
WATER RESOURCES RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

A comparison of methods for a priori bias correction in soil1

moisture data assimilation2

Sujay V. Kumar1,2, Rolf H. Reichle3, Kenneth W. Harrison4,2,

Christa D. Peters-Lidard2, Soni Yatheendradas4,2, and Joseph A. Santanello2

D R A F T September 30, 2011, 2:24pm D R A F T

https://ntrs.nasa.gov/search.jsp?R=20110023466 2019-08-30T18:09:26+00:00Z



X - 2 KUMAR ET AL.: BIAS CORRECTION IN SOIL MOISTURE DATA ASSIMILATION

Sujay V. Kumar, Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD

20771. Ph: 301-286-8663, Fax: 301-614-5808, email: Sujay.V.Kumar@nasa.gov

1Science Applications International

Corporation, Beltsville, MD

2Hydrological Sciences Branch, NASA

Goddard Space Flight Center, Greenbelt, MD

3Global Modeling and Assimilation Office,

NASA Goddard Space Flight Center,

Greenbelt, MD

4Earth System Science Interdisciplinary

Center, College Park, MD

D R A F T September 30, 2011, 2:24pm D R A F T



KUMAR ET AL.: BIAS CORRECTION IN SOIL MOISTURE DATA ASSIMILATION X - 3

Abstract. Data assimilation is being increasingly used to merge remotely sensed3

land surface variables such as soil moisture, snow and skin temperature with es-4

timates from land models. Its success, however, depends on unbiased model pre-5

dictions and unbiased observations. Here, a suite of continental-scale, synthetic6

soil moisture assimilation experiments is used to compare two approaches that7

address typical biases in soil moisture prior to data assimilation: (i) parameter8

estimation to calibrate the land model to the climatology of the soil moisture9

observations, and (ii) scaling of the observations to the model’s soil moisture10

climatology. To enable this research, an optimization infrastructure was added11

to the NASA Land Information System (LIS) that includes gradient-based op-12

timization methods and global, heuristic search algorithms. The land model cal-13

ibration eliminates the bias but does not necessarily result in more realistic model14

parameters. Nevertheless, the experiments confirm that model calibration yields15

assimilation estimates of surface and root zone soil moisture that are as skill-16

ful as those obtained through scaling of the observations to the model’s clima-17

tology. Analysis of innovation diagnostics underlines the importance of address-18

ing bias in soil moisture assimilation and confirms that both approaches ade-19

quately address the issue.20
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1. Introduction

Land data assimilation systems merge satellite or in situ observations of land surface fields21

(such as soil moisture, snow and skin temperature) with estimates from land surface models.22

Observations are often discontinuous in space and time, and their incorporation into the modeled23

estimates helps generate spatially complete and temporally continuous estimates of land surface24

fields. The process of combining observations and model forecasts is typically carried out by25

weighting each based on their respective errors. The uncertainty in model states results from26

model structural deficiencies, errors in model parameter specifications and input forcings. Simi-27

larly, observational data also suffer from errors caused by instrument noise and errors associated28

with the retrieval models. A key assumption in most data assimilation techniques is that the errors29

in observations and model forecasts are strictly random and that on average, the observations30

and model estimates agree with the true estimates. In reality, however, biases are unavoidable31

and it is difficult to attribute the bias to the model or the observations. Nevertheless, the proper32

treatment of such systematic errors is critical for the success of data assimilation systems (Dee33

and da Silva [1998]).34

A number of prior studies have described techniques to address the treatment of bias errors in35

data assimilation systems. Dee [2005] characterizes the data assimilation systems as either “bias-36

blind” or “bias-aware”, based on their treatment of systematic errors. The bias-blind systems37

are designed to correct random, zero-mean errors and assume the use of unbiased observations38

relative to the model-generated background. For soil moisture, the absolute levels of continental-39

scale estimates from land surface models and satellite observations differ significantly (Reichle40

et al. [2004, 2007]), which implies a need for “bias-aware” approaches to soil moisture assimi-41
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lation. An often used method to address such biases is to rescale the observations prior to data42

assimilation in such a way that the observational climatology matches that of the land model43

(Reichle and Koster [2004]; Drusch et al. [2005]; Crow et al. [2005]; Slater and Clark [2006];44

Reichle et al. [2007]; Draper et al. [2009]; Kumar et al. [2009]; Reichle et al. [2010]; Liu et al.45

[2011]; Draper et al. [2011]). Put differently, these so-called “a priori scaling” approaches as-46

similate normalized deviates or percentiles instead of the raw observations. A priori scaling is47

easy to implement as a preprocessing step to the data assimilation system and does not make48

assumptions about whether the climatology of the model or that of the observations is more49

correct. Although the resulting analyses are produced in the model’s climatology, they can be50

scaled back to the observational climatology, if needed. However, since the computation of the51

climatologies is conducted as a pre-processing step, the corrections cannot easily be adjusted to52

dynamic changes in bias.53

Dynamically bias-aware assimilation systems, on the other hand, incorporate specific assump-54

tions about the nature of biases and are specifically built to estimate and correct them. These55

strategies typically attribute the bias to either the model or the observations and use the analy-56

sis increments in the data assimilation system to estimate the bias. Variants of such dynamic57

bias correction strategies have been used in soil moisture assimilation studies (De Lannoy et al.58

[2007a, b]) and for land surface temperature assimilation by Bosilovich et al. [2007] and Reichle59

et al. [2010]. In these studies, the observations are assumed to be unbiased, and the bias is60

attributed to model exclusively. In reality, however, the retrievals from different sensors may be61

biased against each other (Reichle et al. [2007]; Trigo and Viterbo [2003]). The key advantage62

of the dynamic bias estimation and correction approaches is their ability to adapt to transient63

changes in bias.64
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In this article, we explore an alternative strategy for a priori bias correction that has not been65

used for continental-scale soil moisture assimilation: the a priori calibration of land surface model66

(LSM) parameters. We use optimization algorithms to estimate model parameters that minimize67

the bias between model forecasts and observations. Similar to the a priori scaling methods68

discussed above, the a priori calibration approach complements the state update steps of the69

data assimilation system. In the latter, the model forecast is modified only when observations70

are present. In the absence of observational information, the model will revert back to its71

original climatology. Adjusting model parameters offers a way to bring the model’s climatology72

in line with that of the observations, including at times and locations where observations are73

intermittently absent. Like a priori scaling, a priori model calibration does not adjust dynamically74

to changes in model or observation bias.75

Model parameters have long been recognized as a key source of errors in model predictions,76

and many LSM studies have focused on the application of techniques to estimate them (Duan77

et al. [1992]; Burke et al. [1997]; Gupta et al. [1999]; Hogue et al. [2005]; Liu et al. [2004, 2005];78

Santanello et al. [2007]; Peters-Lidard et al. [2008]; Lambot et al. [2009]; Gutman and Small79

