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Chapter 1

Introduction

Unlike the uniform density spherical shell appoximations of Newton, the con-
sequence of spaceflight in the real universe is that gravitational fields are sen-
sitive to the nonsphericity of their generating central bodies. The gravitational
potential of a nonspherical central body is typically resolved using spherical
harmonic approximations. However, attempting to directly calculate the spher-
ical harmonic approximations results in at least two singularities which must be
removed in order to generalize the method and solve for any possible orbit, in-
cluding polar orbits. Three unique algorithms have been developed to eliminate
these singularities by Samuel Pines [1], Bill Lear [2], and Robert Gottlieb [3].

This paper documents the methodical normalization of two1 of the three
known formulations for singularity-free gravitational acceleration (namely, the
Lear [2] and Gottlieb [3] algorithms) and formulates a general method for defin-
ing normalization parameters used to generate normalized Legendre Polyno-
mials and ALFs for any algorithm. A treatment of the conventional formula-
tion of the gravitational potential and acceleration is also provided, in addition
to a brief overview of the philosophical differences between the three known
singularity-free algorithms.

1The Pines algorithm (Section 4.1) has been previously normalized and thoroughly in-
vestigated by Lundberg and Schutz [4] and subsequently implemented by DeMars [5]. See
Section 4.1.2.

1
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Chapter 2

Gravitational Potential and

Acceleration

2.1 Coordinates

Gravitational potential V is typically resolved using an equatorial central-body-

fixed Cartesian coordinate system
[
xb yb zb

]T
, where

• xb passes through the center of mass, equator, and prime meridian of the
central body

• zb is the north polar axis of the central body

• yb completes the right-handed triad, where yb is positive in the eastern
hemisphere

Spherical coordinates
[
r θ φ

]T
can then be defined in terms of the

central-body-fixed coordinates

• r =
√

x2
b + y2b + z2b = magnitude of position vector

• θ = arctan2(yb, xb) = (positive east) longitude or right ascension

• φ = arcsin( zb
r
) = (positive north) latitude or declination

If xb = yb = 0, then θ may be set to any value. For convenience, it is
typically set to θ = 0 in this case. Similarly, if r = 0, then φ may be set to any
value but is typically set to φ = 0.

The relationship between central-body-fixed and spherical coordinates is
shown in Figure 2.1. The spherical coordinate angles themsevles are rarely used
directly since they typically appear as arguments in trigonometric functions.
See Section 2.1.2 for more information.

3
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4 CHAPTER 2. GRAVITATIONAL POTENTIAL AND ACCELERATION
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Figure 2.1: Body-fixed coordinates and spherical coordinates illustrated

2.1.1 The Gravitational Acceleration

The gradient of the gravitational potential V is the force of gravity per unit
mass, which is the acceleration.

The gravitational acceleration in the central-body-fixed Cartesian coordinate

system
[
xb yb zb

]T
is

a =
[
axb

ayb
azb

]T
= ∇bV =

[
∂V
∂xb

∂V
∂yb

∂V
∂zb

]T

(2.1)

where ∇b is the gradient with respect to the central-body-fixed coordinates.
Taking the gradient with respect to a central-body-fixed (i.e. accelerating)

coordinate system means that we must include the Coriolis, centripetal, tangen-
tial, and relative accleration terms [6, pg. 54-55]. To eliminate the complication
of including these terms, an alternative inertial (non-accelerating) coordinate
system centered in the central body is used to compute the gradient.

Consider a displacement ∆θ of the position vector in spherical coordinates
in the direction of increasing θ (away from the xb axis). While displacement of
θ is actually the arc of a circle, a limit is approached as ∆θ → 0 when taking the
gradient in spherical coordinates and thus the displacement arc becomes arbi-
trarily close to its subtending chord. The instantaneous positive displacement of
θ for a vector in spherical coordinates is thus perpendicular to the radial vector
in the direction of increasing θ. This logic can be similarly applied for φ. The
directions of increasing θ and φ form the basis of the new coordinate system [7,
pg. 143].

The new x axis is parallel to the position vector and is defined as the ro
axis. The new y axis is located on the central-body-fixed xbyb plane at a right-
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Figure 2.2: Orthogonal spherical coordinates
[
ro θo φo

]T
and central-

body-fixed coordinates
[
xb yb zb

]T
shown with the roφo plane

angle to the ro axis in the direction of increasing θ and is defined as the θo
axis. The new z axis completes the right-handed triad and is defined as the
φo axis. The φo axis forms the angle φ with the zb axis in the direction of
increasing φ (away from the zb axis). The new coordinates are referred to as

the orthogonal spherical coordinates
[
ro θo φo

]T
, not to be confused with

the conventional spherical coordinates
[
r θ φ

]T
. The relationship between

central-body-fixed coordinates and orthogonal spherical coordinates is shown in
Figure 2.2.

The transformation matrix from the orthogonal spherical coordinates to the
central-body-fixed coordinates is [2]





xb

yb
zb



 =





cosφ cos θ − sin θ − sinφ cos θ
cosφ sin θ cos θ − sinφ sin θ

sinφ 0 cosφ









ro
θo
φo



 (2.2)

All of the trigonometric functions in the transformation can be precomputed
using the trigonometric relationships outlined in Section 2.1.2.

The gravitational acceleration in the orthogonal spherical coordinate sys-
tem is [6, pg. 54]

a =
[
aro aθo aφo

]T
= ∇V =

[
∂V
∂r

1
r cosφ

∂V
∂θ

1
r
∂V
∂φ

]T

(2.3)

The result of Equation 2.3 can then be transformed back to central-body-fixed
coordinates via Equation 2.2.
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6 CHAPTER 2. GRAVITATIONAL POTENTIAL AND ACCELERATION

2.1.2 Trigonometric Relationships

Instead of solving for the spherical coordinate angles φ and θ, it is more efficient
to precompute the values of trigonometric functions of these angles given by the
definitions of sine and cosine.

sin θ =
yb

√

x2
b + y2b

(2.4)

cos θ =
xb

√

x2
b + y2b

(2.5)

sinφ =
zb

r
(2.6)

cosφ =

√

x2
b + y2b
r

(2.7)

A logical check should be included prior to computing these values to identify
the cases xb = yb = 0 or r = 0. If xb = yb = 0, then the equations sin θ = 0
and cos θ = 1 are typically substituted. Similarly, if r = 0, then the equations
sinφ = 0 and cosφ = 1 are typically substituted.

2.2 Constants and Coefficients

Sn,m and Cn,m are known in the literature as the spherical harmonic mass coeffi-
cients of the central body, which we will refer to simply as the mass coefficients.
Certain subsets of the mass coeffients are given special names.

