.
Section 2.0 outlines the major issues identified by both CoN-
NeCT and the Team. Section 3.0 outlines the major sugges-
tions and solutions presented by the Team.

2.0 Major Issues
Upon formulation, the Team was introduced to several

problems presented by the CoNNeCT avionics team. These
issues provided a good starting point for the Team and
through observation, analysis, and discussion the Team dis-
covered additional issues that should be addressed. This

section briefly outlines those issues. They are rationalized in
more depth later in the document.

2.1 CoNNeCT Identified Issues
The avionics group identified two major issues of immediate

importance, both of which involved DMA transfers. The first
was the inability to correctly transfer bidirectional data over a
single link while using DMA. The second was the inability to
support more than one link using DMA at any one time. The
former is necessary in order to facilitate efficient communica-
tion between components. The latter is necessary as there are
four SpaceWire links and requirements to support more than
one at a time. Doing so without the use of DMA would result
in the CPU spending a majority of time servicing the Space-
Wire links.

2.2 Team Identified Issues
The Team quickly identified an issue regarding the number

of interrupts being generated by the SpaceWire drivers. The
sheer volume of interrupts was causing the CPU to become
overwhelmed and unable to process data correctly, especially
at the higher data rates.

Through discussions with the various radio teams, it was
discovered that the avionics software could not properly pass
error free data. Thus, there was an issue with corrupted and
incomplete data. Analysis of the results would show missing
data, often at the beginning and end of a run (Ref. 1). Howev-
er, there were also cases where there were multiple data
“holes” present, or data missing in the middle of a run with
valid data before and after the occurrence (Ref. 2). Finally,
there were cases where no valid data would be received at all.
Rather, “gibberish” would be recorded by the avionics soft-
ware and appear to have a random pattern.

While observing testing, the Team also discovered an issue
regarding proper systematic troubleshooting of software
changes. As observed, changes to the software would require
the presence of three or more CoNNeCT members to test and
often led to unhelpful results, or in the worst case, crash the
avionics hardware. To compound the issue, impromptu changes
to the software would be made and rerun without due analysis
backing such changes. Often the only result would be further
crashing of the system, resulting in very inefficient use of engi-
neering manpower and resources. Even the success criteria were
poorly defined and varied—often to meet the expectations of the
moment rather than the end needs of the system.

NASA/TM—2011-217201 2

Studying the software structure and behavior, it was noted
that the software does not fully conform to the SpaceWire
specification. The discovered deviations would cause data to
be missing or introduce unwanted data into the serial stream.
The deviations are outlined in more detail in the following
section.

Interviews with both the avionics team and the experimental
users revealed a clear disparity regarding the type and level of
service expected of the avionics software (Ref. 3). Specifi-
cally, disagreement within the project was found regarding the
form and fidelity of the data being transmitted. Furthermore,
the hardware architecture utilizes signaling rates which cur-
rently prevent the system from reaching the highest required
data rates and the software driver structure seems poorly engi-
neered to handle the uses described in the use case scenarios.

3.0 Findings and Suggested Changes
The following sections cover several key changes or obser-

vations that should provide a basis for improving the CoN-
NeCT SpaceWire drivers. We also discuss in some detail why
each change is recommended and how it will help improve
particular aspects of the code or architecture.

3.1 Reduce the Number of Interrupts
First and foremost, the system currently generates too many

interrupts. Specifically, it generates an interrupt for every
250 bytes of data that is received by the SpaceWire card.
Thus, a data arrival rate of 12.5 Mbit/s would generate an in-
terrupt every 160 µs. In order to service each interrupt the
CPU must essentially “shelf” what it is currently doing and
invoke the routine to handle the incoming request. The time
needed to perform that switch is often referred to as the inter-
rupt latency, and a 2002 study of VxWorks showed this laten-
cy to be roughly 98 µs (Ref. 4). In addition the current soft-
ware generates additional, internal interrupts for handling and
passing data between driver functions when servicing the
SpaceWire link.