[2010]; Nearing et al. [2010]). These studies estimate LSM parameters using independent80

observations of variables such as soil moisture, streamflow and surface temperature. In addition,81

data assimilation studies have also recognized the need to update and estimate model parameters82

for improving the model’s predictive skills. A number of studies have examined the potential83

of parameter estimation in conjunction with state estimation in sequential data assimilation84

systems (Boulet et al. [2002]; Moradkhani et al. [2005]). These approaches, known as joint85

estimation or state augmentation methods, estimate the model parameters concurrently with86

the model states. Such approaches, however, have difficulties in handling the relative time-87
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invariance of parameters (compared to model states) and very large parameter spaces (Liu and88

Gupta [2007]). De Lannoy et al. [2007a] note that in some situations it may be better to estimate89

the bias separately rather than correct it using state augmentation methods. An approach that90

employs the simultaneous use of optimization and data assimilation was described by Vrugt91

et al. [2005], where the model parameters are estimated through the recursive calibration over92

a data assimilation instance. This method considers the estimation of model parameter sets for93

generating the best possible forecasts, when model states are also adjusted through sequential94

data assimilation. The advantages and limitations of these joint state and parameter estimation95

approaches are discussed in detail in Liu and Gupta [2007].96

Here we compare, in the context of data assimilation, the approach of bias mitigation through97

the estimation of model parameters against a priori bias correction strategies that rescale the98

observations to conform to the model’s climatology. The parameter estimation is performed in99

a “batch-calibration” mode, where a set of observational data is used to estimate time-invariant100

model parameters with the objective of minimizing the climatological differences between the101

model and the observations. The model with the calibrated parameters is subsequently employed102

in the data assimilation system to assimilate the raw, unscaled observations. In contrast, the scal-103

ing approaches essentially assimilate the anomaly information instead of the raw observations.104

We investigate these methods with a soil moisture assimilation case study. A new generation of105

satellite soil moisture retrievals are becoming available from the recently launched Soil Moisture106

and Ocean Salinity (SMOS; Kerr et al. [2010]) and the planned Soil Moisture Active Passive107

(SMAP; Entekhabi et al. [2010b]) missions. The results from our study are directly relevant to108

the effective utilization of these new observations in land data assimilation systems.109
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The experiments presented in this paper are conducted using the NASA Land Information110

System (LIS; Kumar et al. [2006]; Peters-Lidard et al. [2007]), which is a multiscale modeling111

system for hydrologic applications developed with the goal of integrating satellite- and ground-112

based observational data products and advanced land surface models and techniques to generate113

improved estimates of land surface conditions. LIS includes a suite of subsystems to support114

land surface modeling for a variety of applications, including a comprehensive sequential data115

assimilation system, based on the NASA Global Modeling and Assimilation Office’s infras-116

tructure (Reichle et al. [2009]; Kumar et al. [2008b]). More recently, a generic optimization117

subsystem has been developed within LIS, with the goal of combining the use of optimization118

and data assimilation in an integrated framework. This new extension to LIS will be described119

in detail below and was used to facilitate the experiments discussed here.120

The paper is organized as follows. The design and capabilities of the optimization subsystem121

within LIS are presented first (Section 2). This is followed by the description of the experiment122

setup that evaluates the use of parameter estimation in data assimilation (Section 3). The results123

from the data assimilation integrations are presented in Section 4. Finally, Section 5 discusses124

the conclusions from the study.125

2. Optimization subsystem in LIS

LIS is designed as an object-oriented framework, where all functional extensions (such as126

land surface models, data assimilation algorithms, meteorological inputs, observational data,127

etc.) are implemented as abstract, extensible components (Kumar et al. [2006, 2008a]). A large128

suite of modeling extensions have been incorporated in LIS using this design paradigm. The129

optimization subsystem in LIS is designed in a similar interoperable manner.130
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2.1. Optimization abstractions

Generically, an optimization instance can be stated as a problem of determining unknown131

parameters by minimizing or maximizing an objective function subject to a number of constraints.132

The optimization subsystem in LIS defines three functional abstractions based on this generic133

form, shown in Figure 1: (1) objective function, (2) decision/parameter space and (3) algorithm134

used to solve the optimization problem. In the instance of parameter estimation, the decision135

space is defined by the list of LSM parameters (or a subset thereof). The objective function136

object represents the function or criteria to be maximized or minimized. Examples include the137

minimization of squared residuals and the maximization of likelihood measures. Finally, the138

optimization algorithm abstraction represents the actual search strategy used to find the optimal139

solution. The interconnections between these three generic pieces are handled within the LIS140

core, which is the unit that enables the integrated use of various extensible components in LIS.141

Custom implementations of each of these three abstractions constitute a specific instance of an142

optimization problem.143

Similar to the design of the LIS data assimilation subsystem (Kumar et al. [2008b]), the data144

exchanges between these abstractions are handled through the constructs of the Earth System145

Modeling Framework (ESMF; Hill et al. [2004]). ESMF provides a standardized, self-describing146

format for data exchange between these components. Three search algorithms of varying com-147

plexity are implemented in this infrastructure: (1) Levenberg-Marquardt (LM; Levenberg [1944];148

Marquardt [1963]) (2) Shuffled Complex Evolution from University of Arizona (SCE-UA; Duan149

et al. [1992, 1993]) and (3) Genetic Algorithm (GA; Holland [1975]). LM is a gradient-based150

search technique and is suited only for deterministic convex optimization problems, whereas151
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SCE-UA and GA are more suited for difficult combinatorial optimization problems such as152

LSM parameter estimation.153

2.2. Genetic Algorithm

In this article, we employ GA for estimating LSM parameters. GAs are stochastic search154

techniques that use heuristics-based principles of natural evolution and genetics. The algorithm155

works by employing a population of individuals (or candidate solutions), each of which is156

represented by a set of values of the problem’s variables that need to be estimated (also called157

decision space). By applying operations that are based on natural evolution concepts, such158

as selection, recombination and mutation, the population evolves towards better solutions over159

several generations (or iterations).160

Figure 2 depicts a flow chart showing the sequence of GA operations during optimization.161

A fitness value that reflects the quality of the solution and its ability to satisfy constraints and162

objectives of the problem is associated with each potential solution. The selection operator163

simulates the “survival of the fittest” behavior by preferentially selecting the solutions with164

higher fitnesses to be present in the subsequent populations. As a result, solutions with good165

traits survive and solutions with bad traits are eliminated. Each pair of selected solutions then166

undergoes the recombination step where two new solutions are generated by combining the167

“genes” of the parent solutions. The mutation operator is used to infuse the population with gene168

values that may not be present in the population. The recombination and mutation rates define169

the probability of crossover between any two pairs and the probability of a gene undergoing170

mutation, respectively. To ensure that the best solution in any generation is not lost through171

these probabilistic recombination and mutation operations, a strategy named elitism is used.172