• Cn,0 = zonal coefficients

• Sn,n, Cn,n = sectorial coefficients

• Sn,m, Cn,m = tesseral coefficients

Tables of mass coefficients are usually provided with the gravitational pa-
rameter µ = GM (where G is the Newtonian gravitational constant and M is
the mass of the central body) and the scaling radius aeq for which the coefficients
are calibrated.

2.3 Legendre polynomials and ALFs

The various functions denoted P in this paper are the Legendre polynomials and
the Associated Legendre Functions (ALFs). Legendre polynomials of the first
kind are denoted Pn with argument sinφ. ALFs of the first kind are similarly
denoted Pn,m also with argument sinφ. Legendre polynomials and ALFs have
subscipts n and m which are called the degree and order of the polynomial,
respectively. ALFs with m > n are defined as zero. The Legendre polynomials
are equivalent to the ALF of the same degree but with m = 0.

In the remainder of this document, the argument of sinφ will be assumed
and omitted for brevity for all Legendre polynomials and ALFs.
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2.4. THE GRAVITATIONAL POTENTIAL FUNCTION 7

2.4 The Gravitational Potential Function

The gravitational potential V satisfies Laplace’s equation

∂2V

∂xb
2 +

∂2V

∂yb
2 +

∂2V

∂zb
2 = 0 (2.8)

The potential function V can be written in spherical coordinates as an or-
thogonal expansion using spherical harmonics [6, Pg. 52].

V =
µ

r

[

1 +
∞∑

n=1

n∑

m=0

(aeq

r

)n

Pn,m (Sn,m sinmθ + Cn,m cosmθ)

]

(2.9)

Equation 2.9 can also be written with the zonal terms separated out

V =
µ

r

[

1 +
∞∑

n=1

(aeq

r

)n

PnCn,0

+

∞∑

n=1

n∑

m=1

(aeq

r

)n

Pn,m (Sn,m sinmθ + Cn,m cosmθ)

]

(2.10)

2.4.1 Square Gravity Models

The Sn,m, Cn,m, and Pn,m values can be used to form lower triangular matricies,
where the terms above the diagonal are all zero, n is the row, and m is the
column.

When the origin of the central body-fixed coordinate system is located at the
center of mass, the C1,0, S1,1, and C1,1 coefficients are all zero. This convention
will be adopted throughout this paper. Therefore, in computing V , the sums
may be made starting with n = 2. Models where maximum degree and order
are equal are referred to as square models. Let nd be the desired maximum
degree and order of the gravity model. Then

V =
µ

r

[

1 +

nd∑

n=2

n∑

m=0

(aeq

r

)n

Pn,m (Sn,m sinmθ + Cn,m cosmθ)

]

(2.11)

With the zonal terms separated out, Equation 2.11 becomes

V =
µ

r

[

1 +

nd∑

n=2

(aeq

r

)n

PnCn,0

+

nd∑

n=2

n∑

m=1

(aeq

r

)n

Pn,m (Sn,m sinmθ + Cn,m cosmθ)

]

(2.12)
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8 CHAPTER 2. GRAVITATIONAL POTENTIAL AND ACCELERATION

2.4.2 Non-Square Gravity Models

Whereas Equations 2.11 and 2.12 assume square models, it is also possible to
approximate the gravitational potential using non-square models. This can be
accomplished by changing the bounds of the sums in Equations 2.11 and 2.12
to nd and md, the desired degree and desired order, respectively. The outcome
of a non-square model can then be written as

V =
µ

r




1 +

nd∑

n=2

n∑

m=0
m≤md

(aeq

r

)n

Pn,m (Sn,m sinmθ + Cn,m cosmθ)




 (2.13)

resembling Equation 2.11, or separating out zonal terms,

V =
µ

r

[

1 +

nd∑

n=2

(aeq

r

)n

PnCn,0

+

nd∑

n=2

n∑

m=1
m≤md

(aeq

r

)n

Pn,m (Sn,m sinmθ + Cn,m cosmθ)




 (2.14)

resembling Equation 2.12.
Because most algorithms for generating the Legendre polynomials and ALFs

are optimized to generate values for square models, it is best to pass only the
desired degree of the non-square gravity model to these function-generating
subroutines. In calculating a non-square potential, the excess ALFs beyond the
desired order are then simply unused.

The fact that Equations 2.11 and 2.12 (and thus Equations 2.13 and 2.14)
are orthogonal expansions of V means that any lower order expansion is merely
a truncated higher order expansion. No refit of the coefficients is necessary [2].
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Chapter 3

Normalization

3.1 The Normalization Factor

Using a normalization factor allows mass coefficients to be electronically rep-
resented as tractable values well within the valid range for IEEE 754 double-
precision floating point variables, even when degree n and order m are relatively
large. The mass coefficients of a central body are “normalized” when they are
divided by this normalization factor Nn,m, typically defined as [8, pg. 544]

Nn,m =

√

(n−m)!(2n+ 1)(2− δ0,m)

(n+m)!
, Nn = Nn,0 (3.1)

where δ0,m is the Kronecker delta function that returns one if m = 0 and zero
otherwise. Table 3.1 lists the normalization factors through degree and order of
four.

Historically, mass coefficients were “unnormalized” by the end user of the
model by multiplying the mass coefficients with their corresponding normaliza-
tion factor. This was done because conventional gravitational potential algo-
rithms required unnormalized coefficients in their formulations. A fundamental

m →
n ↓ 0 1 2 3 4

0 1 0 0 0 0

1
√
3

√
3 0 0 0

2
√
5

√
5
3

1
2

√
5
3 0 0

3
√
7

√
7
6

1
2

√
7
15

1
6

√
7
10 0

4 3 3
√

1
10

1
2

√
1
5

1
2

√
1
70

1
8

√
1
35

Table 3.1: Normalization factors through 4× 4

9

This document has been reviewed for Proprietary, SBU, and Export Control (ITAR/EAR) and has been determined to be nonsensitive. 
It has been released to the public via the NASA Scientific and Technical Information (STI) Process DAA 23097.



10 CHAPTER 3. NORMALIZATION

problem encountered by attempting to unnormalize mass coefficients with very
high degrees and orders is that the normalization factors become prone to over-
flow in modern computers. This is due to the factorial in the denominator of
Equation 3.1, (n + m)!. The user is restricted to nd + md < 171 using IEEE
754 double-precision floating point variables to calculate normalization factors
because of overflow beyond this boundary (see Section 3.2).

It was later established that the additional work of unnormalizing mass coef-
ficients becomes unnecessary by “normalizing” ALFs in gravitational potential
formulations. Legendre polynomials and ALFs are said to be “normalized” when
multiplied by Nn,m. This normalization scheme is ideal because the product of
an ALF and its corresponding coefficient is equal to the product of the normal-
ized ALF and its corresponding normalized coefficient. In this paper, an overbar
will be used to indicate normalized quantities, i.e. C̄n,m and P̄n,m. By the afore-
mentioned normalization conventions, Equation 3.2 shows that the product of
the ALF and corresponding coefficient holds true for normalized quantities.