Since CoNNeCT must strive to achieve data rates up to
100 Mbit/s it becomes questionable whether the current sys-
tem will work. The time between interrupts would decrease
even further. There would not be enough time for the CPU to
handle the incoming requests, nor the other numerous tasks
that the CPU must attend to. Reducing the number of inter-
rupts would also allow the system to better handle other hard-
ware devices as each generates its own set of interrupts.

Thus, the goal should be to minimize the number of times
an interrupt must be generated. The most accepted way to
perform such a task is to utilize DMA and device buffers to
queue data in system memory prior to interrupting the CPU.
The buffers need not be excessively large. For example, a
32 KB buffer in the 12.5 Mbit/s case above would improve the
arrival rate to roughly every 21 ms from 0.16 ms. The
SpaceWire hardware has a board level buffer which should be

leveraged for both DMA and preventing overflows. In order to
prevent data from becoming stale in the buffer a timeout is
used to force an interrupt in the absence of incoming data.
There are several efficient ways of implementing such a timer
at the device driver level by leveraging clock ticks.

3.2 Leverage VxWorks Driver Classes
The current CoNNeCT SpaceWire software architecture uti-

lizes complex structures, design patterns, and custom methods
to handle the task of transferring data between the interface
board and the CPU. The current system as designed will not
accommodate the necessary requirements for servicing mul-
tiple SpaceWire connections as it generates a large amount of
resource contention, which makes it impossible to operate
practically. Leveraging the concepts in this section will allow
for a much more manageable and robust system and reduce the
overall risk of operating over SpaceWire.

The use of SpaceWire in CoNNeCT is purely for point to
point data transfers and is analogous to many other serial de-
vices, such as USB or RS232. The transfer of serial streams is
a well supported concept and VxWorks contains native sup-
port for efficiently constructing and managing such character
drivers (Ref. 5). Leveraging these VxWorks “built-ins” for
character drivers allows the user to make standard system calls
to interact with the SpaceWire ports. For example, a user could
now call open() on “/spw0” and then issue standard write()
and read() calls to transmit and receive data.

In addition, the interface would be initialized during system
startup and be readily available. The system would automati-
cally handle discarding data when the port is not open, and so
forth. In contrast, the current SpaceWire manager task must
handle the task of port management and currently reinitializes
the interface each time the port is to be used, resulting in dis-
carded data at the beginning of a file. Also, the current soft-
ware must “guess” as to the completion of the user transfer,
essentially closing a port after some set duration has passed.
This has shown to truncate data files (missing data at the end
of a file) during most tests.

All of these issues could be mitigated by constructing a sys-
tem using the standard system calls, resulting in consistently
complete data sets and more efficient use of the CPU. That
efficiency is further increased when multiple SpaceWire inter-
faces are used simultaneously, as a properly written character
driver would allow for the use of the select() system call to
quickly service ports that had pending actions.

More information regarding these “built-in” functions are
provided in the Appendix A.

3.3 Deliver Data According to Specifications
As with any independent implementation of a specification,

there are occasionally discrepancies that cause the behavior of
the protocol to vary from what is described in the specifica-
tion. During the analysis of the current system, the Team dis-

NASA/TM—2011-217201 3

covered two behavioral issues which impacted the data stream
delivered to the application.

The first issue is regarding the handling of EEP terminated
packets. An EEP marker is used to terminate a SpaceWire
packet as a means of indicating that the payload may be
incomplete. The technique is often used by SpaceWire
switches which may need to truncate a packet while perform-
ing wormhole routing. Currently, the avionics software treats
such markers as hard errors and resets the link when they are
encountered. However, as defined in section 10.6.3.3 and
11.3.3 of the specification, EEP terminated packets are to be
treated as normal, with the data passed to the application. Sec-
tion 11.4 specifies that the link is reset only on “exchange
level” errors, such as a parity error. Thus, treating EEP mark-
ers as errors causes undue data loss in two ways. First, by not
passing the valid data contained in the packet ending with an
EEP, and second, being unable to receive data as the link is
being unnecessarily reset (Ref. 6).

The presence of EEP in such a simple link topology may be
a result of including SpaceWire switches in the radio firmware
since radios are constantly generating data and may be over-
whelming the internal switch. Implementing the changes sug-
gested in Section 3.2 would help mitigate this issue by keep-
ing the SpaceWire link established after initialization.