Elitism ensures that the best solution from the previous generation is compared with the worst173
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solution in the current generation, replacing the current generation’s solution, if better. These174

steps are repeated through several iterations (or generations) until the specified convergence175

criteria is met.176

GAs do not rely upon local or gradient information and are able to deal with complexities in177

the search space such as the presence of local optima and discontinuities. GAs are also well178

suited to handle discrete decision variables and nonlinearity in the simulation models effectively.179

The problem-independent structure of the algorithm has enabled its application in many areas180

of science and engineering (Goldberg [1989]). GAs, however, require the evaluation of several181

simulation runs to obtain the best solution, making them computationally intensive. The high182

performance computing tools in LIS are employed for mitigating this limitation (section 4.3).183

3. Experimental Setup

3.1. Experiment overview

In this section, we describe a suite of synthetic data assimilation experiments that examines184

parameter estimation as an a priori bias mitigation scheme. In addition, two variants of the a priori185

scaling method are used: standard-normal deviate scaling (Crow et al. [2005]) and cumulative186

distribution function (CDF) matching (Reichle and Koster [2004]). The experiment setup is187

similar to that of Kumar et al. [2009], but only two land surface models are used here. The Noah188

land surface model (version 2.7.1; Ek et al. [2003]) employs the four-layer soil model of Mahrt189

and Pan [1984] with thicknesses (listed from top to bottom) of 10, 30, 60 and 100cm. In the190

Catchment LSM (Koster et al. [2000]), the vertical soil moisture profile is determined through191

deviations from the equilibrium soil moisture profile between the surface and the water table.192

Soil moisture in the 0-2 cm surface layer and in the 0-100 cm root zone layer is diagnosed from the193

modeled soil moisture profile. The Catchment LSM typically employs hydrologically defined194
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catchments (or watersheds) as basic computational units. In this study, however, the Catchment195

LSM is used on a regular latitude-longitude grid to facilitate the model intercomparison.196

Using these land surface models, we conducted a suite of synthetic “fraternal twin” assimilation197

experiments. The basic structure of the experiments is as follows: First, a soil moisture simulation198

is conducted with the Catchment LSM to generate the assumed “true” state of the land surface,199

referred to as the control (or “truth”) run. Second, the observations to be assimilated are generated200

from this truth run by introducing realistic retrieval errors. Third, a suite of data assimilation201

integrations are conducted by assimilating these synthetic observations into the Noah land surface202

model, using different bias mitigation strategies. The Noah model integration without any data203

assimilation is referred to as the “open loop” simulation. The assimilation integrations are204

conducted using a one-dimensional Ensemble Kalman Filter (EnKF) algorithm (see Reichle and205

Koster [2003] for details on 1d vs. 3d filtering). The performance of the assimilation approaches206

is evaluated by comparing against the known true fields (from the Catchment LSM integration).207

3.2. Experiment details

All model simulations are conducted on a gridded domain that roughly covers the Continental208

United States (CONUS, from 30.5◦N, 124.5◦W to 50.5◦N, 75.5◦W) at 1◦ spatial resolution, using209

a 30 minute model timestep. Surface meteorological boundary conditions from the Global Data210

Assimilation System (GDAS; the global meteorological weather forecast model of the National211

Centers for Environmental Prediction (Derber et al. [1991])) are used to drive the LSMs. The212

models are cycled three times through the period from 1 January 2000 to 1 January 2006 to ensure213

that internal model states are in equilibrium with the forcing meteorology and parameters. The214

initial conditions generated from this “spinup” process are used in the data assimilation and215

open loop integrations except those that use the optimized parameters. The optimization based216
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integrations use the soil moisture initial conditions estimated through calibration (section 3.3).217

All model and assimilation integrations are conducted over the above-mentioned six year period.218

Each open loop or assimilation experiment with the Noah LSM consists of 12 ensemble219

members (Kumar et al. [2008b]), and the mean of the ensemble is used in the evaluations. In220

order to maintain an ensemble of model fields representing the uncertainty in soil moisture,221

perturbations are applied to select meteorological and model prognostic fields. The parameters222

used for these perturbations are based on previous work (Reichle et al. [2007]; Kumar et al.223

[2009]) and are listed in Table 2. Zero-mean, normally distributed additive perturbations are224

applied to the downward longwave radiation forcing, and log-normal multiplicative perturbations225

with a mean value of 1 are applied to the precipitation and downward shortwave fields (Table 2).226

Time series correlations are imposed via a first-order regressive model (AR(1)) with a time scale227

of 24 hours. No spatial correlations are applied since this study uses the one-dimensional version228

of the EnKF. Cross correlations are imposed on the perturbations of radiation and precipitation229

fields using the values specified in Table 2.230

In addition to the forcing perturbations, the Noah model prognostic variables for soil moisture231

are perturbed with additive noise that is vertically correlated (Table 2). For the perturbations to232

the model prognostics we impose AR(1) time series correlations with a 12 hour time scale. The233

perturbation settings do not introduce systematic biases in the open loop integrations relative to234

a standard, unperturbed, single-member model integration (not shown).235

A set of preprocessing steps are applied to the synthetic retrievals generated from the Catchment236

LSM integration. To account for difficulties in retrieving soil moisture products from microwave237

sensors, the synthetic observations are masked out when the green vegetation fraction values238

exceed 0.7 and when snow or precipitation are present. Random Gaussian noise with an error239
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standard deviation of 0.03 m3m−3 (volumetric soil moisture) is added to the Catchment model240

surface soil moisture values to mimic measurement uncertainties. This error standard deviation241

is chosen as an estimate of the expected error level in surface soil moisture retrievals from242

upcoming space-borne L-band radiometers (Kerr et al. [2010]; Entekhabi et al. [2010b]).243

Five different data assimilation integrations are conducted using these synthetic observations244

(Table 1): (DA-NOSC) Using unscaled observations without any bias correction, (DA-STDN)245

using a priori scaled observations based on standard normal deviate scaling, (DA-CDF) using246

a priori scaled observations based on CDF matching, (DA-OPT1) using unscaled observations247

with a calibrated model, where the model parameters were estimated using a single year of batch248

calibration (year 2000), and (DA-OPT6) using unscaled observations with a calibrated model,249

where model parameters were optimized using all 6 years (2000-2006) of observations.250

The approaches that employ a priori scaling of observations (DA-STDN and DA-CDF) repre-

sent the commonly followed approaches of correcting biases prior to data assimilation by scaling

the observations into the model climatology. The DA-CDF experiment follows the strategy of