P̄n,mC̄n,m = (Pn,mNn,m)

(
Cn,m

Nn,m

)

= Pn,mCn,m (3.2)

This eliminates the restrictions imposed by requiring unnormalized mass coef-
ficients for gravitational potential formulations. The relationship from Equa-
tion 3.2 can be seen with Sn,m and S̄n,m as well.

3.2 Recursive Mass Coefficient Normalization

Gravity models evaluating spherical harmonic associated Legendre functions
at high degree n and order m require normalized Legendre coefficients to ac-
curately compute terms ranging over hundreds of orders of magnitude. The
standard normalization scheme is to divide the unnormalized coefficients by the
Kaula normalization factor Nn,m, defined in Equation 3.1. If Nn,m is calcu-
lated directly, computation difficulties arise when n + m > 170 because 171!
triggers an overflow condition in IEEE double precision (64-bit) real numbers.
The overflow limit is ±1.797693134862316e+3081.

Suppose Nn,m values are directly calculated and grouped as elements in a
lower-triangular matrix, as is customary, by incrementing m from 0 until m = n

before n is incremented to begin another matrix row. In performing this task,
the first (n+m)! overflow will be encountered for N86,85. Table 3.2 provides
Nn,m values neighboring the N86,85 element. In Table 3.2, Nn,mvalues which can

be computed are nowhere near an overflow condition because they are quotients
with large denominators. This suggests a recursive computation will succeed in
generating accurate Nn,m values far beyond element N86,85. The recursion will
only fail when the Nn,m quotient overflows.

To document the recursion, suppose the value of Nn′,m′ is given as x. As-

1This number was obtained from the realmax(‘double’) command in MATLAB.
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3.3. NORMALIZATION RATIOS 11

Order m
Degree n 84 85 86

85 1.117258027e+151 1.456726244e+152 N/A
86 1.024089587e+152 Overflow Overflow
87 Overflow Overflow Overflow

Table 3.2: Normalization factors neighboring N86,85

Order
Degree m′ − 1 m′ m′ + 1

n′ − 1 x
√

(n′−m′)(2n′+1)
(n′+m′)(2n′−1)

n′ x

√
2−δ

0,m′

(n′+m′)(n′−m′+1) x x
√

(n′+m′+1)(n′−m′)
2−δ

0,m′

n′ + 1 x
√

(n′+1+m′)(2n′+1)
(n′+1−m′)(2n′+3)

Table 3.3: Recursions for generating normalization factors

suming n′ −m′ > 0 for “upward” or “rightward” recursion2, Table 3.3 supplies
recursive formulae for adjacent elements in terms of x and its associated de-
gree n′ and order m′. Each formula has been verified using the three finite
Nn,m elements appearing in Table 3.2. For example, invoking the “downward”
recursion,

N86,84 = N85,84

√

170 · 171
2 · 173 ≈ 9.16609737241N85,84

Most gravity models are formally published with normalized coefficients.
Those wishing to use normalized coefficients at n+m > 170 in an unnormalized
model will find the Table 3.3 recursions useful in their work. At n+m ≤ 170, the
Table 3.3 recursions offer computational efficiencies over Equation 3.1 evalua-
tions, but these will be of little consequence if coefficients are to be unnormalized
in a single pass with the results stored for all subsequent use.

3.3 Normalization Ratios

Consider a recursion formula for Legendre Polynomials [9, pg. 114, sec. 3]

Pn =
1

n
[(2n− 1) sinφPn−1 − (n− 1)Pn−2] (3.3)

The corresponding normalized Legendre polynomial P̄n is found by multiplying
Equation 3.3 by the normalization factor Nn.

P̄n = NnPn =
1

n
[(2n− 1) sinφNnPn−1 − (n− 1)NnPn−2] (3.4)

2These forbidden recursions would otherwise step outside lower-triangular matrix limits if
x corresponded to a diagonal element with n

′
−m

′ = 0.
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12 CHAPTER 3. NORMALIZATION

Because Equation 3.4 returns normalized polynomials and must recur over
its own inputs, the equation needs to be written as a function of normalized
polynomials by replacing the conventional polynomials with their normalized
equivalents. By substituting

Pn =
P̄n

Nn

(3.5)

Equation 3.4 becomes

P̄n =
1

n

[

(2n− 1) sinφ
Nn

Nn−1
P̄n−1 − (n− 1)

Nn

Nn−2
P̄n−2

]

(3.6)

Equation 3.6 now contains ratios of normalization factors, namely Nn

Nn−1

and
Nn

Nn−2

.

3.4 The Recursion Normalization Parameter

The ratios of the normalization factors, which are referred to as the normal-

ization parameters and denoted by λ, can be pre-computed since many ratios
will be needed more than once while normalizing the algorithms. The ratios of
Equation 3.6 are written as λn−1 and λn−2, where the subscripts of the parame-
ters refer to the subscript of the corresponding polynomial which they normalize
in Equation 3.6.

When n = 2, λn−1 = λ1. However, when n = 3, λn−2 6= λ1. For this reason,
the parameters are written as functions of the current values of n and m, such
as λn−1(n) and λn−2,m(n,m), and ignore the actual value of the subscripts of
the parameters. The subscripts are merely notation used to identify a specific
parameter for normalizing the ALF with the same subscripts.

This notation is used in Equation 3.6 to obtain

P̄n =
1

n
[(2n− 1) sinφλn−1(n)P̄n−1 − (n− 1)λn−2(n)P̄n−2] (3.7)

An equation for the parameter λn−1 can be found by substituting the defi-
nition of the normalization factors (Equation 3.1) in the ratio and simplifying.

λn−1(n) =
Nn

Nn−1
=

√
2n+ 1

√

2(n− 1) + 1
=

√

2n+ 1

2n− 1
(3.8)

The Lear algorithm (Section 4.2) requires five normalization parameters to
recursively compute normalized Legendre polynomials and ALFs. Each of these
parameters can similarly be derived by simplifying the definition of the normal-
ization factor for each of the corresponding ratios.
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Chapter 4

The Three Singularity-Free

Algorithms

By inspection, we can identify two potential singularities in Equation 2.3. They
can occur when cosφ = 0 (such as in a polar orbit) or when taking the partial
derivative of ALFs with m = 1. Three unique algorithms have been developed
to eliminate these singularities by Samuel Pines [1], Bill Lear [2], and Robert
Gottlieb [3].

