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Interstellar dust:

@ plays a role in the
birth of stars

@ precursor material
for the formation of
planets

@ hides astronomical
objects from our
view

infrared observations are
crucial to understanding
the origins of the
universe.
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The importance of studying siicates

Spectral features attributed to:

@ silicates
@ carbonaceous grains
@ PAHSs

Constraints on chemical and
physical structure

Their spectra need be analyzed
through laboratory experiments
reproducing astrophysical
environments. (See Henning &
Mutschke, 2010)

G. Cataldo

Minerals (orystal) Condensate
(SIO )% Olivine [SI0)% Quartz
i >

Figure: A) Silicates on Earth are ordered
solids. B) In space their structure is chaotic.
(Adapted from Rinehart et al., 2008)

From Dust to Galaxies, Paris 2011



Introduction
el 1ol

Thelqp‘tica}}‘cqnstants as primary parameters

Complex refractive index m = n+ ik i

@ The refractive index n determines the velocity of
constant-phase waves.

@ The extinction index k determines the attenuation of the wave
as it propagates through the medium.

G. Cataldo From Dust to Galaxies, Paris 2011




introduction

[ le)

The optical constants as primary pa

Definition
Complex refractive index m =

n+ik :

o The refractive index n determines the velocity of
constant-phase waves.

@ The extinction index k determines the attenuation of the wave
as it propagates through the medium. ’

Definition

AR

Dielectric c"o"'ns:t"‘aht £ = (n+ ik)?

G. Cataldo From Dust to Galaxies, Paris 2011




introduction
i{ le}

- The optical constants as primary parameters e

Definition . . i » " " v s
ex refractive index m=n+1ik

Compl

o The refractive index n determines the velocity of
constant-phase waves.

@ The extinction index k determines the attenuation of the wave
as it propagates through the medium.

At e =

Problem: the optical constants are not directly measurable.

Dielectric consta n4 k)2 =6 7
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Experimental apparatus and measurements

1

Development of numerical algorithms for the computation of
the optical constants as a function of wavelength and
temperature

14

Validation through application to laboratory data

©

Analysis and interpretation of post-processed data

©

Population of a library of optical properties in the far-infrared
regime
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_Hypotheses and mathematical models

Transmission-line
approximation

@ One-layer slab model
(Bohren and Huffman,
1983)

@ Beer's law (Halpern et al.,
1986)

Transition modes

@ Lorentz model
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~ Constrained minimization as main working tool

‘Deﬁ»ni’;»ior}_’((L.gas’tﬁquares Nonlinreabr Fit__)‘ I
minDOFsX%; = minDOFs”N’ Z [T(DOFSs >\j) - Tmeasured]2
= J=1 ;
DOFmin < DOF ﬁ DOFmax

N = number ofdatapoints
A = wavelength "
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Results

SiO,: Sample characterization

Figure: Various sample preparations are needed to cover the wide frequency
range (Rinehart, Cataldo, et al., Applied Optics, in press).
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Each sample preparation has a different optical depth, which allows
us to obtain transmission values in the range of 0.2-0.8 as needed
to determine the optical constants to high accuracy.

Sample type Spectral coverage [um]

8-mm 300 — 1000
4-mm 100 — 500
2-mm 100 — 350
Polyethylene 15 — 100
KBr 1-25
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Maxwell-Garnett formula

Eeff = Eeff (fgfibs&i‘)@
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5i0,: How to extract the optical constants (mixtures)

Maxvvell Garnett form_ula

_feff -Feff(f Fbm)% -

Modn‘ued vLorentz model (Slhvola 1999)W I '“
Eeff = Eeff (f £b, DOan ')

G. Cataldo From Dust to Galaxies, Paris 2011




Results
OO0

SiOy: How to extract the optical constants. (mixtures) “

Maxwell-Garnett formula

Eeff = feff(fﬂﬁb«a,)%

One layer vslab”mode.l '(aver‘agec‘i‘) N
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Results
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(Cataldo et
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SiO,: Fit and output parameters e

Bulk (4-mm) Polyethylene KBr
DOFs 3 53 (13 LOs) 153 (38 LOs)
Residual  average 0.32 0.62 0.25
AT [%] maximum 2.68 3.93 1.47
X2, 255.107% 11.12-107% 1.29.107°
o 0.005 0.012 0.008
2 109.89 239.81 146.26
X2 0.93 1.15 0.25
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5i0y: The optical constants in the FIRand MIR
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_Oursampie descrip‘cion i g

Advantages Disadvantages
n consistent with n not well
other measurements constrained
Bulk sample
a=10.003, b=1552  Need for data at
(Agladze et al., 95;...)  longer wavelengths
n — k independent n — k dependent
from filling fraction €%  on matrix
Mixture x=~15 Fine-tuning
DOFs well constrained  of starting guess
Outputs for mix Uncertainty
and particles #&# in measurements
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@ Measured reflectance data (TOP PRIORITY)

@ Temperature dependence (Cataldo et al., in prep.)

@ Development of more sophisticated models
o Metal-enriched powders: Fe- and Mg-rich silicates
(Kinzer, Cataldo, et al., in prep.)
Scattering
Multiple-layered structures
Unparalleled faces and roughness
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Measured reflectance data (TOP PRIORITY)

Temperature dependence (Cataldo et al., in prep.)
Development of more sophisticated models
e Metal-enriched powders: Fe- and Mg-rich silicates
(Kinzer, Cataldo, et al., in prep.)
e Scattering
o Multiple-layered structures
e Unparalleled faces and roughness

Application to new upcoming laboratory data and observations
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Appendix

The optical constants as a function of filling fraction
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‘»*V;The optical constants for the 5/0; — KBr mixture
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(Rinehart, Cataldo, et al., Applied Optics, in press)
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_The optical constants for the 5/0, — KBr mixture
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