Reichle and Koster [2004] and matches the CDF of the observations to that of the model soil

moisture. First, the observation and model CDFs are computed independently for each grid cell

using the six year period. Next, the observations are rescaled, separately for each grid cell, such

that their climatology matches that of the model soil moisture. In theory, this approach corrects

all moments of the distribution regardless of its shape, although in practice the correction of

higher order moments is naturally limited by the sample size. While the climatological differ-

ences between the model and the observations may change with season (Drusch et al. [2005]),

our experiment DA-CDF is based on CDFs derived with data from all seasons lumped together

as in Reichle et al. [2007]. The standard normal deviate-based scaling used in the DA-STDN ex-
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periment is a simpler approach that matches only the first and second moments of the observation

and model distributions but breaks the scaling down by calendar month to account for possible

seasonal changes in the climatological differences. This approach is used, for example, by Crow

et al. [2005]). For a given calendar month k and a given grid cell i, the scaling parameters are the

multi-year mean (θ̄m
i,k and θ̄o

i,k, for model and observations, respectively) and multi-year standard

deviation (σm
i,k and σo

i,k, for model and observations, respectively). For all observations θi from

this particular calendar month (time subscript omitted), the scaled observations θ′
i are then given

by:

θ
′

i = θ̄m
i,k + (θi − θ̄o

i,k)
σm

i,k

σo
i,k

(1)

In contrast, the calibration-based integrations (DA-OPT1 and DA-OPT6) assimilate raw (un-251

scaled) observations and rely on the calibrated model parameters to mitigate bias in the data252

assimilation system. Note that in the four experiments with bias correction, the information253

from the observation set is employed twice. In DA-STDN and DA-CDF, the observations are254

used once for deriving the climatology and then for assimilation, when the scaled observations255

are assimilated. Similarly in DA-OPT1 and DA-OPT6, the same set of observations is employed256

twice, once for the calibration of the model climatology and then again for the subsequent data257

assimilation. We do not separate the periods of model calibration and data assimilation in ex-258

periments DA-OPT1 and DA-OPT6 in order to provide an equivalent comparison to DA-STDN259

and DA-CDF.260

Note that a priori scaling and model calibration are intended to address the relative bias261

between the model and the observations. The data assimilation system then works with a set262

of observations that are unbiased relative to the model background. In this sense, the synthetic263

experiment used here represents the issues in a “real” data assimilation system. The long-term264
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mean and variability of satellite, in-situ and model soil moisture estimates differ from each265

other due to representativeness differences (horizontal and vertical), limited sensor calibration,266

retrieval model assumptions and model deficiencies, implying that, in a climatalogical sense,267

none of the datasets is necessarily more correct than any other (Reichle and Koster [2004];268

Reichle et al. [2007]). Consequently, our use of the “truth” label for the synthetic observations269

does not necessarily imply that satellite-based retrievals are unbiased.270

3.3. Optimization formulation for parameter estimation

In experiments DA-NOSC, DA-STDN, and DA-CDF we use the Noah LSM with its native271

parameters that are mostly based on look up tables (as functions of vegetation and soil categories),272

the same parameters that are used in the operational environments at the National Centers for273

Environmental Prediction (NCEP) and the Air Force Weather Agency (AFWA). For experiments274

DA-OPT1 and DA-OPT6, by contrast, we estimate spatially distributed representations of Noah275

model parameters through GA optimization (section 4.1).276

Table 3 lists the parameters included in the decision space in the optimization simulations based277

on Hogue et al. [2005]. The decision space includes a number vegetation and soil properties278

along with the initial soil moisture states. The initial set of potential solutions in GA is generated279

by randomly sampling from the range of each parameter as specified in Table 3. A population280

size of 50 is used in the GA simulations.281

The objective function at each grid point is defined as the inverse of absolute difference282

in the mean soil moisture values of the observation and the model (Equation 2), where Ji is283

the fitness value for grid cell i, θ̄o
i and θ̄m

i are the the mean soil moisture values from the284

observations (from Catchment LSM), and simulated from Noah model, respectively, for grid285

cell i. The mean soil moisture values θ̄o
i and θ̄m

i are computed at each grid point i by averaging286
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the available soil moisture values over the course of the model simulation. The denominator of287

the objective function thus represents the absolute soil moisture climatology difference between288

the observations and the model.289

Ji =

(
1

|(θ̄o
i − θ̄m

i )|

)
(2)

This objective function is maximized independently for each grid cell i. The optimization290

explores the decision space to maximize the fitness function values, subject to the the allowed291

range of values for each parameter (Table 3).292

The GA integrations use an elitism strategy to ensure that the current best solution is not293

overwritten during GA evolution. A mutation rate of 0.005 and a recombination rate of 0.9 was294

employed. The algorithm was found to converge after approximately 200 generations, when295

the fitness of the best solution was found not to improve in the last 30 generations. These GA296

parameters (including the mutation and recombination rates) are chosen largely from experience297

and the success of the optimization simulations presented in Section 4.1 suggest that they are298

reasonable.299

4. Results

The results presented in this section focus first on the optimization simulations, that is, the300

model calibration conducted prior to the DA-OPT1 and DA-OPT6 assimilation integrations.301

Following this discussion, the different bias mitigation strategies are evaluated within the context302

of soil moisture data assimilation.303

4.1. Optimization simulations
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Two separate optimization simulations are conducted: (1) using a single year of observational304

data (OPT1; observations from year 2000) and (2) using observations from all six years (OPT6;305

years 2000 - 2006). First, we compare the Noah model integrations using these two sets of306

LSM parameters with the open loop simulation that employs the default values from the look307

up table. Figure 3 presents maps of time series mean (climatological) differences in surface308

soil moisture (which is essentially the inverse of the objective function used in the optimization309

simulations). As discussed in section 3.3, the maps are computed by subtracting the mean Noah310

LSM soil moisture values for each of the integrations shown in the figure from the corresponding311

mean Catchment LSM surface soil moisture estimates. In computing these mean fields, we only312

include the times and locations for which (synthetic) observations are available (section 3.2).313

Further, only grid points with at least 600 observations for the evaluation period are considered314

in the analysis of the results.315

Figure 3 demonstrates that using the optimized parameters leads to reducing the systematic316

differences in climatologies between the model and observations, throughout the domain. These317

maps indicate that the Noah open loop integration generates on average (but not uniformly) drier318

soil moisture values compared to the Catchment LSM. The use of optimized parameters helps319

to correct the bias. Both OPT1 and OPT6 integrations improve this systematic underestimation320

in the open loop by providing closer matches to the Catchment (“truth”) estimates, as seen in321

the bottom two panels of Figure 3. The domain averaged soil moisture climatology difference322

is reduced from 0.034 m3m−3 (for OL) to 0.006 m3m−3 for OPT1 and to -0.003 m3m−3 for323

OPT6. If absolute values of climatology differences are used, the improvements from OPT1 and324