4.1 Pines Algorithm

4.1.1 Basis of the Pines Approach

Pines approached the problem by first transforming a position vector to central-
body-fixed coordinates. By reallocating factors in each term of the potential,
he defined a series of special functions in terms of the unit position vector
components which can then be solved recursively without singularities. A set
of polynomials he referred to as the derived ALFs were created by modifying
the conventional definition of ALFs. The derived ALFs have similar recursive
behaviors to their conventional counterparts but have no discontinuities in their
partial derivatives.

4.1.2 Pines Algorithm Implementations

The Pines acceleration algorithm has previously been normalized by Lundberg
and Schutz [4]. Within the normalized algorithm, Pines’ derived ALFs can be
recursively generated in a number of ways. To evaluate the various approaches,
Lundberg and Schutz developed seven different recursions algorithms and then
performed numerical analyses of the stability of normalized and unnormalized
versions of each recursion algorithm. Lundberg and Schutz concluded that a
simple row-wise or column-wise recursion provides the most stability of all the

13
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14 CHAPTER 4. THE THREE SINGULARITY-FREE ALGORITHMS

λn−1(n) =
Nn

Nn−1
=

√

2n+ 1

2n− 1
(4.1)

λn−2(n) =
Nn

Nn−2
=

√

2n+ 1

2n− 3
(4.2)

λn−1,n−1(n) =
Nn,n

Nn−1,n−1
=

1

2n− 1

√

2n+ 1

2n
(4.3)

λn−1,m(n,m) =
Nn,m

Nn−1,m
=

√

(n−m)(2n+ 1)

(n+m)(2n− 1)
(4.4)

λn−2,m(n,m) =
Nn,m

Nn−2,m
=

√

(n−m)(n−m− 1)(2n+ 1)

(n+m)(n+m− 1)(2n− 3)
(4.5)

Table 4.1: Normalization parameters λ for a normalized Lear algorithm

algorithms, normalized or unnormalized. In this analysis, the normalized and
unnormalized versions of the column-wise recursion by Lundberg and Schutz [4,
Recursion I] are utilized for implementations of Pines. The implementations
used here are based on a normalized implementation provided by DeMars [5].

4.2 Lear Algorithm

4.2.1 Basis of the Lear Approach

Lear transformed the position vector to the orthogonal spherical coordinate
system. This results in several secφ factors that emerge in the equations for
the acceleration. Lear found that stable recursions could be developed by as-
similating the secφ factors in the ALF recursion equations. Lear utilized the
conventional (unmodified) ALFs and thus used traditional recursion equations
for ALFs, across which he simply distributed the secφ factors. Terms in the
potential which include an ALF but no secφ could easily eliminate the secant
(which has been combined in the value of the ALF) by multiplying the term by
cosφ, a value with no discontinuity.

4.2.2 Normalized Lear Algorithm

Each of the recursion equations of the Lear algorithm is now normalized using
the normalization parameters of Section 3.4. The parameters required in the
Lear algorithm are defined in Table 4.1. Each of the original equations can be
found in Ref. [2]. Only the normalized equations are presented here and should
replace their analogues in the original algorithm. The added normalization
parameters are denoted with an underbrace or overbrace to bring attention to
the changes from the equations in the original document.
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4.2. LEAR ALGORITHM 15

In each of the following recursions, let nd be the desired degree and order of
the gravity model.

Recursion for Zonal Legendre Polynomials P̄n

This recursion utilizes Parameters 4.1 and 4.2. For n = 2 through nd

P̄n =
1

n
[(2n− 1) sinφ λn−1(n)

︸ ︷︷ ︸

4.1

P̄n−1 − (n− 1)λn−2(n)
︸ ︷︷ ︸

4.2

P̄n−2] (4.6)

where P̄0 = 1 and P̄1 = N1P1 =
√
3 sinφ.

Recursion for Zonal Legendre Polynomial Derivatives P̄ ′
n

This recursion utilizes Parameter 4.1. For n = 2 through nd

P̄ ′
n = λn−1(n)

︸ ︷︷ ︸

4.1

[sinφ P̄ ′
n−1 + nP̄n−1] (4.7)

where P̄ ′
1 =

√
3.

Recursion for Sectorial ALFs (secφ P̄n,n)

This recursion utilizes Parameter 4.3. For n = 2 through nd

(secφ P̄n,n) = (2n− 1) cosφ λn−1,n−1(n)
︸ ︷︷ ︸

4.3

(secφ P̄n−1,n−1) (4.8)

where (secφ P̄1,1) =
√
3.

Recursion for Tesseral ALFs (secφ P̄n,m)

This recursion utilizes Parameters 4.4 and 4.5. For n = 2 through nd and (inner
loop) m = 1 through n− 1

(secφ P̄n,m) = [(2n− 1) sinφ

4.4
︷ ︸︸ ︷

λn−1,m(n,m)(secφ P̄n−1,m)

− (n+m− 1)λn−2,m(n,m)
︸ ︷︷ ︸

4.5

(secφ P̄n−2,m)]
1

n−m
(4.9)

where (secφ P̄n−1,n) = 0 for n = 1 through nd.

Recursion for Sectorial ALF Derivatives (cosφ P̄ ′
n,n)

This recursion has no normalization parameters because the input and output
are the same degree and order. For n = 1 through nd

(cosφ P̄ ′
n,n) = −n sinφ (secφ P̄n,n) (4.10)
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16 CHAPTER 4. THE THREE SINGULARITY-FREE ALGORITHMS

Recursion for Tesseral ALF Derivatives (cosφ P̄ ′
n,m)

This recursion utilizes Parameter 4.4. For n = 2 through nd and (inner loop)
m = 1 through n− 1

(cosφ P̄ ′
n,m) = −n sinφ (secφ P̄n,m)

+ (n+m)λn−1,m(n,m)
︸ ︷︷ ︸

4.4

(secφ P̄n−1,m) (4.11)

4.2.3 Example of Normalized Lear Recursions

This section analytically demonstrates using normalized recursion relationships
to generate Legendre polynomials and ALFs for a gravity model with a degree
and order of four. Each of the final answers are written first simplified and
then with its normalization factored out to demonstrate equivalence with its
unnormalized value. These can be found in the examples outlined in Ref. [2].