The second issue is with regards to handling SpaceWire
headers, which may be present at the beginning of a packet. In
particular, the CoNNeCT team was noticing a 0x92 character
header and passing it to the application user. SpaceWire head-
ers in the range of 0x20 to 0xFE are considered “logical ad-
dresses.”' Their removal by intermediate devices is optional
depending on the network configuration. At the end node, the
"header is stripped off and the packet put in a buffer which
can be accessed by the destination task (Ref. 6).” Thus, the
CoNNeCT team must remove the 0x92 characters before pass-
ing the data to the application.

3.4 Implement a Systematic Testing
Structure

The Team was able to sit in on several testing sessions and
received reports from numerous others. Throughout these
tests, it became clear that a proper testing methodology was
needed. Success criteria were never clearly defined. For ex-
ample, a “successful” code update was shown to perform cor-
rectly in a short test case, but failed when tested over a longer
duration.

While it was clear that the experimental leads were follow-
ing set test plans, there were no provisions in place to supple-
ment those test plans with the additional information needed
to properly diagnose problems. The test plans were structured
well to indicate success if the process went smoothly.
However, should the avionics software crash or when seem-
ingly “random” data was captured, there was insufficient sup-
plemental information to help diagnose the potential issues.
Additional information that was available came in the form of

logging statements generated within the device driver soft-
ware. Such statements at a device driver level are very costly
in resources and are often discouraged as they can negatively
impact the performance and timing of the system.

Setting up a test was also a costly endeavor. It required the
assistance of several engineers to properly configure and ex-
ecute commands on companion systems, such as the radios
and data generator. This team would have to wait in standby as
only several tests were attempted over hours of time. Commu-
nication of what changes were being made to the avionics
software between runs and why the changes may help were
unclear as their basis was never tied to any clear metric or ob-
servation. In some cases, all of the tests would result in the
avionics crashing. Running tests to troubleshoot such crashes
should not require the commitment of multiple engineers.

Also, there were issues referencing older code (in this par-
ticular case, July snapshots) that had a different set of issues,
but was otherwise more stable than the current code according
to previous test results. Although code revision software is in
place, it seems difficult to reference changes based on date,
perhaps either because the changes were left uncommitted,
poorly tracked, or became “throw away” code that was kept
outside of the revision control system (perhaps simply because
it does not conform to the software architecture). The ability to
reference which code is being run with each test is very impor-
tant, even if that code falls into the categories listed earlier.
Such code can still be useful as a means of troubleshooting the
current build, perhaps simply by looking at the logic structure
of both pieces and should be kept for reference.

The Team suggests implementing a proper testing metho-
dology to solve these issues. The test procedures alone are
insufficient. For example, supplement the data captured to
flash with wire captures using a bus analyzer or other tool to
capture data “on the wire”. Run the avionics software via
VxWork's debugger if possible. A test run should consist of a
set of several procedures, run in sequence once. The data is
then analyzed to observe why and where potential issues lie.

A correction could then be proposed, implemented, tested
locally, and then another run issued. Each run should require
the full CoNNeCT support for no more than 1 hr instead of 5.
Following such a scheme also plays well into the revision con-
trol system and allows for more discrete change sets that are
accounted for correctly and with proper rationalization.

To even further facilitate testing, it may be desirable to gen-
erate a few fixed test inputs and software or scripts to quickly
validate the expected output from those fixed inputs. This
would help alleviate the need of specialized equipment (such
as the TSIM) to perform a basic run and may prove invaluable
to other future tests such as during final system integration.

3.5 Recognize Signaling Rate Limitations
The current system utilizes a 100 MHz signaling rate to

drive the SpaceWire interfaces, which is the maximum rate
recommended by the manufacturer of the interface boards.
Since SpaceWire utilizes a 10 bit encoding to transmit 8 bits of

NASA/TM—2011-217201 4

data, the effective maximum throughput at 100 MHz would be
80 Mbit/s. However, recall that CoNNeCT is required to sup-
port a framed data rate of up to 100 Mbit/s. Accounting for the
header overhead due to the framing and focusing on only the
raw data that will be transmitted over the SpaceWire link re-
duces that to 97.7 Mbit/s (see Appendix B for a full listing of
applicable data rates). However, that value exceeds the theo-
retical maximum that the link can currently support. To over-
come this issue, it may be possible to overclock the Space-
Wire boards, driving them at a higher signaling rate. Potential
risks arise when overclocking boards. The boards may no
longer operate in a stable fashion, and if proper attention is not
given to voltages, may damage the board or host system. The
CoNNeCT hardware teams will need to properly evaluate
such risks. For reference, the current SpaceWire specification
currently allows for signaling rates up to 400 MHz.