OPT6 are even more pronounced; the domain averaged absolute difference reduces from 0.047325

m3m−3 for OL to 0.010 m3m−3 for OPT1 and 0.009 m3m−3 for OPT6. The estimation of model326
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parameters thus enables the correction of systematic biases and leads to a closer match between327

the soil moisture climatologies of the model (Noah) and the synthetic observations (Catchment).328

Figure 4 shows maps of the parameters used in the open loop integration (prescribed using329

look up tables) and the calibrated values from the OPT6 integration. Out of the parameters listed330

in Table 3 we focus on three key parameters: porosity (θs), saturated matric potential (ψs) and331

saturated hydraulic conductivity (Ks). The spatial patterns in the look up table-based parameters332

are similar to each other, because they are determined based on the soil texture map. In contrast,333

the optimized parameters show more spatial variability, because they are not constrained to soil334

types or vegetation categories. Compared to the default parameters, the optimized parameters335

in general show higher values of θs, ψs and Ks over the domain. This is consistent with the336

optimization objective of correcting the dry bias in the open loop integration, as higher values337

of θs, ψs and Ks would allow for more water to be held in the soil and more infiltration into the338

soil, and correspondingly higher soil moisture values. Similar spatial trends are also observed339

in other parameters (not shown).340

Although these spatial trends are consistent with the patterns in soil moisture simulations, the341

intent here is not to judge the veracity or physical realism of the estimated parameters. Instead,342

our goal is to study how bias mitigation through parameter estimation helps in the subsequent343

data assimilation performance. Though the typical approach in land surface models is to employ344

look up table-based parameters that are derived from limited data samples (e.g. Rawls et al.345

[1982]; Cosby et al. [1984]), these representations suffer from numerous issues, including lack346

of spatial representativeness of the datasets on which they are based, errors in extrapolating the347

point-scale to the modeling scales, and the large within-soil class variation of properties that is348

on par with the variation across different texture classes (Schaap [2004]; Braun and Schadler349
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[2005]; Doherty and Welter [2010]; Gutman and Small [2010]). Further, the physical realism and350

mismatch issues of the parameters are difficult to assess at large spatial scales because validating351

in situ measurements of surface and root zone soil moisture that match the scale of the model352

grid cells are not available.353

In short, there is significant uncertainty associated with the default parameters, typically re-354

garded as the “truth”. The optimization formulation in this article samples from the ranges of355

parameters (Table 3) representing the full spectrum across all look up table categories. Additional356

look up table category-based constraints can be introduced on these parameter ranges to ensure357

that the estimated parameters conform to the traditional, category-based (e.g. soil texture-based)358

notions of physical realism. Algorithms and approaches that incorporate notions of “equifinal”359

solutions (e.g., Gupta et al. [1999]; Hogue et al. [2006]) may offer more effective ways to rep-360

resent parameter uncertainty and to ensure physical consistency since they generate a range of361

plausible model fits. The use of such methods is left for a future work. Here, the parameter362

sets generated by the optimization simulations OPT1 and OPT6 may represent mismatches with363

regard to the typical category-based definitions.364

4.2. Data assimilation experiments

This section presents the results from data assimilation experiments that employ different365

strategies for bias correction (section 3.2). Since the suite of experiments include simulations366

that assimilate both unscaled (experiments DA-NOSC, DA-OPT1 and DA-OPT6) and scaled367

observations (experiments DA-STDN and DA-CDF), we primarily use the anomaly time series368

correlation coefficient (R), to quantify the skill of the model simulations.369

The anomaly time series for each grid point is estimated as follows: The monthly-mean clima-370

tology values are subtracted from the daily average raw data, so that the anomalies represent the371
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daily deviations from the mean seasonal cycle. The skill contribution from correctly identifying372

the mean seasonal variation is therefore excluded. The anomaly R values are computed, sepa-373

rately for each grid point, as the correlation coefficients between the daily anomalies from the374

assimilation estimates and the corresponding truth data. Only anomalies at times and locations375

for which observations are assimilated contribute to the computation of the R values. Similar376

to the comparisons in Section 4.1, only grid points with at least 600 assimilated observations377

during the evaluation period are included in the evaluations.378

Figure 5 shows the comparison of the anomaly R values for surface soil moisture from different379

model integrations. Overall, the assimilation experiments perform better than the open loop380

simulation, and the assimilation skill systematically improves from experiment DA-NOSC to381

experiment DA-OPT6. The domain averaged skill of the Noah model integration without any382

data assimilation (OL) is 0.47. When observations are assimilated without bias correction (DA-383

NOSC), the domain averaged skill improves to 0.63. The assimilation skill is further improved384

in the integrations that employ a priori scaling of observations, with domain averaged skill values385

of 0.71 and 0.73, for DA-STDN and DA-CDF, respectively. For the climatological differences386

encountered in this synthetic experiment, the use of higher-order moments in the CDF matching387

technique slightly outperforms the seasonally varying scaling parameters used in DA-STDN.388

Finally, surface soil moisture skill values of 0.73 and 0.75 are obtained for experiments DA-389

OPT1 and DA-OPT6, respectively, when assimilation integrations are conducted with optimized390

parameters that conform to the Catchment LSM (truth) climatology.391

The assimilation of surface soil moisture retrievals is often used as a way to generate superior392

estimates of related states such as root zone soil moisture (Reichle et al. [2007]; Kumar et al.393

[2009]). Figure 6 presents a comparison of the root zone soil moisture skill estimates from394
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different model integrations. Similar to the behavior observed for surface soil moisture, the395

skill of root zone estimates from using the calibrated model is comparable to the skills from396

a priori scaling approaches. The domain averaged open loop root zone skill estimate is 0.45397

and it improves to 0.54 when assimilation is performed without bias correction (DA-NOSC).398

The skill further improves to 0.62 and 0.63, through the use of a priori scaling of observations,399

for integrations DA-STDN and DA-CDF, respectively. Finally, the use of a calibrated model400

together with the assimilation of unscaled observations provides domain averaged skill values401

of 0.62 and 0.63, for integrations DA-OPT1 and DA-OPT6, respectively. For root zone soil402

moisture, the relative advantage of the a priori calibration strategy (DA-OPT1, DA-OPT6) over403

the a priori scaling methods (DA-STDN, DA-CDF) is minimal. The 95% confidence intervals404

of the domain averaged anomaly R values are in the range of 0.008 to 0.01, verifying that the405

improvements obtained through data assimilation in both surface and root zone soil moisture are406

statistically significant.407

In a separate analysis (not shown), we also examined the skill improvements in surface fluxes408