Zonal Legendre Polynomials

P̄2 =
1

2

[
3 sinφλn−1(2)P̄1 − λn−2(2)P̄0

]

=
1

2

[

3 sinφ

√

5

3

√
3 sinφ−

√
5

]

=
3

2

√
5 sin2 φ− 1

2

√
5 =

√
5

(
3

2
sin2 φ− 1

2

)

P̄3 =
1

3

[
5 sinφλn−1(3)P̄2 − 2λn−2(3)P̄1

]

=
1

3

[

5 sinφ

√

7

5

(
3

2

√
5 sin2 φ− 1

2

√
5

)

− 2

√

7

3

√
3 sinφ

]

=
1

3

[
5 · 3
2

√
7 sin3 φ− 5

2

√
7 sinφ− 2

√
7 sinφ

]

=
5

2

√
7 sin3 φ− 3

2

√
7 sinφ =

√
7

(
5

2
sin3 φ− 3

2
sinφ

)

P̄4 =
1

4

[
7 sinφλn−1(4)P̄3 − 3λn−2(4)P̄2

]

=
1

4

[

7 sinφ

√

9

7

(
5

2

√
7 sin3 φ− 3

2

√
7 sinφ

)

− 3

√

9

5

(
3

2

√
5 sin2 φ− 1

2

√
5

)]
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4.2. LEAR ALGORITHM 17

=
1

4

[
7 · 5 · 3

2
sin4 φ− 7 · 3 · 3

2
sin2 φ− 3 · 3 · 3

2
sin2 φ+

3 · 3
2

]

=
105

8
sin4 φ− 90

8
sin2 φ+

9

8
= 3

(
35

8
sin4 φ− 30

8
sin2 φ+

3

8

)

Zonal Legendre Polynomial Derivatives

P̄ ′
2 = λn−1(2)

[
sinφP̄ ′

1 + 2P̄1

]

=

√

5

3

[

sinφ
√
3 + 2

√
3 sinφ

]

= 3
√
5 sinφ =

√
5 (3 sinφ)

P̄ ′
3 = λn−1(3)

[
sinφP̄ ′

2 + 3P̄2

]

=

√

7

5

[

sinφ
(

3
√
5 sinφ

)

+ 3

(
3

2

√
5 sin2 φ− 1

2

√
5

)]

= 3
√
7 sin2 φ+

3 · 3
2

√
7 sin2 φ− 3

2

√
7

=
15

2

√
7 sin2 φ− 3

2

√
7 =

√
7

(
15

2
sin2 φ− 3

2

)

P̄ ′
4 = λn−1(4)

[
sinφP̄ ′

3 + 4P̄3

]

=

√

9

7

[

sinφ

(
15

2

√
7 sin2 φ− 3

2

√
7

)

+ 4

(
5

2

√
7 sin3 φ− 3

2

√
7 sinφ

)]

=
3 · 15
2

sin3 φ− 3 · 3
2

sinφ+
3 · 4 · 5

2
sin3 φ− 4 · 3 · 3

2
sinφ

=
105

2
sin3 φ− 45

2
sinφ = 3

(
35

2
sin3 φ− 15

2
sinφ

)

Sectorial (Diagonal) ALFs

(secφ P̄2,2) = 3 cosφλn−1,n−1(2)(secφ P̄1,1)

= 3 cosφ
1

3

√

5

4

√
3

=
1

2

√
15 cosφ =

1

2

√

5

3
(3 cosφ)

(secφ P̄3,3) = 5 cosφλn−1,n−1(3)(secφ P̄2,2)
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18 CHAPTER 4. THE THREE SINGULARITY-FREE ALGORITHMS

= 5 cosφ
1

5

√

7

6

(
1

2

√
15 cosφ

)

=
1

2

√

35

2
cos2 φ =

1

6

√

7

10

(
15 cos2 φ

)

(secφ P̄4,4) = 7 cosφλn−1,n−1(4)(secφ P̄3,3)

= 7 cosφ
1

7

√

9

8

(

1

2

√

35

2
cos2 φ

)

=
3

8

√
35 cos3 φ =

1

8

√

1

35

(
105 cos3 φ

)

Tesseral ALFs: Row 2 (n = 2)

(secφ P̄2,1) = 3 sinφλn−1,m(2, 1)(secφ P̄1,1)− 2λn−2,m(2, 1)(secφ P̄0,1)

= 3 sinφ

√

5

3 · 3
√
3− 2

√
0 · 0

=
√
15 sinφ =

√

5

3
(3 sinφ)

Tesseral ALFs: Row 3 (n = 3)

(secφ P̄3,1) =
[
5 sinφλn−1,m(3, 1)(secφ P̄2,1)− 3λn−2,m(3, 1)(secφ P̄1,1)

] 1

2

=
1

2

[

5 sinφ

√

2 · 7
4 · 5

(√
15 sinφ

)

− 3

√

2 · 7
4 · 3 · 3

√
3

]

=
5

2

√

7 · 3
2

sin2 φ− 1

2

√

7 · 3
2

=
5

2

√

21

2
sin2 φ− 1

2

√

21

2
=

√

7

6

(
15

2
sin2 φ− 3

2

)

(secφ P̄3,2) = 5 sinφλn−1,m(3, 2)(secφ P̄2,2)− 4λn−2,m(3, 2)(secφ P̄1,2)

= 5 sinφ

√

7

5 · 5

(
1

2

√
15 cosφ

)

− 4
√
0 · 0

=
5

2

√

7 · 5 · 3
5 · 5 sinφ cosφ

=
1

2

√
105 sinφ cosφ =

1

2

√

7

15
(15 sinφ cosφ)
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4.2. LEAR ALGORITHM 19

Tesseral ALFs: Row 4 (n = 4)

The example in the Lear document which corresponds to the following example
contains a typographical error. The final result for the ALF should be

(secφP4,1) =
35

2
sin3 φ− 15

2
sinφ

(secφ P̄4,1) =
[
7 sinφλn−1,m(4, 1)(secφ P̄3,1)− 4λn−2,m(4, 1)(secφ P̄2,1)

] 1

3

=
7

3
sinφ

√

3 · 9
5 · 7

(

5

2

√

21

2
sin2 φ− 1

2

√

21

2

)

− 4

3

√

3 · 2 · 9
5 · 4 · 5

(√
15 sinφ

)

=
7 · 5
3 · 2

√

3 · 9 · 7 · 3
5 · 7 · 2 sin3 φ− 7

3 · 2

√

3 · 9 · 7 · 3
5 · 7 · 2 sinφ

− 4

3

√

3 · 2 · 9 · 3 · 5
5 · 4 · 5 sinφ

=
21

2

√

5

2
sin3 φ− 9

2

√

5

2
sinφ

= 3

√

1

10

(
35

2
sin3 φ− 15

2
sinφ

)

(secφ P̄4,2) =
[
7 sinφλn−1,m(4, 2)(secφ P̄2,2)− 5λn−2,m(4, 2)(secφ P̄2,2)

] 1

2

=
7

2
sinφ

√

2 · 9
6 · 7

(
1

2

√
105 sinφ cosφ

)

− 5

2

√

2 · 9
6 · 5 · 5

(
1

2

√
15 cosφ

)

=
7

4

√

2 · 3 · 3 · 3 · 5 · 7
2 · 3 · 7 sin2 φ cosφ− 5

4

√

2 · 3 · 5 · 3 · 3
2 · 3 · 5 · 5 cosφ

=
21

4

√
5 sin2 φ cosφ− 3

4

√
5 cosφ

=
1

2

√

1

5

(
105

2
sin2 φ cosφ− 15

2
cosφ

)