3.6 Switch to “Streaming Mode”
Upon interviews with the lead software developer for the

low level drivers, it was discovered that a special operating
mode was developed for use with CoNNeCT. This mode was
called “Packet Mode” and constructed with the goal of pass-
ing extra line level details of SpaceWire transactions to the
device users. Thus, special markers and flags were passed to
the application instead of suppressed. Another operating mode
that came with the device was coined “Streaming Mode” by
the developers and simply passed the data bits from the hard-
ware to the software user, leaving the extra information to be
obtained by requesting specific metrics.

While the “Packet Mode” has been in use for over a year,
the behavior that is needed is actually described best by the
“Streaming Mode.” In this mode only the serial data is sent
over the PCI bus to be processed by the CPU. Sending addi-
tional information with the data introduces unnecessary com-
plications and forces the CPU to spend additional resources to
complete an action that the hardware has already performed. It
forces you to begin to complicate the driver instead of keeping
it simple and concise.

“Streaming Mode” presents the driver developer and user
with exactly what is needed—the actual data being sent over
the SpaceWire link. The driver does not need to be compli-
cated by deciphering the stream and users can still have access
to key metrics when needed by specifically asking the hard-
ware, which keeps its own registers and counters to maintain
such metrics.

3.7 Adopt Proper Layering Concepts
The specialized “Packet Mode” discussed earlier was likely

developed mainly due to a misuse of proper layering concepts
and not adhering to proper layer separation. A large part of
this misunderstanding was driven by the concept of Space-
Wire “packets.” While SpaceWire streams data between two
peers, it places this data into segmented payloads, which the

specification calls packets. The size and properties of these
packets are not correlated to the data that needs to be sent, but
are instead a means of allowing multiple users to transmit
streams simultaneously over a single link. CoNNeCT operates
all SpaceWire links such that only a single stream is ever
present as all modems have a dedicated connection for trans-
mitting data. The one modem that also uses SpaceWire for
commanding, has a second SpaceWire interface and does not
send both data and control over a single link.

Unfortunately, the term packet is also popular at many other
layers in the communication stack, such as IP packets. In addi-
tion, the links utilized a SpaceWire packet size that was suffi-
cient to fit an entire radio frame. While the size of the Space-
Wire packets is acceptable and actually desirable, it led to mi-
srepresenting a SpaceWire packet as a higher level encapsula-
tion rather than being treated as a simple means to deliver data
across the link. As such, the current drivers attempted to per-
form several validity checks on the contents of each Space-
Wire packet.

Unfortunately, attempting to validate SpaceWire packets is
an impossibly difficult task as there is not enough information
to properly ascertain validity. At the SpaceWire level, data is
in actuality a stream. Within that stream are other constructs to
aid in extracting the proper information. Parsing those con-
structs is not the job of the SpaceWire driver, but rather of a
“higher layer.” In the CoNNeCT payload, these constructs
differ for each of the three radios in use. Thus, it is up to the
application or user of the stream to correctly process the in-
formation contained within it. It is the driver's job to simply
deliver the data it receives.

To reiterate, the driver code should never attempt to vali-
date the actual data contents of a SpaceWire stream, nor
should it make any judgment based on artificial heuristics that
are not part of the SpaceWire specification. It should instead
focus on processing the data stream and leave validation to the
users of the data which can properly evaluate the data.