(latent, sensible and ground heat) from the data assimilation integrations. The assimilation runs409

with bias correction (DA-STDN, DA-CDF, DA-OPT1, and DA-OPT6) were found to marginally410

improve the surface flux skill values over the open loop and DA-NOSC integrations, with a priori411

scaling and a priori calibration yielding comparable results.412

Figures 5 and 6 also indicate that soil moisture skill values improve consistently across the413

domain in the data assimilation integrations. To further illustrate this fact, Figure 7 shows414

probability density functions (PDFs) for surface and root zone soil moisture skill values across the415

modeling domain. Compared to the PDF for the OL integration, the PDFs from data assimilation416

integrations show narrower distributions that are skewed towards higher skill values, due to417
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the improved soil moisture estimates from assimilation. For surface soil moisture, the PDF418

for DA-NOSC is shifted towards higher R values, but shows only a marginal reduction in the419

spread compared to the PDF for OL skill (The standard deviation of the PDF reduces from420

0.156 to 0.142). The runs based on a priori scaling (DA-STDN and DA-CDF) yield a greater421

reduction in the OL spread (standard deviation of 0.121 and 0.093, respectively) and a further422

shift towards higher skill values. The DA-OPT1 and DA-OPT6 integrations provide similarly423

reduced variability in skill estimates (that is, consistent improvements) across the domain with424

standard deviations in PDFs of 0.113 and 0.091, respectively). Comparable but more muted425

trends are observed for root zone soil moisture, where the variability in skill values also reduces,426

gradually from the OL to DA-OPT6. In summary, Figure 7 indicates that a priori calibration and427

a priori scaling yield comparable improvements in surface and root zone skill.428

The anomaly R metric is indifferent to any bias in the mean or the amplitude of variations. By429

contrast, the RMSE is highly sensitive to biases. As mentioned earlier, the long-term mean bias430

with respect to the true conditions is difficult (if not impossible) to determine for continental-scale431

soil moisture. To supplement the anomaly R skill values presented above, we now assess the432

“unbiased” RMSE (ubRMSE) values, which are computed from the time series after removal of433

the long-term mean bias (Entekhabi et al. [2010a]). Table 4 provides a comparison of the domain434

averaged ubRMSE values from different model simulations, which shows similar trends to those435

seen with the anomaly R metric. For surface soil moisture, the domain-averaged ubRMSE436

for the OL integration is 0.052 m3m−3, which reduces to 0.041 m3m−3 for DA-NOSC. The437

scaling-based DA runs DA-STDN and DA-CDF improve these estimates to 0.038 m3m−3 and438

0.037 m3m−3, respectively. The optimization-based runs DA-OPT1 and DA-OPT6 provide439

comparable skills to those the scaling-based runs with domain averaged ubRMSE values of440
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0.037 and 0.036 m3m−3, respectively. The root zone soil moisture skill values follow similar441

trends. The domain averaged ubRMSE for OL is 0.039 m3m−3, and it improves to 0.037442

m3m−3 in the DA-NOSC simulation. Both a priori scaling and optimization based approaches443

provide systematic, statistically significant improvements (relative to OL) with domain-averaged444

ubRMSE of 0.035, 0.034, 0.033 and 0.033 m3m−3, for integrations DA-STDN, DA-CDF, DA-445

OPT1, and DA-OPT6, respectively.446

An important aspect of a priori bias mitigation approaches is the fact that they require an a priori447

estimate of the climatology of the observations. Reichle and Koster [2004] demonstrate that for448

the a priori scaling approach, a single year of observations may be sufficient if some spatial449

averaging over neighboring grid cells is employed to reduce sampling noise. In this context, it450

is encouraging that the assimilation skill values from the DA-OPT1 and DA-OPT6 integrations451

are comparable, with DA-OPT6 generating an additional domain averaged improvement of only452

0.02 over DA-OPT1 for surface and root zone soil moisture. In other words, most of the benefit453

of the a priori calibration method can be achieved with just one year’s worth of observations,454

provided the climatology can be reasonably approximated from the available data year, which is455

the case here (not shown). This suggests that using a short time period for calibration can still456

be an effective strategy, which is especially important for new types of satellite missions when457

the period of available data is relatively short.458

Further, note that the objective function formulation (equation 2) is designed to only correct the459

first moment of the model and observation distributions, whereas the a priori scaling approaches460

are designed to correct multiple moments of the distributions. Nevertheless, the assimilation461

skills from the a priori scaling and a priori optimization approaches are already comparable,462
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indicating that further skill improvements may be achieved using objective function formulations463

designed to correct multiple moments of the distributions.464

4.3. Computational considerations

Data assimilation with bias mitigation through a priori calibration (DA-OPT1, DA-OPT6)465

improves surface and root zone soil moisture estimates compared to bias mitigation through466

a priori scaling (DA-STDN, DA-CDF). It should be noted, however, that the estimation of467

the optimization parameters through batch calibration has an associated computational cost.468

The scalable computing infrastructure in LIS helps in reducing this overhead through parallel469

computation using multiple processors. The OPT6 integration requires 200 iterations of LIS470

runs over the 2000-2006 period, which translates to wall clock times of approximately a week,471

using 128 processors. In comparison, the OPT1 integration requires approximately a day (using472

128 processors). The comparable skill of the short calibration-based run (DA-OPT1) relative to473

the long calibration-based run (DA-OPT6) indicate that the high computational cost associated474

with batch calibration can be considerably reduced by using a shorter time period of observations475

that adequately represents the overall climatology. The dimensionality of the decision space can476

be reduced by selecting a smaller number of parameters that are likely to be more sensitive to477

the soil moisture simulations. The reduction in the dimensionality of the decision space vector478

will also aid towards reducing the computational cost associated with optimization simulations.479

4.4. Innovation metrics

In this section, we examine the filter innovations (observation minus model forecast residuals)480

from the assimilation experiments. This analysis provides insights into the performance of the481

data assimilation integrations (Reichle et al. [2002]; Crow and Van Loon [2006]; Reichle et al.482

D R A F T September 30, 2011, 2:24pm D R A F T



X - 26 KUMAR ET AL.: BIAS CORRECTION IN SOIL MOISTURE DATA ASSIMILATION

[2007]; Kumar et al. [2008b]). Strictly speaking, the EnKF provides optimal estimates only if483

several assumptions hold, including linear system dynamics with model and observation errors484

that are Gaussian and mutually and serially uncorrelated. If these assumptions hold, then the485

distribution of normalized innovations (normalized with their expected covariance) follows a486

standard normal distribution, N(0, 1) (Gelb [1974]). The deviations from the expected mean487

and variance of the normalized innovation distribution provides a measure of the degree of488

suboptimality with which the assimilation system performs.489

Unsurprisingly, the integration without a priori bias mitigation exhibits the largest innovation490

biases, reflecting strong biases between the (synthetic) observations and the corresponding model491

forecasts (not shown). The a priori scaling (DA-STDN, DA-CDF) and a priori calibration492

approaches (DA-OPT1, DA-OPT6) clearly mitigate theses biases (not shown). Figure 8 presents493

maps of the variance of the normalized innovations. For the bias-blind assimilation integration494