(secφ P̄4,3) = 7 sinφλn−1,m(4, 3)(secφ P̄1,1)− 6λn−2,m(4, 3)(secφ P̄2,3)

= 7 sinφ

√

9

7 · 7

(

1

2

√

35

2
cos2 φ

)

− 6
√
0 · 0

=
7

2

√

3 · 3 · 5 · 7
2 · 7 · 7 sinφ cos2 φ
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=
3

2

√

35

2
sinφ cos2 φ =

1

2

√

1

70

(
105 sinφ cos2 φ

)

Sectorial (Diagonal) ALF Derivatives

(cosφ P̄ ′
1,1) = − sinφ (secφ P̄1,1)

= −
√
3 sinφ =

√
3 (− sinφ)

(cosφ P̄ ′
2,2) = −2 sinφ (secφ P̄2,2)

= −2 sinφ

(
1

2

√
15 cosφ

)

= −
√
15 sinφ cosφ =

1

2

√

5

3
(−6 sinφ cosφ)

(cosφ P̄ ′
3,3) = −3 sinφ (secφ P̄3,3)

= −3 sinφ

(

1

2

√

35

2
cos2 φ

)

= −3

2

√

35

2
sinφ cos2 φ =

1

6

√

7

10

(
−45 sinφ cos2 φ

)

(cosφ P̄ ′
4,4) = −4 sinφ (secφ P̄4,4)

= −4 sinφ

(
3

8

√
35 cos3 φ

)

= −3

2

√
35 sinφ cos3 φ =

1

8

√

1

35

(
−420 sinφ cos3 φ

)

Tesseral ALF Derivatives: Row 2 (n = 2)

(cosφ P̄ ′
2,1) = −2 sinφ (secφ P̄2,1) + 3λn−1,m(2, 1)(secφ P̄1,1)

= −2 sinφ
(√

15 sinφ
)

+ 3

√

5

3 · 3
√
3

= −2
√
15 sin2 φ+

√
15 =

√

5

3

(
−6 sin2 φ+ 3

)

Tesseral ALF Derivatives: Row 3 (n = 3)

(cosφ P̄ ′
3,1) = −3 sinφ (secφ P̄3,1) + 4λn−1,m(3, 1)(secφ P̄2,1)
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= −3 sinφ

(

5

2

√

21

2
sin2 φ− 1

2

√

21

2

)

+ 4

√

2 · 7
4 · 5

(√
15 sinφ

)

= −15

2

√

21

2
sin3 φ+

3

2

√

21

2
sinφ+

√
2 · 7 · 4 · 3 sinφ

= −15

2

√

21

2
sin3 φ+

11

2

√

21

2
sinφ

=

√

7

6

(

−45

2
sin3 φ+

33

2
sinφ

)

(cosφ P̄ ′
3,2) = −3 sinφ (secφ P̄3,2) + 5λn−1,m(3, 2)(secφ P̄2,2)

= −3 sinφ

(
1

2

√
105 sinφ cosφ

)

+ 5

√

7

5 · 5

(
1

2

√
15 cosφ

)

= −3

2

√
105 sin2 φ cosφ+

1

2

√
105 cosφ

=
1

2

√

7

15

(
−45 sin2 φ cosφ+ 15 cosφ

)

Tesseral ALF Derivatives: Row 4 (n = 4)

The example in the Lear document which corresponds to the following example
contains a typographical error. The final result for the ALF should be

(cosφP ′
4,1) = −70 sin4 φ+

135

2
sin2 φ− 15

2

(cosφ P̄ ′
4,1) = −4 sinφ (secφ P̄4,1) + 5λn−1,m(4, 1)(secφ P̄3,1)

= −4 sinφ

(

21

2

√

5

2
sin3 φ− 9

2

√

5

2
sinφ

)

+ 5

√

3 · 9
5 · 7

(

5

2

√

21

2
sin2 φ− 1

2

√

21

2

)

= −21
√
10 sin4 φ+ 9

√
10 sin2 φ+

5 · 5
2

√

3 · 9 · 7 · 3
2 · 5 · 7 sin2 φ

− 5

2

√

3 · 9 · 7 · 3
2 · 5 · 7

= −21
√
10 sin4 φ+

81

2

√

5

2
sin2 φ− 9

2

√

5

2

= 3

√

1

10

(

−70 sin4 φ+
135

2
sin2 φ− 15

2

)

(cosφ P̄ ′
4,2) = −4 sinφ (secφ P̄4,2) + 6λn−1,m(4, 2)(secφ P̄3,2)

This document has been reviewed for Proprietary, SBU, and Export Control (ITAR/EAR) and has been determined to be nonsensitive. 
It has been released to the public via the NASA Scientific and Technical Information (STI) Process DAA 23097.



22 CHAPTER 4. THE THREE SINGULARITY-FREE ALGORITHMS

= −4 sinφ

(
21

4

√
5 sin2 φ cosφ− 3

4

√
5 cosφ

)

+ 6

√

2 · 9
6 · 7

(
1

2

√
105 sinφ cosφ

)

= −21
√
5 sin3 φ cosφ+ 3

√
5 sinφ cosφ

+ 3

√

9 · 3 · 5 · 7
3 · 7 sinφ cosφ

= −21
√
5 sin3 φ cosφ+ 12

√
5 sinφ cosφ

=
1

2

√

1

5

(
−210 sin3 φ cosφ+ 120 sinφ cosφ

)

(cosφ P̄ ′
4,3) = −4 sinφ (secφ P̄4,3) + 7λn−1,m(4, 3)(secφ P̄3,3)

= −4 sinφ

(

3

2

√

35

2
sinφ cos2 φ

)

+ 7

√

9

7 · 7

(

1

2

√

35

2
cos2 φ

)

= −3
√
70 sin2 φ cos2 φ+

3

2

√

35

2
cos2 φ

=
1

2

√

1

70

(
−420 sin2 φ cos2 φ+ 105 cos2 φ

)

4.3 Gottlieb Algorithm

4.3.1 Basis of the Gottlieb Approach

Mueller [10] developed an efficient algorithm for solving the gravitational po-
tential function which, like Pines, defined special functions by reallocating the
factors in each term of the potential function. Gottlieb [3] then defined the
gradient of Mueller’s potential function in terms of the partial derivatives with
respect to these special functions. Recursions for the partial derivatives of the
special functions were then developed to resolve the gravitational acceleration.

4.3.2 Normalized Gottlieb Algorithm

Each of the recursion equations of the Gottlieb algorithm is now normalized
using the normalization parameters of Section 3.4. Each of the original equa-
tions can be found in Ref. [3]. Only the normalized equations are presented
here and should replace their analogues in the original algorithm. The added
normalization parameters are denoted with an underbrace or overbrace to bring
attention to the changes from the equations in the original document.