4.0 Conclusion and Suggested
Approach

The Team (see Table I) suggests that the software team take
their existing knowledge on interfacing with the SpaceWire
hardware and apply it towards a complete rewrite of the driver
interface. Rather than attempting to utilize complex design
structures, the team should focus on developing routines which
adhere to the driver design structure detailed by WindRiver.
This would allow users to leverage the built-in functions and
allow for proper capturing of data without the need for guess-
ing at durations or startup times. It would also allow for the
user to efficiently manage multiple SpaceWire interfaces, and
provide simple interfaces such as select() to quickly service
only the necessary interfaces.

The Team believes that a rewrite is necessary as the solu-
tions outlined in this document can not be simply inserted into
the current code. A rewrite would allow CoNNeCT to correct

NASA/TM—2011-217201 5

the overall approach of the driver. Likewise, the Team does
not feel that the current code can be made to support the cur-
rent requirements due to these flaws.

TABLE I.—TIGER TEAM MEMBERS

Name Org.
code

Role E-mail

Michael Lichter DPA Team Lead michael.j.lichter@nasa.gov
Monty Andro DPC Electronics

Engineer
monty.andro@nasa.gov

Joseph Ishac RHN Computer
Engineer

jishac@nasa.gov

Michael Mackin DPS Computer
Engineer

mackin@nasa.gov

Linda Moore DPS Computer
Engineer

Linda.moore@nasa.gov

Mary Jo Shalkhauser DPC Electronics
Engineer

maryjo.w.shalkhauser@nasa.gov

Glenn Williams DPA Electronics
Engineer

glenn.l.williams@nasa.gov

References
1. J. Downey, D. Mortensen, et al., “Raw Data, Harris Test

Results,” GRC–CONN–TEST–0669, NASA Glenn Research
Center, Dec. 2010.

2. J. Nappier, W. Eddy, et al., “Raw Data, GD Test Results,”
GRC–CONN–TEST–0469, NASA Glenn Research Center,
Dec. 2010.

3. Personal Interviews, CoNNeCT Validation Test Team, Nov.–
Dec. 2010.

4. B. Ip, “Performance Analysis of VxWorks and RTLinux,”
Technical report, Department of Computer Science, Columbia
University, 2002.

5. P. Ayyalasomayajula and A. Tully, “VxWorks - Device Drivers
in a Nut Shell,” Technical Report, Department of Computer Ar-
chitecture, BarcelonaTech, 2001.

6. European Cooperation for Space Standardization, “SpaceWire -
Links, nodes, routers and networks,” Space Engineering
Standards Document, ECSS–E–ST–50–12C, Jul. 2008.

mailto:michael.j.lichter@nasa.gov?subject=Tiger%20Team
mailto:monty.andro@nasa.gov?subject=Tiger%20Team
mailto:jishac@nasa.gov?subject=Tiger%20Team
mailto:mackin@nasa.gov?subject=Tiger%20Team
mailto:Linda.moore@nasa.gov?subject=Tiger%20Team
mailto:maryjo.w.shalkhauser@nasa.gov?subject=Tiger%20Team
mailto:glenn.l.williams@nasa.gov?subject=Tiger%20Team

NASA/TM—2011-217201 7

Appendix A.—VxWorks Driver Support
As noted in WindRiver's driver development guides,

VxWorks driver architecture provides support for “Serial
Drivers” allowing for easy integration of any components
which behave in a serial fashion as does SpaceWire. The de-
vices will become connected to the I/O system and users can
gain access to the devices by making use of standard calls
such as open(), read(), write(), ioctl(), and so forth. The sys-
tem would initialize the devices when the system starts and
there would be no need to constantly bring the interface up
and down.

For example, say that the driver code creates a SpaceWire
devices called “/spw0”, “/spw1”, etc. It would be possible for
a user to perform the following techniques to interact with a
device of this type. In the simplest case the user could open
the device, transfer data, and then close the descriptor.

if ((fd = open(“/spw0”, O_RDWR, 0)) != ERROR)

// Process data from the radio with read()

// Send data to the radio with write()

// When we are finished close the descriptor

close(fd)

Furthermore it would be possible to perform other opera-
tions such as setting adjustable parameters within the driver or
interacting with multiple open device descriptors as shown in
the following code example. The system call ioctl() can also
be used for reading metrics such as the number of times the
hardware reset the link.