(DA-NOSC), the variance of the normalized innovations is on average 2.38 and far exceeds the495

target value of 1, which reflects the strong underestimation of the actual errors by the assimilation496

system because it ignores the bias. Adding a priori bias mitigation strategies brings the variance497

of the normalized innovations much closer to the target value of 1. Based on this metric, the498

assimilation using the CDF-based a priori scaling (DA-CDF) operates closer to optimality than499

the simpler strategy that uses only the first and second order rescaling (DA-STDN). Likewise,500

variance of the normalized innovations is closer to the target value of 1 when all years are used501

in the a priori calibration (DA-OPT6) rather than just one year (DA-OPT1).502

5. Summary

Data assimilation methods such as the EnKF require that the errors in the model and the ob-503

servations are strictly random. As a result, the presence of systematic or bias errors needs to be504
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addressed separately within the data assimilation system. In this study, we evaluate a number of505

bias mitigation strategies in the context of assimilating surface soil moisture retrievals. Specifi-506

cally, we examine the use of land model parameter estimation as a bias correction strategy prior507

to data assimilation. This strategy is compared to the approach of scaling the assimilated obser-508

vations to the land model’s climatology prior to data assimilation. The study is conducted using509

a fraternal twin experiment setup, where synthetic observations generated using the Catchment510

LSM are assimilated into the Noah LSM. Five different data assimilation experiments are con-511

ducted, each using a different strategy to correct (or not) for bias prior to data assimilation. The512

resulting soil moisture estimates are evaluated against the corresponding synthetic truth fields513

from the Catchment LSM.514

Our results indicate that a priori land model calibration is an effective strategy for bias mitiga-515

tion in soil moisture assimilation. The domain averaged skill estimates (in terms of anomaly R516

values) for the Noah open loop simulation without any data assimilation are 0.47 for surface soil517

moisture and 0.45 for root zone soil moisture. These skill estimates improve to 0.63 for surface518

soil moisture and 0.54 for root zone soil moisture. when assimilation is conducted without any519

bias correction (DA-NOSC). When observations are assimilated after rescaling to the model520

climatology, the assimilation skill improves further. Two approaches for a priori scaling are con-521

sidered: (DA-STDN) using standard normal deviates and (DA-CDF) by matching the CDFs of522

the observations to that of the model. Assimilation using these a priori scaling approaches yields523

domain averaged skill values of 0.71 and 0.73 for surface soil moisture and 0.62 and 0.63 for root524

zone soil moisture, respectively. Similar improvements in the surface and root zone soil moisture525

estimates are observed with the assimilation runs that employ optimized model parameters but526

ingest unscaled observations. Two sets of optimized parameters are used in the experiments:527
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(DA-OPT1) parameters estimated from a single year of calibration and (DA-OPT6) parameters528

estimated from six years of calibration. When data assimilation is conducted using parameters529

from a single year of calibration, skill estimates of 0.73 for surface soil moisture and 0.62 for530

root zone soil moisture are obtained. The use of the six-year based parameters further improves531

these skill measures to 0.75 for surface soil moisture and 0.63 for root zone soil moisture.532

It was also observed that spatial variability in the skill scores across the domain is reduced533

with the use of optimized parameters, resulting in more spatially consistent skill enhancements.534

The skill improvements in surface fluxes were found to be comparable for data assimilation535

following a priori scaling and a priori calibration. Similar trends in skill scores are also observed536

if the unbiased RMSE metric is used instead of anomaly R for evaluating the results. Finally,537

the analysis of innovation diagnostics also demonstrates that without the use of suitable bias538

correction, the assimilation system performs in a less than optimal manner and that all four bias539

mitigation strategies adequately address the bias issue.540

In the suite of synthetic experiments presented in this article we are in effect calibrating the541

Noah surface soil moisture climatology to that of the Catchment LSM. It must be stressed that542

this approach is chosen not because one model (Catchment) is more correct than the other (Noah).543

A similar argument holds when satellite soil moisture retrievals are assimilated. In that case, the544

climatology of the retrievals is not necessarily more correct than that of the model. However,545

when brightness temperatures are assimilated in radiance space instead of the retrievals, the model546

should be calibrated to the observed brightness temperature climatology. The long-term biases547

can be mitigated through calibration and the remaining shorter-term biases can be addressed548

with a priori scaling. The combined use of these strategies will be examined in future radiance549

based data assimilation experiments.550
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Though effective, the approach of using parameter estimation for bias correction also suffers551

from the limitations of the a priori scaling approaches. Since the parameters are estimated in552

advance of data assimilation, any subsequent changes in model behavior will not be captured,553

unlike in the dynamic bias estimation algorithms. The optimization formulation does not con-554

strain the estimated parameters to conform to the traditional, look up table-based definitions of555

parameters. Here, no attempt was made to ensure the physical realism of the estimated param-556

eters. The calibration might also require additional constraints to ensure that the behavior of557

related variables is not adversely affected. Note, however, that we have found that the estimates558

of the latent and sensible heat fluxes were comparable for the assimilation integrations with bias559

correction (DA-STDN, DA-CDF, DA-OPT1, and DA-OPT6). Furthermore, our results suggest560

that using model parameter estimation could be a viable strategy for bias mitigation in cases of561

relatively short (i.e., one year) satellite records. This result is important for expediting the use562

of soil moisture retrievals becoming available from SMOS and SMAP.563

The study also demonstrates the advanced capabilities of the NASA LIS framework, including564

the development of a new subsystem for optimization. This extension encapsulates a range of565

advanced search algorithms suited for both convex and non-convex optimization problems. In566

this particular study, the Genetic Algorithm, a heuristic search technique based on principles567

of evolutionary computing, is employed for estimating model parameters. The optimization568

infrastructure within LIS is currently being enhanced with a suite of uncertainty estimation algo-569

rithms based on Bayesian methods. In contrast to the optimization techniques that have already570

been implemented in LIS and generate a single solution for parameters, the newer uncertainty571

estimation tools infer distributions of parameters based on the observational information. These572

parameter distributions can then be used to condition the ensembles used in the data assimilation573
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system. The joint use of optimization and data assimilation tools presented here and future574

LIS advancements will enable the increased exploitation of observational data for improving575

hydrological modeling.576
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Table 1. Overview of model and assimilation integrations

OL Noah model integration without assimilation (Open Loop)
OPT1 Noah model integration without assimilation and with

model parameters optimized to reproduce one-year (2000)
climatology of synthetic soil moisture observations

OPT6 Noah model integration without assimilation and with
model parameters optimized to reproduce six-year (2000-2006)
climatology of synthetic soil moisture observations

DA-NOSC Noah assimilation integration without bias correction
using unscaled observations

DA-STDN Noah assimilation integration using a priori scaling
of observations based on standard normal deviates

DA-CDF Noah assimilation integration using a priori scaling
of observations based on CDF matching