Normalizing the Gottlieb recursions requires a few new normalization pa-
rameters in addition to the parameters derived for a normalized Lear imple-
mentation. The new normalization parameters are outlined in Table 4.2. In
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λn,m+1(n,m) =
Nn,m

Nn,m+1
=

√

(n+m+ 1)(n−m)(2− δ0,m)

2
(4.12)

λn,m+1(n, 0) =
Nn,0

Nn,1
=

√

(n+ 1)n

2
(4.13)

λn−1,m−1(n,m) =
Nn,m

Nn−1,m−1

=

√

(2n+ 1)(2− δ0,m)

(2n− 1)(n+m)(n+m− 1)(2− δ0,m−1)
(4.14)

(4.15)

Table 4.2: Normalization parameters λ needed for a normalized Gottlieb algo-
rithm

this section, sinφ has been replaced by ǫ to keep a consistent notation with the
original document.

Recursion for Zonal Legendre Polynomials P̄ 0
n = P̄n

This recursion utilizes Parameters 4.1 and 4.2. For n = 2 through nd

P̄ 0
n = P̄n =

1

n
[(2n− 1)ǫ λn−1(n)

︸ ︷︷ ︸

4.1

P̄n−1 − (n− 1)λn−2(n)
︸ ︷︷ ︸

4.2

P̄n−2] (4.16)

where P̄0 = 1 and P̄1 = N1P1 =
√
3 ǫ.

Recursion for Sectorial and Tesseral ALFs P̄m
n

This recursion utilizes Parameters 4.5 and 4.14. For n = 2 through nd and
(inner loop) m = 1 through nd

P̄m
n = λn−2,m(n,m)

︸ ︷︷ ︸

4.5

P̄m
n−2 + (2n− 1)λn−1,m−1(n,m)

︸ ︷︷ ︸

4.14

P̄m−1
n−1 (4.17)

where P̄ 1
1 = 1.

Recursion for Intermediate Sum Hn

This recursion utilizes Parameters 4.13 and 4.12. For n = 2 through nd

Hn = Cn,0

4.13
︷ ︸︸ ︷

λn,m+1(n, 0) P̄
1
n

+
n∑

m=1

λn,m+1(n,m)
︸ ︷︷ ︸

4.12

P̄m+1
n

rm
(Cn,mCm + Sn,mSm) (4.18)
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Chapter 5

Verifications and

Conclusions

Each of the algorithms addressed in this paper were at first coded directly
from the equations or code provided in the original sources and then tested
against normalized implementations of each. Surprisingly, the results showed a
fairly large discrepancy between the results of the normalized and unnormalized
implementations for two of the three algorithms. Through numerical analysis
and extremely scrutinized debugging, it became evident that the generator for
the ALFs was the source of error.

Since the normalized Pines implementation was provided to the authors al-
ready coded but its results appeared more stable than the unnormalized code,
it was suspected that the two codes were in some way different. As an exper-
iment, the unnormalized Pines code was replaced by a copy of the normalized
version of the code which had been “unnormalized,” revealing that the ALF
generator was in fact different between the two Pines implementations utilized
in the first test. Further experimentation verified that the stability of the al-
gorithms depended largely on the stability of the ALF generator used. Finally,
the results of all testing appeared to indicate that normalization amplifies any
inherent noise and error in each of the algorithms, a conclusion which further
drove the development of additional conclusions and recommendations.

5.1 Preliminary Test Conditions

To test both the normalized and unnormalized implementations of each algo-
rithm (six total) for agreement, acceleration vectors were computed at a set of
positions around a given central body. The Moon was chosen for the central
body, and the LP150Q mass coefficients were utilized for the test. The mass
coefficients were unnormalized using the recursions in Section 3.2 to pass to
the unnormalized algorithms. Tests utilized central-body-fixed position vectors
with latitudes ranging from −90◦ to +90◦ in 30◦ increments and at each longi-

25
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26 CHAPTER 5. VERIFICATIONS AND CONCLUSIONS

tude from −150◦ to +180◦ in 30◦ increments. Each position vector was given a
200-kilometer altitude above the lunar reference radius of 1738 kilometers.

At each of these positions, the acceleration was computed with all six al-
gorithms with a variety of gravity model sizes. As a first check to ensure the
algorithms functioned properly, a 0× 0 model was tested to obtain the central
body acceleration. Square models 2× 2 through 50 × 50 were then tested, fol-
lowed by the non-square models 50× 0 through 50× 49. Finally, the “extreme”
cases of 125 × 125 and 150 × 150 were tested to ensure the normalized models
in fact converged at relatively high degrees and orders.

The DeMars implementation of normalized Pines was considered the baseline
model because it was based on the extensive stability studies of Lundberg and
Schutz [5]. Error, defined for each tested iteration as the magnitude of the delta
vector between the DeMars-calculated acceleration vector and the calculated
accleration vectors from each of the other algorithms, was considered acceptable
if the order of magnitude was 10−18 or smaller. This is the order of magnitude
of ten times machine epsilon for the acceleration magnitudes tested, which was
obtained by passing various acceleration vector magnitudes from the DeMars
subroutine as arguments to the MATLAB eps function.

5.2 Preliminary Results

The output of the first MATLAB script to test the algorithms is listed in Ap-
pendix A. The preliminary results showed that Lear (both normalized and
unnormalized) and Pines unnormalized had negligible error for all gravity mod-
els and locations around the central body. Gottlieb had small but noticeable
error in equatorial locations in the square models 40 × 40 and larger. All of
the Gottlieb non-square models had large but consistent error everywhere. The
error became especially pronounced in the large 125×125 and 150×150 models
at the equator. These findings necessitated further analysis of the error which
developed at the equator.

5.3 Further Analysis

The tests outlined in Section 5.1 were modified to only calculate accelerations
with all the square models from 2 × 2 through 150 × 150. This would allow a
trend to emerge when plotting the error versus the degree and order of the model,
as shown in Figure 5.1. At the equator, the error in both the normalized and
unnormalized Gottlieb models grows slowly with increasing degree and order and
suddenly diverges to positive infinity when the degree and order approaches 150.
The rate of growth of error in Gottlieb is drastically larger as seen by comparing
the scales of the y-axis of Figures 5.1 and 5.2. The beginning of the divergence
of Gottlieb from the other two models, which remain closely in line with each
other, in the unstable implementations can be clearly seen in Figure 5.3.