// Set a parameter SW_MODE on the spw0 device

ioctl(fd, SW_MODE, 1)

// Use select to read from a descriptor set

select(FD_SETSIZE, &fdset, NULL, NULL, NULL)

Detailed descriptions of how to construct a driver which

conforms to this model and how to leverage the calls shown
above are provided by the WindRiver documentation entitled
“Device Driver Fundamentals.”

NASA/TM—2011-217201 9

Appendix B.—Data Rates and Formats
The CoNNeCT payload supports three different radios.

Each radio is required to support different data rates for send-
ing and receiving data in what are considered “forward” and
“return” paths. Specifically, CoNNeCT’s requirement docu-
ments call for a specific framed data rate to be supported.
Table II shows a breakdown of an uncoded data link message
(the data that is transmitted over the RF link). The “frame” is
highlighted and consists of the frame header (TFPH) and the
frame data (User Data) and totals 256 bytes. The ASM is a
marker used to aid the receiver, but is not considered part of
the frame. The size and definition of a frame is consistent for
all three radios.

TABLE II.—DATA FRAME

Data link format ASM TFPH User data
Size in bytes 4 6 250

However, even though the format is the same, each radio

transmits a different portion of the data link over the Space-
Wire interface for processing by the avionics software. This
slightly alters the data rates necessary over SpaceWire to sup-
port the framed data rates required in the specification docu-
ments. Furthermore, the signaling rate to each radio link to the
avionics is different. The maximum theoretical data rate poss-
ible over a link is capped to 80 percent of the signaling rate
since SpaceWire utilizes 10 bits to encode 8 bits of data.

Table III shows a breakdown of the three different radios
when both sending and receiving data. Thus, each highlighted

pair represents a single radio. The first two columns show the
signaling rate and the corresponding maximum theoretical data
rate. The third column shows the maximum required rate as
specified in the system requirement documents for sending
and receiving framed data, which may differ per direction. The
fourth column shows the type of data that is transmitted over
the SpaceWire link. For example, “F-TFPH” indicates that the
data being sent is a frame without (“-”) the TFPH. If we once
again reference Table II, we can find this to mean that only the
“User Data” is sent. The final column shows the modified rate
needed to support the format in column four. This is the rate
that must be supported by the SpaceWire link to achieve the
necessary system requirements. As mentioned earlier in the
document. The last line shows how it will be impossible for
the third radio to achieve the 100 Mbit/s rate due to the signal-
ing rate limitations.

TABLE III.—SPACEWIRE DATA RATES IN MBIT/S

SpaceWire
signaling

rate
(MHz)

Max data
rate

Framed data
rate

(required)

Actual
stream over

SW

Necessary
data rate
over SW

24 19.2 0.072 FRAME 0.072
24 19.2 1.000 FRAME 1.000
33 26.4 0.769 F+ASM 0.781
33 26.4 0.769 F+ASM 0.781

100 80 12.50 F-TFPH 12.207
100 80 100.0 F-TFPH 97.656

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
01-11-2011

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
SpaceWire Tiger Team Findings and Suggestions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Ishac, Joseph, A.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 289972.10.03.03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-17886

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR'S
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2011-217201

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 60 and 61
Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This technical report intends to highlight the key findings and recommendations of the SpaceWire Tiger Team for the CoNNeCT project. It
covers findings which are technical in nature, covering design concepts and approaches.

15. SUBJECT TERMS
Computers; Computer programs; Radio equipment; Operating systems; Modems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

16

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	TM-2011-217201
	Abstract
	1.0 Introduction
	2.0 Major Issues
	2.1 CoNNeCT Identified Issues
	2.2 Team Identified Issues

	3.0 Findings and Suggested Changes
	3.1 Reduce the Number of Interrupts
	3.2 Leverage VxWorks Driver Classes
	3.3 Deliver Data According to Specifications
	3.4 Implement a Systematic Testing Structure
	3.5 Recognize Signaling Rate Limitations
	3.6 Switch to “Streaming Mode”
	3.7 Adopt Proper Layering Concepts

	4.0 Conclusion and Suggested Approach
	References
	Appendix A.—VxWorks Driver Support
	Appendix B.—Data Rates and Formats

	Report Documentation Page