DA-OPT1 Noah assimilation integration using OPT1 model parameters
and unscaled observations

DA-OPT6 Noah assimilation integration using OPT6 model parameters
and unscaled observations
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Table 2. Parameters for perturbations to meteorological forcings and model prognostic variables in

the EnKF assimilation experiments

Variable Perturbation Type Standard Deviation Cross Correlations
with perturbations in

Meteorological Forcings SW↓ LW↓ PCP
Downward Shortwave (SW↓) Multiplicative 0.3 [-] 1.0 -0.5 -0.8
Downward Longwave (LW↓) Additive 50 W/m2 -0.5 1.0 0.5
Precipitation (PCP) Multiplicative 0.50 [-] -0.8 0.5 1.0

Noah LSM soil moisture states sm1 sm2 sm3 sm4
Total soil moisture - layer 1 (sm1) Additive 6.0E-3 m3m−3 1.0 0.6 0.4 0.2
Total soil moisture - layer 2 (sm2) Additive 1.1E-4 m3m−3 0.6 1.0 0.6 0.4
Total soil moisture - layer 3 (sm3) Additive 0.60E-5 m3m−3 0.4 0.6 1.0 0.6
Total soil moisture - layer 4 (sm4) Additive 0.40E-5 m3m−3 0.2 0.4 0.6 1.0
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Table 3. List of Noah LSM parameters used in the optimization runs. The columns show the variable

names, a brief description and the range of values (maximum and minimum values) of the parameters

used in the optimization system.

No. Variable Description Min value Max value
1 smcmax Porosity (-) 0.30 0.55
2 psisat Saturated matric potential (-) 0.01 0.70
3 dksat Saturated hydraulic conductivity (m/s) 0.05E-5 3.00E-5
4 dwsat Saturated soil diffusivity (-) 5.71E-6 2.33E-5
5 bexp The “b” parameter (-) 3.0 9.0
6 quartz Soil quartz content (-) 0.10 0.90
7 rsmin Minimum stomatal resistance (m) 40 1000
8 rgl Parameter used in solar radiation

term of canopy resistance (-) 30 150
9 hs Parameter used in vapor pressure deficit

term of canopy resistance (-) 36.35 55
10 z0 Roughness length (m) 0.01 0.99
11 lai Leaf area index (-) 0.05 6.00
12 cfactr Canopy water parameter 0.1 2.0
13 cmcmax Canopy water parameter (m) 1E-4 2E-3
14 sbeta Parameter used in the computation of

vegetation effect on soil heat flux (-) -4 -1
15 rsmax Maximum stomatal resistance (m) 2000 10000
16 topt Optimum transpiration air temperature (K) 293 303
17 refdk Reference value for saturated hydraulic conductivity (m/s) 5E-7 3E-5
18 fxexp Bare soil evaporation exponent (-) 0.2 4.0
19 refkdt Reference value for surface infiltration parameter (-) 0.1 10.0
20 czil Parameter used in the calculation of roughness length of heat (-) 0.05 0.8
21 csoil Soil heat capacity for mineral soil component (-) 1.26E6 3.5E6
22 frzk Ice threshold (-) 0.10 0.25
23 snup Snow depth threshold that implies 100% snow cover (m) 0.02 0.08
24 sh2o1 Initial liquid soil moisture for soil layer 1 (m3m−3) 0.05 0.50
25 sh2o2 Initial liquid soil moisture for soil layer 2 (m3m−3) 0.05 0.50
26 sh2o3 Initial liquid soil moisture for soil layer 3 (m3m−3) 0.05 0.50
27 sh2o4 Initial liquid soil moisture for soil layer 4 (m3m−3) 0.05 0.50
28 smc1 Initial total soil moisture for soil layer 1 (m3m−3) 0.05 0.50
29 smc2 Initial total soil moisture for soil layer 2 (m3m−3) 0.05 0.50
30 smc3 Initial total soil moisture for soil layer 3 (m3m−3) 0.05 0.50
31 smc4 Initial total soil moisture for soil layer 4 (m3m−3) 0.05 0.50
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Table 4. Comparison of domain averaged unbiased RMSE (ubRMSE) metric values from different

model integrations (all with the 95% confidence intervals).

Experiment Surface soil Root zone soil
moisture (m3m−3) moisture (m3m−3)

OL 0.052 ± 0.001 0.039 ± 0.001
DA-NOSC 0.041 ± 0.001 0.037 ± 0.001
DA-STDN 0.038 ± 0.001 0.035 ± 0.001
DA-CDF 0.037 ± 0.001 0.034 ± 0.001
DA-OPT1 0.037 ± 0.001 0.033 ± 0.001
DA-OPT6 0.036 ± 0.001 0.033 ± 0.001
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LSM parameters
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Likelihood

.....

(1)
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Figure 1. Optimization abstractions in LIS: (1) objective function, (2) decision/parameter space, and

(3) optimization algorithm (LM - Levenberg-Marquardt, GA - Genetic Algorithm, SCE-UA - Shuffled

Complex Evolution from University of Arizona). Dotted lines represent interconnections between the

optimization abstractions enabled by the LIS core. Black boxes represent data exchanges between the

three components through ESMF objects.
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convergence 
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Figure 2. Sequence of GA operations. An example of the population evolution is shown on the right,

with a population size of 10 potential solutions (s1, s2, ..., s10). The grey bars indicate the fitness values

of the individual solutions. An example of the selection step shows the choice of s7 after comparing s2

and s7. After the selection step, the GA operations of recombination, mutation and elitism are conducted

and a new population of solutions are generated. The algorithm continues until the convergence criteria

are met.
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(a)

(b)

(c)

Figure 3. Comparison of the surface soil moisture climatology difference fields between the Catchment

LSM truth and (a) OL (b) OPT1, and (c) OPT6 (see Table 1). The gray color represents grid cells excluded

from the computations. Titles indicate domain averaged values. The units are m3m−3
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θs

ψs

Ks

Figure 4. (Top) porosity (θs, unitless), (middle) saturated matric potential (ψs, unitless) and (bottom)

saturated hydraulic conductivity (Ks, in units of m/s) from (left column) look up tables and (right column)

estimated through optimization OPT6. The gray color represents grid cells for which parameters were

not estimated.
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Figure 5. Surface soil moisture skill in terms of anomaly time series correlation coefficients. See table 1

for definition of experiments. The gray color represents grid cells excluded from the computations. Titles

show domain averaged values.
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Figure 6. Same as Figure 5, but for root zone soil moisture.
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Figure 7. PDFs of skill (anomaly R) values across the domain from different model integrations for

(top) surface soil moisture and (bottom) root zone soil moisture.
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Figure 8. Variance of normalized innovations from different assimilation experiments. The gray color

represents grid cells excluded from the computations. The titles indicate domain averaged values.
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