As an experiment, this same test was run using a known unstable ALF
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Figure 5.1: Acceleration error magnitude for unnormalized models at equator
(φ = 0◦)

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum degree and order

D
ev

ia
tio

n 
fr

om
 s

ta
bl

e 
no

rm
al

iz
ed

 P
in

es
 (

km
/s

 2 )

 

 

Lear (norm)
Gottlieb (norm)

Figure 5.2: Acceleration error magnitude for normalized models at equator
(φ = 0◦)
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Figure 5.3: Acceleration error magnitude for unnormalized models at equator
(φ = 0◦) with degree and order 60–85

generator1 in the Pines algorithm. The error behavior of this known unstable
algorithm at the poles mirrored the behavior of the Gottlieb error at the equator,
as shown in Figure 5.4.

Normalized implementations of the unstable Pines showed that the error
was much larger than the error of the unnormalized unstable Pines, as seen in
Figure 5.5. This large disparity between normalized and unnormalized error
resembled the error of the two Gottlieb implementations as well.

5.4 Conclusions

Four primary conclusions can be drawn from the data presented in this paper:

• Pines (as implemented by DeMars) and Lear algorithms are sta-
ble because they use a stable ALF recursion. It is worth noting
that virtually the same recursion equation [4, Recursion I] is used for gen-
erating ALFs in the unnormalized implementations of the Lear and Pines
(DeMars) algorithms. The very similar behavior between the two algo-
rithms can thus be explained by the similarity in their ALF generators.

• Gottlieb and Pines algorithms, as originally published, are un-
stable due to unstable ALF recursions. The apparently unstable be-
havior of the Gottlieb algorithm is presumed to be the result of an unstable
ALF generator used in the algorithm. This conclusion is motivated by the
similar signature of the error data with a known unstable ALF generator,
the Pines algorithm with Unnormalized Recursion IV from Lundberg and

1Unnormalized Recursion IV from Lundberg and Schutz [4].
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Figure 5.4: Acceleration error magnitude for unnormalized models (unstable
Pines) at south pole (φ = −90◦)
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Figure 5.5: Acceleration error magnitude for normalized models (unstable
Pines) at south pole (φ = −90◦)
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Schutz [4] with which it was originally published. The error is location
specific, much like the error that develops in the inherently unstable Pines
implementation, albeit in a different location. The fact that both error
signatures are latitude-dependent implies the ALF generator is the source
of the instability, since the argument of ALFs used for spherical harmonic
expansion is always sinφ.

• Normalization of recursions amplifies numerical noise. Assuming
Gottlieb is, in fact, using an unstable ALF generator, it would appear that
normalization of unstable ALF generators increases this instability and
amplifies the error dramatically. This conclusion is supported by observing
the same amplified error in both a known unstable ALF generator in Pines
and the presumed-unstable ALF generator in Gottlieb in their normalized
implementations relative to their unnormalized equivalents.

• Unnormalized algorithms provide perfectly valid results at high
degree and order as long as coefficients can be reliably unnor-
malized. Normalized and unnormalized implementations of Pines as well
as Lear algorithms agree very well with each other. This leads to the con-
clusion that it is safe to use unnormalized algorithms as long as proper
unnormalization of the coefficients is performed, such as using the recur-
sions in Section 3.2. If a relatively small gravity model is always desired,
such as in current Mission Control Center software where the Earth gravity
model is traditionally limited to degree and order 7, it is perfectly accept-
able to continue the practice of implementing unnormalized algorithms for
calculating gravitational acceleration.

5.5 Recommendations

Two recommendations are presented by the authors:

• Gottlieb and Pines algorithms should not be implemented di-
rectly as published. Unless a more stable ALF generation scheme is
implemented, it is recommended that the Gottlieb algorithm be omitted
from any implementation which incorporates large models due to the po-
tential for instability. Developing an improved Gottlieb algorithm which
implements a stable ALF generator is left for future work.

The Pines algorithm has been stabilized by Lundberg and Schutz [4], so
their recursions should be implemented with a Pines algorithm instead of
the ALF generator used in the original Pines paper.

• Normalized implementations are better suited to software pack-
ages than unnormalized algorithms. Normalized algorithms are not
only better suited for acceleration calculation with larger gravity mod-
els, their consistency with unnormalized algorithms makes them desirable
for implementation in software packages seeking to maintain versatility
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and robustness when computing gravitational acceleration. Normalized
algorithms, when properly implemented, should always return a valid ac-
celeration given any set of normalized coefficients and a valid degree and
order.
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Appendix A

Preliminary Results

This section contains the output of the initial MATLAB test script. These ini-
tial tests of the algorithms were used to identify test cases which needed further

analysis. Cases with unusually large error are boxed like this . Note: Error is
defined as the magnitude of the delta vector between each algorithm’s acceler-
ation vector and the Normalized Pines acceleration vector. See Section 5.1 for
additional information.

Maximum central body unnormalized Pines error: 2.65574e-019

at lat/lon: -30/-60

degree x order: 0x0

Maximum central body unnormalized Lear error: 4.8487e-019

at lat/lon: 0/-120

degree x order: 0x0

Maximum central body unnormalized Gottlieb error: 6.50521e-019

at lat/lon: -90/-150

degree x order: 0x0

Maximum central body normalized Lear error: 0

at lat/lon: -90/-150

degree x order: 0x0

Maximum central body normalized Gottlieb error: 0

at lat/lon: -90/-150

degree x order: 0x0

Maximum square unnormalized Lear error: 1.99033e-018

at lat/lon: 0/30

degree x order: 48x48

Maximum square unnormalized Gottlieb error: 2.7959e-018

at lat/lon: 30/-150

degree x order: 49x49

Maximum non-square unnormalized Lear error: 2.28713e-018

at lat/lon: 30/-90

degree x order: 50x9

33
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34 APPENDIX A. PRELIMINARY RESULTS

Maximum non-square unnormalized Gottlieb error: 8.29053e-008

at lat/lon: 60/-150

degree x order: 50x0

Maximum square Pines error: 2.65574e-019

at lat/lon: -30/-150

degree x order: 1x1

Maximum square Lear error: 2.48422e-019

at lat/lon: 60/60

degree x order: 46x46

Maximum square Gottlieb error: 1.32303e-016

at lat/lon: 0/-150

degree x order: 49x49

Maximum non-square Pines error: 4.96844e-019

at lat/lon: -60/-60

degree x order: 50x13

Maximum non-square Lear error: 2.65574e-019

at lat/lon: -30/150

degree x order: 50x25

Maximum non-square Gottlieb error: 1.43628e-016

at lat/lon: 0/-150

degree x order: 50x26

Maximum square normalized Lear error 125: 9.00606e-019

at lat/lon: 30/-90

degree x order: 125x125

Maximum square normalized Gottlieb error 125: 5.96756e-005

at lat/lon: 0/-120

degree x order: 125x125

Maximum square normalized Lear error 150: 2.7959e-018

at lat/lon: 30/150

degree x order: 150x150

Maximum square normalized Gottlieb error 150: 1.17375

at lat/lon: 0/-30

degree x order: 150x150
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